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Abstract—In many control applications, nonlinear plants
can be modeled as linear parameter-varying (LPV) systems,
by which the dynamic behavior is assumed to be linear, but
also dependent on some measurable signals, e.g., operating
conditions. When a measured data set is available, LPV model
identification can provide low complexity linear models that can
embed the underlying nonlinear dynamic behavior of the plant.
For such models, powerful control synthesis tools are available,
but the way the modeling error and the conservativeness of
the embedding affect the control performance is still largely
unknown. Therefore, it appears to be attractive to directly
synthesize the controller from data without modeling the
plant. In this paper, a novel data-driven synthesis scheme is
proposed to lay the basic foundations of future research on
this challenging problem. The effectiveness of the proposed
approach is illustrated by a numerical example.

I. INTRODUCTION

In many control applications, nonlinear plants can be

modeled as linear parameter-varying (LPV) systems, where

the dynamic behavior is characterized by linear relations

which vary depending on some measurable time-varying

signals, called scheduling signals. For example, the value of

these variables can represent the actual operating point of the

system. In the literature, it has been shown that accurate and

low complexity models of LPV systems can be efficiently

derived from data using input-output (IO) representation

based model structures [10], while state-space approaches

appear to be affected by the curse of dimensionality and

other approach-specific problems [15]. However, most of

the control synthesis approaches are based on a state-space

representation of the system dynamics (except a few recent

works [1] [5]) and state space realization of complex IO

models is difficult to accomplish in practice. This transforma-

tion can result in a non minimal parameter dependency with

time-shifted versions of the scheduling parameters or in a

non state-minimal state-space realization, for which efficient

model reduction is largely an open issue [12]. Moreover, the

way the modeling error affects the control performance is

unknown for most of the design methods and little work

has been done on including information about the control

objectives into the identification setting. In this paper, a direct
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method is proposed to design fixed-order LPV controllers

in an IO form using experimental data directly. In fact,

this corresponds of designing controllers without deriving

a model of the system. This approach permits to avoid the

critical (and time-consuming) approximation steps related

to modeling and state-space realization and it results in a

fully automatic procedure, where only the desired closed-

loop behavior has to be specified by the user. Moreover,

although the optimization problem to solve the design of the

controller is bi-convex in the general case, the final procedure

turns out to be convex, when the problem is reformulated

using suitable instrumental variables.

Direct controller tuning using a single set of IO data,

also known as non-iterative data-driven control, has been

first studied in the linear time-invariant (LTI) framework

[2]. Well established approaches have been introduced,

like Virtual Reference Feedback Tuning (VRFT) [4] and

Non-iterative Correlation-based Tuning (CbT) [14]. A

first attempt to extend VRFT to LPV systems has been

presented in [7], where data-driven gain-scheduled controller

design has been proposed to realize a user-defined LTI

closed-loop behavior. Although satisfactory performance

has been shown for slowly varying scheduling trajectories,

this methodology is far from being generally applicable to

LPV systems. As a matter of fact, in the method presented

in [7], the controller must be linearly parameterized and

the reference behavior must be LTI. The latter requirement

represents a strict limitation, since an LTI behavior might

be difficult to realize in practice, as it may require too

demanding input signals and dynamic dependence of the

controller on the scheduling signal. On the other hand, the

LPV extension of Non-iterative CbT has been found to

be unfeasible, as the derivation of this approach is based

on the commutation of the plant and the controller in the

tuning scheme [8]. Unfortunately, such a commutation does

not generally hold for parameter-varying transfer operators

[13]. A direct data-driven LPV solution has been presented

for feed-forward precompensator tuning in [3]. Also in this

case, no dynamic dependance is accounted for and the final

objective is an LTI behavior.

In the remainder of this paper, a novel data-driven scheme

for LPV controller synthesis without the need of a model

of the system is presented. The formulation of the design

problem is provided in Section II, whereas Section III and

Section IV illustrate the technical development of the method

for noiseless and noisy data, respectively. Section V com-

pares the proposed scheme to existing techniques, whereas

the effectiveness of the introduced method is demonstrated
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Fig. 1. Data-driven LPV control configuration: the proposed closed-loop
behavior matching scheme.

by a simulation example in Section VI. Some final remarks

end the paper.

II. PROBLEM FORMULATION

Consider the one degree-of-freedom (DOF) control archi-

tecture depicted in Figure 1. Let G denote an unknown

single-input single-output (SISO) LPV system described by

the difference equation

A(p, t, q−1)y(t) = B(p, t, q−1)u(t), (1)

where u(t) ∈ R is the input signal, y(t) ∈ R is the

noise-free output and p(t) ∈ P ⊆ R
np is a set of np

(exogenous) measurable scheduling variables. From now on,

for simplicity, the case of np = 1 will be considered.

In (1), A(p, t, q−1) and B(p, t, q−1) are polynomials in

the backward time-shift operator q−1 of finite degree na and

nb, respectively, i.e.,

A(p, t, q−1) = 1 +

na
∑

i=1

ai(p, t)q
−i,

B(p, t, q−1) =

nb
∑

i=0

bi(p, t)q
−i,

where the coefficients ai(p, t) and bi(p, t) are nonlinear (pos-
sibly dynamic) mappings of the whole scheduling sequence,

i.e., p(t), p(t− 1) and so on.

The system G is assumed to be stable, where the notion

of stability is defined as follows.

Definition 1: An LPV system, represented in terms of

(1), is called stable if, for all trajectories {u(t), y(t), p(t)}
satisfying (1) with u(t) = 0, t ≥ 0, it holds that ∃ δ > 0
s.t. |y(t)| ≤ δ, ∀t ≥ 0. �

Remark 1: Notice that, due to linearity, an LPV system

that is stable according to Definition 1 also satisfies that

sup
t≥0

|u(t)| < ∞ =⇒ sup
t≥0

|y(t)| < ∞,

for all {u(t), y(t), p(t)} satisfying (1). This property is

known as Bounded-Input Bounded-Output (BIBO) stability

in the L∞ norm [10]. �

Consider that, as the objective of the control design, a desired

closed-loop behavior is given by a state-space representation

xM (t+ 1) = AM (p, t)xM (t) +BM (p, t)r(t),
y(t) = CM (p, t)xM (t) +DM (p, t)r(t).

(2)

In the following, the transfer operator M(p, t, q−1), which
indicates the infinite impulse response of the reference

model (2) will be used as a shorthand form to indicate the

mapping of r via M . Formally, M is such that y(t) =
M(p, t, q−1)r(t) for all trajectories {u(t), y(t), p(t)} satisfy-
ing (2). In case the reference model is given in an IO form,

this can be realized in a state-space representation using the

so called maximally augmented realization form [11] or the

approaches presented in [12].

Furthermore, consider that the controllerK, parameterized

through θ, can be represented as

AK(p, t, q−1, θ)u(t) = BK(p, t, q−1, θ)(r(t)− y(t)), (3)

where

AK(p, t, q−1) = 1 +

naK
∑

i=1

aKi (p, t)q−i,

BK(p, t, q−1) =

nbK
∑

i=0

bKi (p, t)q−i,

and

aKi (p, t) =

n0
∑

j=1

aKi,jfi,j(p, t), bKi (p, t) =

mi
∑

j=0

bKi,jgi,j(p, t),

and fi,j(p, t) and gi,j(p, t) are a-priori chosen nonlinear

(possibly dynamic) functions of the the scheduling parameter

sequence p. The parameters θ, characterizing the controller

K, are then the collection of the unknown constant terms

aKi,j and bKi,j , i.e.,

θ = [a⊤1 . . . a⊤naK
b⊤0 . . . b⊤nbK

]⊤,

ai = [aKi,1 . . . aKi,ni
]⊤, bi = [bKi,1 . . . bKi,mi

]⊤.
(4)

Remark 2: The controller has been assumed to be dynam-

ically dependent on p in order to have enough flexibility to

achieve the user-defined behavior. As a matter of fact, it is

well-known that a static dependence would be a rather strong

assumption for most of real-world systems [10], [13]. �

Assume now that a collection of open-loop data DN =
{u(t), yw(t), p(t)}, t ∈ IN

1 = {1, . . . , N}, is available,

wherein

yw(t) = y(t) + w(t) (5)

and w(t) represents a zero-mean colored output noise.

Specifically,

D(p, t, q−1)w(t) = C(p, t, q−1)v(t),

where v is a zero mean white noise of unit variance,

D(p, t, q−1) and C(p, t, q−1) are polynomials in q−1 of finite

degree nd and nc, respectively, i.e.,

C(p, t, q−1) = 1 +

nc
∑

i=1

ci(p, t)q
−i,

D(p, t, q−1) = 1 +

nd
∑

i=1

di(p, t)q
−i,

and the coefficients ci(p, t) and di(p, t) are unknown non-

linear (possibly dynamic) mappings of the the scheduling
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parameter sequence p. The model-reference control problems

considered in this paper can then be stated as follows.

Problem 1 (Design with noiseless data): Assume that a

noiseless dataset DN = {u(t), y(t), p(t)}, t ∈ IN
1 , a

reference model (2) and a controller structure (3) are given.

Determine θ, so that the closed-loop system composed by

(1) and (3) is equal to (2). �

Problem 2 (Design with noisy data): Assume that a

noisy dataset DN = {u(t), yw(t), p(t)}, t ∈ IN
1 , a reference

model (2) and a controller structure (3) are given. Determine

θ, so that the closed-loop system composed by (1) and (3)

asymptotically converges to (2), as N → ∞. �

First, for the clarity of the exposition, Section III will be

dedicated to the unrealistic (but simpler) Problem 1, for

which the key ideas of the approach will be introduced. Then,

the solution of the realistic (but more complex) Problem 2

will be developed as an extension of the noiseless case in

Section IV.

Remark 3: Notice that, unlike in the LTI case, designing a

controller that achieves a user-defined behavior (i.e., model-

reference control) is not trivial in the LPV framework even

from a model-based perspective. The main reason is that

most of the techniques available for closed-loop model-

matching cannot be extended to parameter-varying systems.

�

III. LPV CONTROLLER TUNING FROM DATA:

NOISELESS DATA

In this Section, Problem 1 will be addressed. Notice that

the objective can be interpreted as an optimization problem

over a generic time interval IN
1 , described by (6).

As a first step, assume that the following statements hold:

A1. the objective can be achieved, i.e., there exists a

value of θ such that the closed-loop behavior is

equal to M(p, t) for any trajectory of p;

A2. M(p, t) is invertible;

where the inverse of a LPV mapping Σ is defined as follows.

Definition 2: Given a causal LPV map Σ with input x1,

scheduling signal p and output x2. The causal LPV mapping

Σ† that gives x1 as output when fed by x2, for any trajectory

of p, is called the left inverse of Σ. �

The proposed approach is based on two key ideas. The first

one is that, under assumption A2, the dependence on the

choice of r can be removed. As a matter of fact, by rewriting

the first constraint of (6) as

r(t) = M†(p, t, q−1)ε(t) +M†(p, t, q−1)y(t), (7)

where M†(p, t, q−1) denotes the left inverse of M(p, t, q−1),
Problem (6) can be reformulated as indicated in (8), where

the argument q−1 has been dropped for the sake of space.

Here comes the second fact as follows. Since the only

signals appearing in (8) are u, y and p, DN can be used

instead of the dynamic system relation as indicated by the

first constraint of (8). The problem can then be rewritten

as illustrated in (9) where u, y and p come from the

available dataset {u(t), y(t), p(t)}Nt=1. Notice that in the

above formulation:

• Problem (9) is independent of the analytical description

of A(q−1, p) and B(q−1, p) and therefore no model

identification is needed.

• The information about the data generation mechanism

is implicitly included in DN .

• Problem (9) is generally nonconvex because of the

product between the optimization variables ε and the

parameters θ characterizing BK(q−1, p, θ). Specifically,
it is convex only if BK(q−1, p, θ) is independent of θ,
whereas it is bi-convex in case of any linear dependance

of BK(q−1, p, θ) on θ.

It should be here mentioned that the computation of the

inverse of the reference map is not straightforward. However,

for reference maps given in the state-space form (2), the

result of the following Proposition can be employed.

Proposition 1: Assume that DM (p, t) 6= 0, ∀p in (2) such
that ∃ D−1

M (p, t) with D−1
M (p, t)DM (p, t) = 1, ∀p. Define

the state-space representation of the inverse map of (2) as

xM†(t+ 1) = AM†(p, t)xM†(t) +BM†(p, t)y(t)
r(t) = CM†(p, t)xM†(t) +DM†(p, t)y(t).

(10)

The system matrices in (10) can be computed from AM (p, t),
BM (p, t), CM (p, t) and DM (p, t) as follows:

AM†(p, t) = AM (p, t)−BM (p, t)D−1
M (p, t)CM (p, t),

BM†(p, t) = BM (p, t)D−1
M (p, t),

CM†(p, t) = −D−1
M (p, t)CM (p, t),

DM†(p, t) = D−1
M (p, t).

Proof: See [6].

Remark 4: In case of DM = 0, to compute the inverse, an
approximation of DM = ǫD, where ǫD << 1, can be used,

as it is common in robust control. Another more practical

way to overcome the problem will be shown in Section VI.

�

Notice that if the data is noiseless and A1 holds, (9) is the

same as (6) and their minimizer yields ε = 0. This is clearly
not the case for w 6= 0, since only yw (and not y) could be

used in (9) to replace (1), leading to a bias of the estimate.

This situation will be dealt with in the next section.

IV. LPV CONTROLLER TUNING FROM DATA:

NOISY DATA

In this Section, Problem 2 will be addressed and therefore,

from now on, yw in (5) will be considered as the available

output signal in the data set. To deal with noisy data, the

controller parameters θ will be now estimated on the basis

of the instrumental variable (IV) scheme described in the

sequel. It will be shown that this IV approach not only

provides an extension to the noisy case, but also transforms

the bi-convex optimization into a convex scheme.

Define the regressors φ(ξ, t) and φ(ξ̃, t) according to (12),
where the definitions of signals ξ̃(t) and ξ(t) are

ξ̃(t) = M†(p, t)y(t)− y(t), ξ(t) = M†(p, t)yw(t)− yw(t).
(11)
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minθ,ε ‖ε‖
2

s.t. ε(t) = M(p, t, q−1)r(t)− y(t), ∀t ∈ IN
1 ,

A(p, t, q−1)y(t) = B(p, q−1)u(t), ∀t ∈ IN
1 ,

AK(q−1, p, θ)u(t) = BK(q−1, p, θ)(r(t)− y(t)), ∀t ∈ IN
1 .

(6)

minθ,ε ‖ε‖
2

s.t. A(p, t)y(t) = B(p, t)u(t), ∀t ∈ IN
1 ,

AK(p, t, θ)u(t) = BK(p, t, θ)(M†(p, t)ε(t) +M†(p, t)y(t)− y(t)), ∀t ∈ IN
1 .

(8)

minθ,ε ‖ε‖
2

s.t. AK(p, t, θ)u(t) = BK(p, t, θ)(M†(p, t)ε(t) +M†(p, t)y(t)− y(t)), ∀t ∈ IN
1 .

(9)

φ(ξ, t) = [ − u(t− 1)f1,0(p, t) −u(t− 1)f1,1(p, t) . . . −u(t− 1)f1,n0
(p, t) . . .

− u(t− naK )fnaK
,0(p, t) −u(t− naK )fnaK

,1(p, t) . . . −u(t− naK )fnaK
,nnaK

(p, t)

ξ(t)g0,0(p, t) ξ(t)g0,1(p, t) . . . ξ(t)g0,m1
(p, t) . . .

ξ(t− nbK
)gnbK

,0(p, t) ξ(t− nbK
)gnbK

,1(p, t) . . . ξ(t− nbK
)gnbK

,mnbK

(p, t) ]
⊤

(12)

Based on the above notation, the constraint in (9) can be

rewritten as

u(t) =φ⊤(ξ, t)θ +BK(p, t, θ)M†(p, t)ε(t). (13)

Consider now the optimization problem

θ̂IV = argmin
θ

N
∑

t=1

∥

∥ζ(t)
(

φ⊤(ξ, t)θ − u(t)
)∥

∥

2

2
, (14)

where ζ(t) is the instrument, a vector that shares the same

dimension of φ(ξ, t) and is chosen by the user so that ζ(t)
is independent of the noise term ξ(t)− ξ̃(t) = (M†(p, t) −
1)w(t), i.e., since E[w(t)] = 0,

E[ζ(t)(M†(p, t)− 1)w(t)] = 0, ∀t ∈ IN
1 . (15)

Notice that (14) is aimed to minimize the coloured residual

BK(p, t, θ)M†(p, t)ε(t) in (13). By introducing the matrix

notation

Z = [ζ(1) . . . ζ(N)]
⊤
, U = [u(1) . . . u(N)]⊤,

Φ = [φ(ξ, 1) . . . φ(ξ,N)]
⊤
,

Problem (14) can be also written in the compact form

θ̂IV = argmin
θ

∥

∥Z⊤ (Φθ − U)
∥

∥

2

2
, (16)

whose solution is given by

θ̂IV =
(

Z⊤Φ
)−1

Z⊤U. (17)

Notice that (17) only depends on the data and M†, whereas

no information about the structure of G or the noise model is

required, analogously to the solution of (6). The following

result shows that the solution of (17) asymptotically con-

verges to the solution of problem (6), even if the data in

(17) is noisy.

Proposition 2: The controller parameters θ̂IV in (17)

asymptotically converge with probability 1 (w.p. 1) to the

optimal parameters θ̂ in (6), that is

lim
N→∞

θ̂IV = θ̂. (18)

Proof: See [6].

There are several ways to build the instrument. One

practical solution is to perform a second experiment on

the plant, with the same input and parameter trajectories,

and collect the output measurements now characterized by

a different realization of noise (thus independent of that of

the first experiment). A more efficient way to deal with this

issue would be to resort to Refined Instrumental Variables

(RIV) [9].

V. COMPARISON WITH EXISTING TECHNIQUES

As mentioned in the introduction, non-iterative data-driven

methods already exist in the scientific literature and therefore

a comparison with them is necessary to better clarify the nov-

elty and the potential of the proposed approach. Specifically,

non-iterative methods, i.e. VRFT [4] and Non-iterative CbT

[14], are considered here.

The VRFT design scheme corresponds, in the noiseless

LTI case, to the optimization problem

θ̂vr = argmin
θ,εu

‖εu‖
2
, (19)

where

εu(t) = u(t)−K(q−1, θ)ev(t), t = 1, . . . , N
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K(q−1, θ) is the controller transfer function, ev(t) =
M−1(q−1)y(t) − y(t) and M represents an LTI reference

behavior. Such a signal can be seen as the error that would

feed the controller in a “virtual” loop where the input u of

the identification experiment is the output of the controller

and the complementary sensitivity function is M(q−1). As
a matter of fact, ev is the difference between the “virtual”

reference signal feeding the closed-loop system

rv(t) = M−1(q−1)y(t), (20)

and the noiseless output of the experiment y(t). Although
such a formulation might seem similar to the proposed

approach in case of fixed p, there are a few significant

differences:

• minimizing ‖εu‖
2
is not the same as minimizing ‖ε‖2

in the original model-matching problem, as indicated by

the authors of [4] themselves;

• even though also in the strategy presented in this paper

a “fictitious” reference signal, i.e., (7), is computed to

build a closed-loop optimization problem, such a refer-

ence is structurally different from the virtual reference

signal computed in VRFT (20).

• in standard VRFT, the denominator of the controller is

a-priori fixed to guarantee a global solution, unlike in

the proposed approach.

Moreover, in the LPV extension of VRFT [7],

• controllers are still linear in the parameters with a fixed

denominator;

• no dynamic dependence on p is taken into account, thus

yielding a less general approach;

• the reference mapping needs to be LTI.

Regarding Non-iterative CbT, the differences with the pro-

posed approach are even more evident. First of all, as indi-

cated in [8], CbT cannot be extended to nonlinear systems,

since the tuning scheme is based on the commutation of the

plant and the controller. Moreover, the treatment of noise

is based on extended instrumental variables minimizing a

measure of the correlation between u and ε.

It should be also remarked that, in the LTI case, both

VRFT and CbT consider also the case where A1 does not

hold. To handle this case, an asymptotical stability constraint

and a bias-shaping prefilter are introduced. The analysis of

this situation is obviously of great interest also in the LPV

framework and therefore it will be an objective of future

work.

VI. NUMERICAL EXAMPLE

In this Section, the effectiveness of the proposed approach

is demonstrated on a numerical example. Consider the SISO

LPV system G defined as

xG(t+ 1) = p(t)xG(t) + u(t)
y(t) = xG(t),

(21)

where p is an exogenous parameter taking values in P =
[−0.4, 0.4]. According to Definition 1, it can be shown that

the system is stable for all possible trajectories of p.

Let the desired behavior for the closed-loop system M be

given by the second order plant

xM (t+ 1) = AM (p, t)xM (t) +BM (p, t)r(t)
yM (t) = CM (p, t)xM (t) +DM (p, t)r(t).

(22)

where

AM (p, t) =

[

−1 1
−1−∆p(t) 1

]

, BM (p, t) =

[

1 + p(t)
1 + ∆p(t)

]

,

CM = [1 0] , DM = 0,

∆p(t) = p(t)− p(t− 1)

and yM is the desired closed-loop trajectory for y(t). Such
a control objective has been selected for this example as the

closed-loop matrices are easily computable and A1 holds. In

practice, any reference model is allowed.

Assume now that a gain-scheduled PI controller K of the

form

xK(t+ 1) = xK(t) + (θ0(p, t) + θ1(p, t)) (r(t)− y(t))
u(t) = xK(t) + θ0(p, t) (r(t)− y(t))

where

θ0(p, t) = θ00 + θ01p(t), (23)

θ1(p, t) = θ10 + θ11p(t− 1), (24)

is available for model reference control of G. The closed-

loop dynamics can be written as a function of the controller

parameters as:

xF (t+ 1) = AF (p, t)xF (t) +BF (p, t)r(t),
y(t) = CF (p, t)xF (t) +DF (p, t)r(t).

(25)

where

AF (p, t) =

[

p(t)− θ0(p(t)) 1
−θ0(p(t))− θ1(p(t)) 1

]

,

BF (p, t) =

[

θ0(p(t))
θ0(p(t)) + θ1(p(t))

]

,

CF = [1 0] , DF = [0] .

By comparing AF , BF , CF , DF and

AM , BM , CM , DM , it is evident that there exists a

controller in the considered class which is able to achieve a

closed-loop behavior equal to M , i.e., A1 holds. Specifically,

the parameters of the optimal controller are such that

θ◦0(p, t) = θ◦00 + θ◦01p(t) = 1 + p(t), (26)

θ◦1(p, t) = θ◦10 + θ◦11p(t− 1) = −p(t− 1). (27)

In this example, the parameters of the controller will be

computed using the method proposed in this paper, without

deriving a model ofG, so as to design the control law directly

from data in its IO form

u(t) =u(t− 1) + θ0(p, t) (r(t)− y(t))+

+ θ1(p, t) (r(t− 1)− y(t− 1)) . (28)

For this purpose, a data set DN of N = 1000 measure-

ments are collected, by performing an experiment where u(t)
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is selected as a white noise sequence with uniform distri-

bution U (−1, 1) and p(t) = 0.4 sin(0.04πt). The output

measurements are corrupted by a white noise sequence with

normal distributionN (0, σ2) and standard deviation σ = 0.2.
Under this experimental setting, the resulting Signal to Noise

Ratio (SNR) is 9.8 dB.

As a preliminary step, recall thatM† is needed to compute

(11). Since DM is zero, the result of Proposition 1 cannot be

used as it is. However, Proposition 1 can still become useful

as follows. Consider the system M ′ defined as

xM ′(t+ 1) = AM ′(p, t)xM ′(t) +BM ′(p, t)r(t)
yM ′(t) = CM ′(p, t)xM ′(t) +DM ′(p, t)r(t)

where AM ′(p, t) = AM (p, t), BM ′(p, t) = BM (p, t),
CM ′(p, t) = CM (qp)AM (p, t) and DM ′(p, t) =
CM (qp)BM (p, t). Notice that, to compute CM ′(p, t) and

DM ′(p, t), the sequence of p in CM has to be shifted

one step forward in time. It is then easy to check that

yM ′(t) = yM (t + 1). Since now DM ′ 6= 0 ∀p ∈ P, the

inverse M ′† of M ′ can be computed using Proposition 1

and, as a consequence, (11) is given by filtering yw with

M ′† and shifting the data in time as

ξ̃(t) = M ′†(p, t)yw(t+ 1)− yw(t), t ∈ IN−1
1 . (29)

It should be underlined here that, doing so, the samples

available for controller identification become N − 1. This
procedure is feasible because filtering is operated off-line.

The controller parameters can now be computed using the

direct data-driven method proposed in this paper, i.e., the

IV estimation formula (17) using an instrument built with a

second experiment. The resulting values are

θ0(p, t) =0.9852 + 1.0166p(t), (30)

θ1(p, t) =− 0.0153− 0.9860p(t− 1), (31)

where small discrepancies with respect to (26)-(27) are

obviously due to the noise and the finiteness of N .

Despite these small variations, the controller appears to

be effective in terms of matching of the desired closed-loop

behavior. As an example, Figure 2 illustrates a reference

tracking (validation) experiment using a piecewise linear p,

different from the trajectory of the estimation dataset DN .

Notice that, in these simulations, the mean tracking error is

less than 1%.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, a novel data-driven method has been intro-

duced to design model-reference controllers for LPV systems

using a set of IO data without undertaking a full modeling

study. An instrumental variable technique has been proposed

to deal with the bi-convex optimization issue related to

the given problem formulation and the effectiveness of the

approach has been proven on a numerical example. This

paper aims to lay the basic foundations for future research in

direct data-driven control of LPV plants. Specifically, future

activities will be devoted to the development of:

• control design techniques using collection of closed-

loop data (useful to deal with unstable plants);
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Fig. 2. Numerical example: realized closed-loop output response y and
desired output response yM (top), tracking error ε (middle), scheduling
signal p (bottom).

• formal methods for controller structure selection;

• optimization methods including stability constraints.
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