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Abstract— Accurate parametric identification of Linear
Parameter-Varying (LPV) systems requires an optimal prior
selection of model order and a set of functional dependencies
for the parameterization of the model coefficients. In order to
address this problem for linear regression models, a regressor
shrinkage method, the Non-Negative Garrote (NNG) approach,
has been proposed recently. This approach achieves statistically
efficient order and structural coefficient dependence selection
using only measured data of the system. However, particular
drawbacks of the NNG are that it is not applicable for
large-scale over-parameterized problems due to computational
limitations and that adequate performance of the estimator
requires a relatively large data set compared to the size of
the parameterization used in the model. To overcome these
limitations, a recently introduced L1 sparse estimator approach,
the so-called SPARSEVA method, is extended to the LPV case
and its performance is compared to the NNG.

Index Terms— Linear parameter-varying systems; ARX
model; identification, order selection; sparse estimators; com-
pressive system identification.

I. INTRODUCTION

Modeling and identification of nonlinear systems by Lin-

ear Parameter-Varying (LPV) models has recently received

extensive attention in the literature. This has resulted in sig-

nificant developments in the estimation of LPV polynomial

models in the Input-Output (IO) setting both in discrete and

continuous time [1]–[7]. A general mark of LPV models

is that the signal relations are considered to be linear just

as in the Linear Time-Invariant (LTI) case, but the model

parameters are functions of a measurable time-varying signal

p : Z → P ⊆ R
np (in discrete time), called the scheduling

variable. In principle, using scheduling variables as changing

operating conditions, endogenous/free signals or even latent

variables of the plant, the LPV system class can describe

both nonlinear and time-varying phenomena accurately.

To successfully find adequate LPV models of a given

system via identification, prior knowledge about the orig-

inal system is of paramount importance. One of the most

important priors is the selected model structure and the

corresponding model set within which the identification

method should find an LPV model estimate of the plant. Such

a selection is rather complicated as it is outmost desired to
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estimate an accurate LPV model of the underlaying system

using as few parameters as possible.

Besides the classical questions of model structure selection

in terms of model order (or relative orders in the multiple-

input multiple-output (MIMO) case), input delay and noise

structure, in the LPV setting a rather important, but relatively

rarely investigated problem is the selection of the functional

dependencies which explain how the model coefficients can

change due to the variation of the scheduling variable p. To

be able to describe the dynamic behavior of a given system

by an LPV model, this relation of the coefficient functions

to p must be precisely captured. However, in practice, prior

information on such a relation is hardly available and in

most cases only a class of functions, like polynomials,

trigonometrical functions, etc., can be pointed out. To be able

to capture these unknown relations, the lack of reliable prior

knowledge often leads to the situation of choosing a large

set of dependencies, like monomials {ψi,j}sij=1 with ψi,j :
P → R, for the parametrization of the model coefficients in

the form

ai(p(k)) = θi,0+θi,1ψi,1(p(k))+ . . .+θi,1ψi,si(p(k)), (1)

with θi,j ∈ R being the unknown parameters. Often from this

large set of functions only a few are needed to capture the

behavior of the system adequately. Furthermore, as quality

of a model is clearly related to the performance of the

application in which the model will be used, there is a

desire for a minimal parametrization based on the parsimony

principle (Occam’s razor) and utilization complexity in terms

of control synthesis, prediction, etc.

The resulting model structure selection problem can be re-

solved by proposing a model structure capable of explaining

a rich set of possible dynamics, and, by imposing a sparsity

pattern on the parameters, letting the data decide which sub-

structure is appropriate to use. In the LTI literature, typical

model structure selection tools such as AIC, BIC/MDL,

cross-validation, etc. are used for this purpose. However,

recently computationally more attractive sparse estimation

or statistical regularization (shrinkage) methods have been

developed like the Non-Negative Garrote (NNG) or the Least

Absolute Shrinkage and Selection Operator (LASSO) [8]–

[10], the Ridge Regression, the Elastic Net methods [11] and

L1-estimators like the SPARSEVA [12], [13].

The NNG approach has been extended to LPV-ARX poly-

nomial models in [14] to tackle the order and dependency

selection problem in the LPV global identification setting

(identification w.r.t. varying scheduling trajectory) based on
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convex optimization. In this method, a natural ordering of

model complexity is imposed on the parameters, which

provides the possibility to estimate the order of the input

and output side polynomials simultaneously together with

of the required structural dependence of the coefficients.

However, a particular drawback of the NNG is that it

requires a relatively large data set compared to the size

of the parameter vector to be estimated (sensitivity for the

underdetermined regression case). As in the LPV setting,

over-parametrization might result in an overly large number

of parameters, the resulting estimation problem can fall close

to the underdetermined case which might rise difficulties in

the application of the NNG. Furthermore, the NNG requires

the optimization of a regularization parameter which has a

non-trivial relationship between the expected prediction error

and sparsity level of the estimate.
In this paper, we study the application of the recently

developed L1 sparse estimator approach called SPARSEVA

(which stands for SPARSe Estimator based on a VAlidation

criterion) for the joint model order and dependency selection

problem of discrete-time LPV-ARX models, and compare

the resulting approach to the LPV-NNG. The motivation of

this study is that the SPARSEVA approach has been recently

reported to have favorable properties in the LTI setting in

solving underdetermined sparse linear-regression problems

[13] and requires no regularization parameter selection [12].

Therefore, it provides a competitive alternative of the NNG

and it is an exciting question to explore if these advantages

can be fruitfully used in handling the challenging problems

of LPV model structure selection.
For the sake of generality, it must also be noted that

an alternative of over-parametrization based model structure

selection in the LPV context is the use of “non-parametric”

estimation approaches like [4], [15]. These methods have

been recently developed to learn model structures directly

without prior assumptions on the dependencies. However,

in this paper, we focus our comparison only on approaches

based on the over-parametrization principle.
The paper is organized as follows: In Section II, a short

review of the LPV-ARX model structure and its linear-

regression based identification method is given, defining the

problem setting for model structure selection in this context.

Section III gives an introduction to the SPARSEVA approach

and presents how its modified form can be used to solve the

LPV-ARX model structure selection problem. In Section IV,

the NNG approach is briefly summarized and it is compared

to the developed LPV-SPARSEVA method in Section V. In

Section VI, performance of both algorithms are compared

on simulated data. Finally, in Section VII, conclusions are

drawn and perspectives on future work are given.

II. LPV IDENTIFICATION VIA ARX MODELS

For the simplicity of the notation, assume that the original

data-generating system is single-input single-output (SISO)

and, in discrete-time, it can be written in the form of

y(k)+

na
∑

i=1

aoi (p(k))y(k−i)=
nb
∑

j=0

boj(p(k))u(k−j)+e(k) (2)

where k ∈ Z is the time, u : Z → R and y : Z → R denote

the input and the output signals respectively, p : Z → P is the

scheduling variable with range P ⊆ R
np and e is a white

Gaussian noise process with zero mean. Furthermore, the

coefficient functions aoi , b
o
j : P → R have static dependence

on p, i.e., they only depend on p(k). Based on measurements

DN = {(u(k), p(k), y(k))}Nk=1, our goal is to estimate a

model of this system in the form of

y(k)+

na
∑

i=1

ai(p(k))y(k−i)=
nb
∑

j=0

bj(p(k))u(k−j)+ǫθ(k) (3)

where the functions
[

φ1 · · · φng

]⊤
,

[

a1 · · · ana
b0 · · · bnb

]⊤
,

with ng = na + nb + 1 are considered – as it is almost

exclusively done in the LPV identification literature (see,

e.g., [1]–[3], [5], [16]–[18]) – to be parameterized as

φi(�) = θi0 +

si
∑

j=1

θi,jψi,j(�), (4)

where {θi,j}ng,si
i=1,j=1 are unknown parameters and

{ψi,j}ng,si
i=1,j=1 are functions chosen by the user. In this

case, (3) can be rewritten as

y(k) = ϕ⊤(k)θ + ǫθ(k), (5)

where

θ =
[

θ1,0 · · · θ1,s1 θ2,0 · · · θng,sng

]⊤

ϕ(k) =
[

−y(k − 1) −ψ1,1(p(k))y(k − 1) · · ·
−ψ1,s1(p(k))y(k − 1) −y(k − 2) · · ·
−ψna,sna

(p(k))y(k − na) u(k) · · ·
]⊤
.

It is assumed that model structure (3) contains the true

system (2), i.e., there exists a θo, s.t. y(k) = ϕ⊤(k)θo+e(k).
Given a data set DN , the least-squares (LS) parameter

estimate for the linear regression model (5) is

θ̂N = arg min
θ∈Rn

VN (θ,DN ), (6)

where n =
∑ng

i=1(1 + si) (according to (4)), and

VN (θ,DN ) ,
1

N
‖ǫθ(k)‖2ℓ2 . (7)

To guarantee a unique solution of (6), it is assumed that

{ψij,}ng,si
i=1,j=1 are chosen such that (3) is globally identifiable

(there exist no θ and θ′, such that the 1-step ahead predictor

resulting from (3) is not distinguishable for θ and θ′) and

that DN provides a persistently exciting regressor in (5) (see

[5], [19], [20]). Note that identifiability in particular holds

for (5) with e 6= 0 iff for each i ∈ {1, . . . , ng}, {ψi,j}sij=1

corresponds to a set of linearly independent functions on P.

By organizing the data as

YN =
[

y(1) y(2) . . . y(N)
]⊤
, (8a)

ΦN =
[

ϕ(1) ϕ(2) . . . ϕ(N)
]⊤
, (8b)

the optimal solution to (6) can be written as

θ̂LSN =
(

Φ⊤
NΦN

)−1
Φ⊤

NYN , Φ+
NYN . (9)
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III. THE LPV-SPARSEVA APPROACH

In this section, an extension of the SPARSEVA approach

(developed in [12]) is introduced for the estimation of the

model structure (3) by taking into account the sparsity in

the parameter vector. The SPARSEVA estimator is a variant

of the LASSO estimator [9] (an L1 penalized least squares

estimator), and w.r.t. the considered linear regression form

(5), it corresponds to the minimizer of the convex program:

min
θ∈R

ng
‖θ‖1, (10a)

s.t. VN (θ,DN ) ≤ VN (θ̂LSN ,DN )(1 + εN ). (10b)

Here εN > 0 is a quantity defining a particular level set of

VN and can be typically chosen as:

• εN = 2
(
∑ng

i=1(1 + si)
)

/N .

• εN =
(
∑ng

i=1(1 + si)
)

ln(N)/N .

Note that the θ̂LSN solution corresponds to the minimum of

VN (θ,DN ). However, in case of an over-parameterization,

which happens frequently in the LPV case, this minimum is

achieved by using the extra degrees of freedom in θ to fit

the noise in the data and hence decrease the ℓ2-loss. Based

on the sparsity prejudice, it is thus required to increase the

ℓ2-loss in terms of the εN defined level sets of VN (θ,DN ) to

find the sparse solution we are looking for. The first choice

of εN is motivated by the AIC criterion, while the second

one is related to the BIC/MDL criterion [21]. In Section V,

it is going to be shown how these choices of εN relate to

consistency/sparsity of the SPARSEVA scheme. Note that

the problem (10a-b) can be efficiently solved by any convex

optimization algorithms even in case of underdetermined

situations, i.e., N ≪ ng (under minor conditions on ΦN ,

see [13]).

Even though SPARSEVA can be considered as a variant

of the LASSO, it has the advantage of not requiring the

tuning of regularization parameters via techniques such as

cross-validation, which involve solving multiple times a

convex program over a grid of values of the regularization

parameters. This tuning is automatically taken into account

by choosing the value of εN , as explained in detail in [12].

An “adaptive” version of (10a), called A-SPARSEVA, has

better sparsity properties than SPARSEVA [12], and w.r.t.

(5), it is defined as the minimizer of the following convex

program:

min
θ∈R

ng
‖w ⊙ θ‖1 (11a)

s.t. VN (θ,DN ) ≤ VN (θ̂LSN ,DN)(1 + εN ), (11b)

where w := [ [θ̂LSN ]−1
1 · · · [θ̂LSN ]−1

na+nb
]⊤ and ⊙ is the

Hadamard product. The better sparsity property of this

scheme follows by the weighting w based re-orientation

of the VN (θ,DN ) level set associated feasible θ set in

the parameter space such that the relaxation gap between

the θ solution with minimal support and the ℓ1 solution is

decreased. The estimation properties of A-SPARSEVA can

be further improved by removing the columns of ΦN corre-

sponding to the zero entries of the A-SPARSEVA estimate

θ̂AN , and re-estimating θ by least squares on the reduced ΦN .

Note that in case the assumed model structure is not ARX,

the prediction error is not equal to the equation error in (3).

This means that minimizing the ℓ2-loss w.r.t. the prediction

will not lead to a convex problem in terms of (11a-b) and

the introduced selection criterion for εN will be invalid due

to the bias of the LS estimate.

IV. THE LPV-NNG APPROACH

The Nonnegative Garrote (NNG) method was first pre-

sented in [8] as a coefficient shrinkage method for linear

regression models in statistics. This approach is based on a

penalization of the least-squares solution of (9) by attaching

weights to it, which in turn are regularized. The NNG

problem w.r.t. (5) can be also written as a convex program

min
w∈R

ng
VN (w ⊙ θ̂LSN ,DN ) + λ‖w‖1, (12a)

s.t. w � 0, (12b)

where λ is the model complexity, i.e., regularization parame-

ter. For a given λ, (12a-b) as a a convex optimization problem

can be solved in the decision variable w, providing the final

estimate as θ̂NNG
N = w ⊙ θ̂LSN . As λ increases, the weights

of the less important regressors will shrink, and finally end

up at zero. Thus, as λ increases, the model becomes less

complex.

By this approach, it is also possible to take into account

the natural ordering of time lags by penalizing higher model

order in the NNG estimate as reported in [14]. This is

achieved by adding some linear constraints on the weights

w. For LPV-ARX models, these constraints can be

1 ≥
s1
∑

j=0

w1,j ≥
s2
∑

j=0

w2,j ≥ . . . ≥
sna
∑

j=0

wna,j , (12c)

1 ≥
sna+1
∑

j=0

w(na+1),j ≥ . . . ≥
sng
∑

j=0

wng,j . (12d)

This is a natural1 extension of the NNG method, for order

selection of LPV-ARX models in system identification.

An efficient way to implement this strategy is to use a

path following parametric estimation. For this purpose a

Lagrangian multipliers based method has been proposed in

[22]. Starting from λ = 0, this method calculates a piece-

wise affine solution path for λ. In this way it efficiently

explores the change in the model fit as a function of λ. For

more details see [22]. Then, based on the resulting (finite) set

of λ values where the solution changes, the final parameter

estimate θ̂NNG
N and its associated λ value is selected by cross

validation with a BIC or AIC criterion.

V. COMPARISON OF THE SPARSEVA AND THE NGG

Under the assumptions of Section II, it is possible to

show (see [12], [23]) that the considered A-SPARSEVA L1

estimator (11a-b) enjoys the following properties:

i) θ̂N is consistent in probability iff εN → 0 as N → ∞.

1Note that other choices for the ordering of the parameters, e.g., the
maximum instead of the sum, are also possible.
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ii) Under condition (i), θ̂N has the sparseness property

(i.e., P{[θ̂N ]i = 0} → 1 as N → ∞ for every index i
such that [θo]i = 0) if and only if NεN → ∞.

iii) Under conditions (i) and (ii), θ̂N (with least squares

re-estimation) has the oracle property. This means that
√
N(θ̂N − θo) ∈ As N (0,M †), (13)

where M is the information matrix when the support of

θo is known.

Notice that the A-SPARSEVA enjoys consistency, sparse-

ness and the oracle property if we choose εN =
(
∑ng

i=1(1 + si)
)

ln(N)/N , resembling the BIC criterion. For

the non-asymptotic properties of the method, especially in

case of relatively small data records, see [13].

The available results (see [10], [24]) on the NNG, under

the assumptions of Section II, are more modest:

i) θ̂N is consistent in probability iff λ→ 0 as N → ∞.

ii) if λ → 0 in a fashion that ‖θo − θ̂LSN ‖∞ = o(λ) as

N → ∞, then θ̂N has the sparseness property.

As the regularization parameter λ has a non-trivial rela-

tionship with the level sets of VN , therefore it is generally

not possible to give a simple choice of it, like in the A-

SPARSEVA case, which can ensure both consistency and

sparseness. Therefore, calculation of a piece-wise affine

solution path for λ and cross validation based selection of

the right λ value is a more reliable path to follow. However,

application of such an algorithm renders asymptotic analysis

to be impractical, even though decreasing tendency of the

selected λ can be observed in practice. This clearly signifies

the importance of the A-SPARSEVA scheme with the BIC

type of selection of εN . Furthermore, depending on the size

of the regression problem, the signal to noise ratio and

the sparsity level of θo, the calculation of the piece-wise

affine solution path has a varying computational time ranging

from a few seconds to hours. For the sake of fairness, it is

important to highlight that it might be also possible to give

a selection rule which could bring to the NNG the same

properties as the A-SPARSEVA enjoys, but such a selection

rule is difficult to obtain due to the non-trivial relationship of

λ with the level sets of VN . In conclusion, these properties

suggest that the A-SPARSEVA is better tuned to the large-

scale linear-regression problems we face in case of LPV-

ARX model selection problem. To test this hypothesis, a

serious Monte-Carlo study is conducted in the next section.

VI. SIMULATIONS

In order to test the applicability of the proposed LPV-

SPARSEVA method and to compare its performance to the

NNG, a representative simulation example is considered.

This example is taken from [14].

The data-generating system is defined as an LPV-

ARX(9, 3) model:

A(q, p)y = B(q, p)u + e, (14)

where the noise e is white with a Gaussian distribution

N (0, σ2
e ), p(k) ∈ P with P = [−2π, 0] and

A(q, p) = 1 + (0.24 + 0.1p)q−1 + (0.6− 0.1
√−p)q−2

+ 0.3 sin(p)q−3 + (0.17 + 0.1p)q−4

+ 0.3 cos(p)q−5 − 0.27q−6 + (0.01p)q−7

− 0.07q−8 + 0.01 cos(p)q−9,

B(q, p) = 1 + (1.25− p)q−1 − (0.2 +
√−p)q−2,

are polynomials in q with static coefficient dependence on p.

This LPV-ARX(9, 3) model is stable for all constant trajec-

tories of p (uniform frozen stability) and has fast and slow

modes which change rapidly with the variation of p (see [14]

for details). Note that this model is a particularly difficult

one to correctly estimate as it is possible to approximate it

with an LPV-ARX(8, 3) model without a significant loss of

accuracy.

For estimation purposes, 100 estimation and 100 validation

data records have been generated by system (14) for each

data length N ∈ {200 + 50k}37k=1, resulting in 37 × 100
estimation and validation data records with length in the

interval [200, 2000]. During each computation, u, p and e
have been considered as independent realizations of three

white noise sequences with distributions u(k) ∈ N (0, 1),
p(k) ∈ U(−2π, 0) and e(k) ∈ N (0, σ2

e ) respectively. To

study the effect of a change in the power of the noise, this

generation of the data sequences has been repeated for vari-

ous noise variances σ2
e ∈ {6.25·10−8, 6.25·10−2, 6.5, 56.25}

corresponding to average Signal to Noise Ratios2 (SNR’s):

100dB, 40dB, 20dB, 12.5dB respectively. This has resulted

in a total of 4× 37× 100 = 14800 estimation and validation

data sets defining a serious Monte-Carlo study under various

conditions.

Using these data sets, the A-SPARSEVA approach de-

scribed in Section III with LS re-optimization, the NNG

approach described in Section IV with BIC based cross

validation and the ordinary LS approach are used to estimate

the system. In order to fairly assess the quality of the

resulting model estimates a base-line estimator or so called

oracle estimator in terms of an LS method has been

applied with the priori knowledge of which elements of θo
are zero. Note that the latter approach cannot be applied in

practice as the optimal model structure is unknown (part of

the identification problem itself). The results are compared

in terms of

• The Mean Squared Error (MSE) of the prediction on

the validation data:

MSE = E{‖y(k)− ŷ
θ̂N

(k)‖22}. (15)

computed as an average over each 100 runs for a given

N and σ2
e .

• The average of the fit score or the Best Fit Rate (BFR)

[25]:

BFR = 100%·max

(

1−
‖y(k)− ŷ

θ̂N
(k)‖2

‖y(k)− ȳ‖2
, 0

)

, (16)

2The SNR is defined as SNR , 10 · log10

(

‖y(k)−v(k)‖22
‖v(k)‖2

2

)

where

v(k) = −

∑na
i=1 ai(p(k))v(k − i) + e(k).
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where ȳ is the mean of y and ŷ
θ̂N

is the simulated model

output based on the validation data.

• The L1 parameter estimation error: ‖θ̂N − θo‖1.

• The percentage of correctly estimated zero elements.

By the previously described approaches, an LPV-

ARX(9, 3) model is estimated based on the collected data

and using the coefficient parametrization (4) with

ψi,1(p) = p, ψi,3(p) = sin(p),

ψi2,(p) =
√−p, ψi,4(p) = cos(p),

for all i, i.e. s1 = . . . = s12 = 4. This parametrization

corresponds to 5 · 12 = 60 unknown θij’s to be estimated.

Note that (14) is in the model class and the model order is

correct, but the coefficients are overparameterized, as only a

subset of {ψij} is required for the estimation of each φi.
The average results of the 100 Monte-Carlo runs in each

cases are given in Figure 1. From these results it follows that

in the low noise cases (SNR= 100dB, 40dB) the proposed

LPV-A-SPARSEVA scheme correctly estimates the true sup-

port of θo, i.e., it correctly identifies the underlying model

structure of the system and hence it achieves the same results

as the oracle approach. For SNR= 100dB, the NNG with

BIC shows a worse performance in the MSE of the prediction

and BFR of the simulation error than the ordinary LS, but it

starts to recover quickly as N increases. This phenomenon,

is due to some numerical errors in the calculation of the

piece-wise affine solution path and has no real relation to

the performance of the method. This is clearly shown by

the fact that in average almost 100% of the zeros in θ0 are

correctly estimated by the NNG-BIC. For SNR= 40dB, the

NNG-BIC shows its true performance and clearly improves

the estimation w.r.t. the LS approach. However, the proposed

A-SPARSEVA scheme is able to explore better the sparsity

structure of θ0 and provides the correct selection of the

regressor terms with a small error on the estimated number

of zeros. For the sake of fairness, it is important to note that

a significant amount of parameters identified by the NNG-

BIC to be non-zero are actually estimated with a magnitude

less than 10−4. The real difference in the performance of

the A-SPARSEVA and the NNG-BIC becomes apparent in

the medium (SNR= 20dB) and the high noise cases (SNR=
12.5dB), where the A-SPARSEVA clearly out-performs the

NNG-BIC. For increasing data lengths beyond N = 2000,

the performance of all approaches start to converge to the

oracle base-line estimator with the same relative rate

which can be observed in Figure 1.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, the order and structural dependence selection

problem of LPV-ARX models, addressed in [14], has been

revisited. Extension of two sparse estimator approaches, the

Non-Negative Garrote (NNG) also studied in [14] and an

L1 sparse estimator presented in [12] have been analyzed

and compared in this context. It has been shown, that

the L1 sparse estimator called SPARSEVA, has favorable

properties over the NNG approach as it does not require

optimization of the regularization parameter, it is applicable

to solve underdetermined sparse linear-regression problems

and shows better performance in the recovery of the sparsity

structure. These advantages are important as in the LPV case

usually serious over-parameterization is needed to adequately

capture the dynamics of the data-generating system. Hence,

the LPV extension of the SPARSEVA provides a reliable

approach to estimate the required order and dependency

structure in LPV-ARX models, giving a practical tool for the

support of LPV-IO identification approaches. The proposed

method is extendable to the multivariable case and for more

difficult noise settings, providing important objectives for

further research.

REFERENCES
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