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Abstract— In the reduction of Linear Parameter-Varying
(LPV) models, decreasing model complexity is not only limited
to model order reduction (state reduction), but also to the
simplification of the dependency of the model on the scheduling
variable. This is due to the fact that the concept of minimality
is strongly connected to both types of complexities. While
order reduction of LPV models has been deeply studied in the
literature resulting in the extension of various reduction ap-
proaches of the LTI system theory, reduction of the scheduling
dependency still remains to be a largely open problem. In this
paper, a model reduction method for LPV state-space models
is proposed which achieves both state-order and scheduling
dependency reduction. The introduced approach is based on an
LPV Ho-Kalman algorithm via imposing a sparsity expectation
on the extended Hankel matrix of the model to be reduced.
This sparsity is realized by an L1-norm based minimization of
a priori selected set of dependencies associated sub-Markov
parameters. The performance of the proposed method is
demonstrated via a representative simulation example.

Index Terms— Linear parameter-varying systems; model re-
duction; Ho-Kalman algorithm; L1 relaxation; realization.

I. INTRODUCTION

The principle question that arises in modeling of most
physical, chemical and engineering systems is how to de-
crease the complexity of first-principle models or models
inferred from data while preserving a sufficient level of
predictive power i.e., accuracy in the model. Reduction of
Linear Parameter-Varying (LPV) models has been studied
in the literature since the middle 1990s to support low-
order controller synthesis, see, e.g., [1]–[3]. An interesting
feature in the LPV setting is that decreasing the complexity
corresponds not only the reduction of the complexity with
respect to the order of the system model (state reduction),
but also to the dependency on the scheduling variable.

Due to the linearity of LPV models, the problem of state-
order reduction is similar to the model reduction in the
LTI case, hence various methods available for LTI state
reduction, such as co-prime factor based, optimal Hankel
norm and balanced truncation methods have been extended
to the LPV case with some moderate modifications [1], [2],
[4]–[7]. Some of these approaches are also implemented in
the Enhanced LFR toolbox [3], [6]. Most of the existing LPV
reduction techniques are either based on Linear-Fractional
Representation (LFR) or State-Space (SS) representations
with affine dependency. In most of these approaches, the
prime emphasis is on reducing the state dimension of the
LPV model [1]. However, the problem of reduction of the
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dimension of the scheduling variable is of equal interest and
generally disregarded in the literature. This paper aims to
remedy this.

One of the LPV model reduction methods is the LPV
Ho-Kalman algorithm studied in [4]. Unlike other LPV
model reduction techniques, this approach, in addition to
its simplicity, does not necessitate quadratic stabilizability or
detectability of the full order model and can be employed for
both stable and unstable systems without imposing any mod-
ifications. Furthermore, it can also be used for a “minimal”
state-space realization of a large variety of model structures
used in LPV identification. However, this algorithm also
focuses only on state-order reduction, hence it does not offer
reduction with respect to the scheduling dependency.

In this paper, we aim to explore the question of reduc-
tion of LPV system models from the view point of both
state-order and scheduling-dependency reduction. For this
purpose, we apply a modified version of the LPV Ho-
Kalman algorithm via imposing a sparsity expectation on
the extended Hankel matrix of the model to be reduced. LPV
state-space representations with affine functional dependen-
cies consist of state-space system matrices A(p), B(p), C(p)
and D(p) that affinely depend on the scheduling parameter
p : Z→ P ⊆ Rnp in the sense that, like for A(p)

A(p) = A0 +

s∑
i=1

AiΨi(p), (1)

where Ai ∈ R·×· are the constant sub-parameters and Ψi(�) :
P → R are linearly independent functional dependencies.
Reduction of these sub-parameters of the system model to
their minimal set results in the reduction of the functional
dependencies. In this paper, combined with the Ho-Kalman
based state-reduction, this is proposed to be achieved through
the L1-norm based convex relaxation of the following min-
imization problem:

min
x∈R�

‖x‖0, (2)

where x is the column vector of all sub-parameters and
‖�‖0 is the L0 pseudo-norm that returns the number of non-
zero components in its arguments [8]. This corresponds to
the investigation of which functional dependencies have a
significant role in an accurate LPV state-space representa-
tion of the system dynamics. It will also be shown that
both the reduction of functional dependencies (through L1

minimization) and state-order reduction (via the LPV Ho-
Kalman algorithm) can be carried out independently in case
of affine dependency.

The paper is organized as follows: In the preceding
section, the LPV Ho-Kalman algorithm and the concept of
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the extended Hankel matrix for LPV systems are briefly
discussed. This is followed by introducing the L1-norm
based recovery problem in Section III. In Section IV, the
reduction of the scheduling dependency is formulated as
an L1-norm based recovery problem and it is discussed
how the recovered solution can be integrated with the LPV
Ho-Kalman algorithm to achieve joint reduction of the de-
pendency and the model order. In Section V, a simulation
example is given to demonstrate the performance of the
proposed method and finally the conclusions of the presented
results are given in Section VI.

II. THE LPV HO-KALMAN ALGORITHM

In this section, a brief overview of the LPV extension of
the Ho-Kalman algorithm is given. This approach, introduced
in [4], aims at the model reduction of the state-space rep-
resentation of an LPV system with an affine dependence on
the scheduling variable.

State-space representation of an LPV system in discrete-
time is commonly defined as

qx = A(p)x+B(p)u, (3a)
y = C(p)x+D(p)u, (3b)

where u : Z→ Rnu , y : Z→ Rny and x : Z→ Rnx are the
input, output and state signals of the system respectively, q is
the forward time-shift operator, i.e., qx(k) = x(k+1) and the
system matrices A,B,C,D are functions of the scheduling
signal p : Z→ P. Affine dependence of the system matrices
on p is formulated as (1) and

B(p) = B0 +

s∑
i=1

BiΨi(p), (4a)

C(p) = C0 +

s∑
i=1

CiΨi(p), (4b)

where Ψi(.) : P → R are bounded, linearly independent
functions on P and {Ai, Bi, Ci}si=0 are constant matrices
with appropriate dimensions. Without loss of generality of
the approach, from now on, we assume that D(p) = 0. Note
that for the sake of simplicity of the upcoming derivations,
we consider here all matrices A,B and C to depend on the
same set of functions Ψi, this assumption will be relaxed
later on. For general definition of state-space representations
of an LPV system and the application of the Ho-Kalman
algorithm see [4] and [9].

The LPV system represented by (3a-b) also has an Infinite
Impulse Response (IIR) representation in the form of

y(k) =

∞∑
i=0

gi(p, k)u(k − i), (5)

where gi are the Markov parameters (functions) of the LPV
system computed as gi(p, k) = C(p(k))

∏i−1
`=1A(p(k − i +

`))B(p(k − i)).
In order to introduce the LPV Ho-Kalman algorithm, an

extended Hankel matrix for LPV systems is defined next and
then the steps involved in the algorithm are discussed.

1) The extended Hankel matrix in the LPV case: Recur-
sively define, for any j,

M1 =
[
B0 · · · Bs

]
, (6a)

Mj =
[
A0Mj−1 · · · AsMj−1

]
, (6b)

and introduce
Rk =

[
M1 · · · Mk

]
, (7)

where Rk ∈ Rnx×(nu
∑k

`=1(1+s)
`). The matrix Rk is called

the k-step extended reachability matrix, which characterizes
the structural state-reachability of the state-space representa-
tion of an LPV system [9]. As a next step, recursively define,
for any j,

N1 =
[
C>0 · · · C>s

]>
, (8a)

Nj =
[
(Nj−1A0)> · · · (Nj−1As)>

]>
. (8b)

Similarly to the reachability case, introduce the k-step ex-
tended observability matrix, which characterizes the struc-
tural state-observability of the state-space representation of
an LPV system [9], as:

Ok =
[
N>1 · · · N>k

]>
, (9)

where Ok ∈ R(ny
∑k

`=1(1+s)
`)×nx . Define the extended

Hankel matrix of the system as,

Hi,j=OiRj ∈R(ny
∑k

`=1(1+s)
`×nx)×(nx×nu

∑k
`=1(1+s)

`) (10)

In case of x(k − j) = 0nx
and u(l) = 0 for l ≥ k,

Yk,i = Nk,iHi,jMk,jUk,j , (11)

where i, j ≥ 1, Yk,i = [ y(k) · · · y(k + i− 1) ]> and
Uk,j = [ u(k − 1) . . . u(k − j + 1) ]> together with the
combination of the changes of the scheduling dependencies
expressed by

Wk = [ 1 Ψ1(p(k)) · · · Ψs(p(k)) ]>,

Lk|i = Iny
⊗ (Wk ⊗ . . .⊗Wk−i)

>,

Nk,i = diag(Lk|0, . . . , Lk+i−1|i−1),

Kk|j = Wk ⊗ . . .Wk−j ⊗ Inu
,

Mk,j = diag(Kk−1|0, . . . ,Kk−1|j−1),

where In is the n×n identity matrix and ⊗ is the Kronecker
product. For s = 2, Hi,j is

C0B0 C0B1 C0A0B0 C0A0B1 · · ·
C1B0 C1B1 C1A0B0 C1A0B1 · · ·
C0A0B0 C0A0B1 C0A

2
0B0 C0A

2
0B1 · · ·

C1A0B0 C1A0B1 C1A
2
0B0 C1A

2
0B1 · · ·

C0A1B0 C0A1B1 C0A1A0B0 C0A1A0B1 · · ·
...

...
...

...
. . .


where C0B0, C0B1, C0A0B0, . . . are called the sub-Markov
parameters of the state-space representation of an LPV
system. These parameters are constants multiplied by the
functional dependencies as shown below for the N th Markov
parameter gN in case of polynomial dependence:

gN =

(
s∑
i=0

CiP
i
N

)(
N−1∏
i1=1

s∑
i2=0

Ai2P
i2
i1

)(
s∑
i=0

BiP
i
0

)
(12)
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where PN is the scalar value of the scheduling variable p at
the time instant N , i.e., PN = p(N).

2) The LPV Ho-Kalman algorithm: The following
steps are involved for computing the system matrices
A(p(k)), B(p(k)), C(p(k)) with a minimal or reduced state
order n from a given Hankel matrix Hi,j .
• Compute the SVD Hi,j = UnΣnVn to determine n (the

number of non-zero singular values in Σn). In case of
reduction, the significant non-zero singular values will
determine the number of state variables n.

• Construct H1 and H2 according to:

H1 = UnΣ
1
2
n = Ôi, (13a)

H2 = Σ
1
2
nV
>
n = Ĉj , (13b)

where rank(H1) = rank(H2) = n. Ôi and Ĉj are
the extended observability and controllability matrices
respectively corresponding to the resulting ’balanced’
state basis.

•
[
Ĉ>0 · · · Ĉ>s

]>
are extracted by taking the first

ny(1 + s) rows of (13a) while
[
B̂0 · · · B̂s

]
is

obtained by taking the first nu(1+s) columns of (13b).
•
[
Â0 · · · Âs

]
is isolated from

←−−
Hi,j , which is obtained

by shifting the Hankel matrix one block column, i.e.,
nu(1 + s) columns, to the left.

←−−
Hi,j can be written as

←−−
Hi,j = Oi

[
A0 ... As

]
(I1+s }Rj−1), (14a)

= H1

[
Â0 ... Âs

]
(I1+s } Ĥ2), (14b)

where } is introduced as a block-wise Kronecker prod-
uct defined as follows:

I1+s }Rj−1 =
[
I1+s ⊗M1 · · · I1+s ⊗Mj−1

]
. (15)

Ĥ2 is generated from H2 by leaving out the last nu(1+
s)j columns. As a consequence, it holds that

H†1
←−
H (I1+s } Ĥ

†
2) =

[
Â0 · · · Âs

]
, (16)

where H†1 and H†2 are referred to as the left pseudo-
inverse and right pseudo-inverse of H1 and H2 respec-
tively.

It is important to highlight that s and the set {Ψi}si=1 has
an implicit role in the formulation of the Hankel matrix and
the whole realization/reduction procedure. Therefore, this
method does not offer reduction with respect to the functional
dependencies. Next an L1 recovery concept is introduced
which later will be applied for the reduction of the sub-
Markov parameters and hence the scheduling dependence.

III. L1 RECOVERY

To propose a solution for the reduction of scheduling
dependency, first we briefly study the concept of L1 recovery.
Suppose that Φ ∈ RN×m, b ∈ RN and there exists an
x ∈ Rm, s.t. Φx = b. If b contains the samples of a signal,
then x is called a representation of b with respect to the Φ
matrix [8]. Furthermore, x is called s-sparse when ‖x‖0 ≤ s.

The basic objective of “recovery” is to represent the signal
b by computing a x with maximal sparsity. This corresponds

to minimizing the L0 norm of x under the constraint that
Φx = b. As this problem is non-convex and NP hard, a
fruitful alternative is a convex relaxation based on the L1

norm [8]:
minimize ‖x‖1, (17a)
subject to b = Φx. (17b)

Such a relaxation is known to have a close approximation
of the L0 norm [8]. Note that (17) is a classical linear
programming problem which is efficiently solvable, even in
the case where m� N . These problems arise in many areas,
including compressive sensing, statistics, signal processing,
machine learning and approximation theory [8].

In case of the approximate representation of b by x with
respect to the matrix Φ, (17) modifies to

minimize ‖x‖1 (18a)
subject to ‖b− Φx‖2 < ε (18b)

where ε > 0 represents the approximation error which can
be a priori chosen. (18a-b) is again a convex problem.

Next, by formulating an L1 recovery problem of the
Markov parameter sequence of the system (for a given
trajectory of p) with respect to a priori assumed set of
dependencies, it will be shown how the principle idea of
maximal sparsity expectation can be used for the reduc-
tion of sub-Markov parameters and hence the scheduling
dependency. Later, it will be demonstrated by a simulation
example, that the modified version of the LPV Ho-Kalman
algorithm based on this idea of ’recovery’ is capable of
recovering the minimal (both in order and dependency) state-
space realization of a given LPV system.

IV. IMPROVED LPV HO-KALMAN ALGORITHM

So far, we have discussed both the LPV Ho-Kalman
algorithm for state-order reduction and the concept of L1

recovery. In this section, we will present and formulate the
idea of utilizing these concepts to propose a joint reduction
technique for state-order and scheduling dependency.

For the sake of simplicity, only Single-Input Single-Output
(SISO) case is considered. It is assumed that the Markov
parameters g0, g1, ..., gN of the LPV model with respect
to different trajectories of the scheduling variable p(k) are
given. Note that the Markov parameters of an LPV system
are functions of p(k) and also depend on the shifted version
of p(k). On the other hand, the sub-Markov parameters
are constants. Note that the system matrices {A,B,C},
associated with the underlaying minimal representation and
the scheduling dependency, are assumed to be unknown.

A. Problem formulation

The problem of scheduling dependency reduction is for-
mulated as a linear problem, i.e., Φx = b. This minimal
realization problem can be extended to the approximate
model reduction problem as in (18) with a suitably chosen
ε (see later the discussion on the selection of ε). The
Φ is a block diagonal matrix which contains the various
combinations of the sequences {Ψi(pk)}Nk=1. The vector b =[
g1(p, 1) g2(p, 2) . . . gN (p,N)

]>
contains the value of
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the Markov parameters for a given trajectory of p(k) on
k ∈ [1, N ]. This can be considered as the impulse response of
the model along that scheduling trajectory. The sub-Markov
parameters are collected in x. In this way, x can be seen
as the weights of the function components which compose
each g1, . . . , gN and hence their observed values along the
scheduling variable p given in vector b. To be consistent
with our previous assumption, g0 = 0 corresponding to
D(p(k)) = 0. To illustrate this construction, consider the
case when Ψi(p(k)) = pi(k) with np = 1. Define

Li =
[
1 p(i) p2(i) · · · ps(i)

]
, (19)

for i ∈ {0, . . . , N}. Let

Ki = Li ⊗ Li−1 ⊗ ...⊗ L0.

Then, matrix Φ is formed as follows:

Φ = blkdiag(K1,K2, . . . ,KN ), (20)

where ’blkdiag’ is a block diagonal matrix with N rows
and

∑N
i=1(s + 1)i columns, N is the number of Markov

parameters and s is the expected (maximum allowed) order
of the polynomial dependence on p. The column vector b of
the Markov parameters is defined as:

b =
[
g(p, 1) g(p, 2) · · · g(p,N)

]>
. (21)

The vector of the sub-Markov parameters x is defined via

Wj =
[
C0Mj

> C1Mj
> · · · CsMj

>]> (22)

giving
x =

[
W1 W2 · · · WN

]>
. (23)

Note that in MIMO case, the same procedure can be used to
formulate a vectorized form of all sub-parameters.

B. The L1 Optimization

Now, in order to recover x with maximal sparsity, cor-
responding to the elimination of all non-significant sub-
Markov parameters, the L1 optimization in the form of (18a-
b) is used with ε > 0 chosen according to the expected
approximation/realization error on the Markov parameter
sequence. In case of a minimal realization problem, ε is
used to represent the machine round-off and hence it is
typically chosen to be 0 < ε� 1. In case of approximative
realization, ε can be chosen as ε = (1 − δ)‖b‖2 where
0 < δ � 1 represents a user allowed percentage of error
relative to the L2 norm of the truncated impulse response
of the model given by b. Following the same derivation
as in [4], this leads to a bound on the expected induced
H∞ norm of the model approximation error. An alternative
approach for the selection of ε can be achieved by selection
methodologies discussed in the sparse estimation literature
[10]. The systematic choice of this threshold is regarded as
a future research work.

A particularly important fact is that the reduction of the
p-dependence of the Markov parameters can be carried out
independently from the state-reduction due to the assumed
linear parameterization of the matrices in {Ψi}si=1 and the
linear independence of these functions on P. This is due

the property of the Markov parameters, namely that they
uniquely characterize the input-output map of the system
(disregarding initial conditions). Therefore, reduction of their
dependence in a structural form which is related to the aimed
state-space description (1st-order parameter-varying differ-
ence equation with linear parameterization of the coefficients
in a subset of {Ψi}si=1), leaves the choice for the state-
map and hence the state-variable selection independent. To
ensure optimal selection of the subset of {Ψi}si=1 required
for the reduction/minimal realization, the corresponding sig-
nal recovery problem must be solved with respect to all
possible trajectories of p, i.e., p ∈ PZ. To formulate this
in a computationally feasible way, a finite set of randomly
generated trajectories are taken.

C. Detection and reduction of the dependence

As the extended Hankel matrix of the model to be reduced
is obtained via imposing a sparsity expectation on it, the
resulting matrix will contain some rows/columns of zeros
specifying the reduced dependency structure. Denote by sA,
sB and sC the order of dependencies of the p-dependent
matrices in (1) and (4a-b) respectively which initially are
equal to s. In case the input matrix Bi, i ∈ {1, . . . , sB}, can
be neglected in the L1 recovery provided Hankel matrix, then
the ith column and every (sB+1)th column following it must
be zero. The same holds for the output matrix Ci regarding
the rows of the Hankel matrix. By detecting these columns
and rows, the particular dependencies can be discarded from
(1) and (4a-b). For the state matrix A, the detection procedure
is more complicated. Based on the construction scheme of
the extended Hankel matrix (10), we can observe how the
state matrices {Ai}sAi=0 appear in the structure. Then the
following rules can be obtained to detect the absence of Ai:
• Check if there is any block of (sA + 1)τ zeros spaced
i(s+ 1)τ apart for τ = 1, 2, . . ..

• Remove the columns associated with these blocks.
Due to symmetry of the extended Hankel matrix, a similar
check can be made on the rows. The absence of these
rows/columns specifies the absence of a particular Ai.

D. Improvements of the existing LPV Ho-Kalman algorithm

As shown in Section II, s has an implicit role in the
original Ho-Kalman realization/reduction procedure. Now
the existing algorithm is improved to use the reduced set of
dependencies for each system matrices, i.e., sA, sB and sC as
determined in the previous sub-section. The improved LPV
Ho-Kalman algorithm inherits the properties of the existing
algorithm (see [4] for the details) and it can be extended
to Multiple-input Multiple-Output (MIMO) system models
as well. Note that the L1 recovery problem can be easily
extended to the MIMO case via a block-wise formulation,
but in terms of implementation, it requires a precise book
keeping of the sub-Markov sequences.

V. EXAMPLE

The purpose of the following example is to demonstrate
the performance of the proposed model reduction scheme
on a relevant simulation example. In this demonstration, we
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m

x(t)

F(t)

ks(t)cd(t)

Fig. 1. Mass-spring-damper system with varying damping and spring.

will first focus on the exact reduction of a non-minimal state-
space representation of an LPV system to a minimal form.
This will be followed by a demonstration of approximate
reduction via the proposed scheme.

Consider the example of a mass connected to a varying
spring and damper depicted in Fig. 1. This problem is one
of the typical phenomena occurring in the motion control
of many mechatronic systems like in active suspension.
Denote x the position (in [m]) of the mass m (in [kg]),
ks > 0 the varying stiffness of the spring and cd > 0 the
varying damping. These varying coefficients are assumed to
be a function of a scheduling signal p(t) : R → [0, 1].
Introduce F as the force (in [N]) acting on the mass m.
In this example, we will treat y(k) = dx

dt (k) as the sampled
output and u(k) = F (k) as the sampled input of the system
for with a sampling period Td = 0.01s. The underlaying
system can be represented as a 2nd-order parameter-varying
differential equation in a straight forward manner. However
due to discretization followed by a state-space realization,
the following DT representation of the system is obtained:[

A B
C 0

]
=

 a11 a12 b1
a21 a22 b2
c1 c2 0

 (24)

where

a11(p, k) = p2k(0.6pk−1 + 0.3)− pk(0.5pk−1 + 2.15)

+ 1.8pk−1 + 0.9

a12(p, k) = − p2k(1.2pk−1 + 0.6) + pk(0.4pk−1 + 4)

− 3.3pk−1 + 0.25

a21(p, k) = 0.3p2kpk−1 − pk(0.25pk−1 + 0.95) + 0.9pk−1

a22(p, k) = − 0.6p2kpk−1 + pk(0.2pk−1 + 1.9)

− 1.65pk−1 + 0.95

b1(p, k) = 2.2pk−1 + 0.9, c1(p, k) = 1− pk,
b2(p, k) = 1.1pk−1 − 0.1, c2(p, k) = 2pk − 1.

3-D plot of the Frozen Frequency Response (FRF) of the
given system model (frequency response of the system for
constant p(k), i.e., p(k) = P , ∀k ∈ Z is shown in Figure 2.

1) Exact reduction to minimal form: The Markov param-
eter sequences (for a finite set of randomly generated trajec-
tories of the scheduling signal p(t) : R→ [0, 1]) of the state-
space representation of an LPV system given above in (24)
are calculated. Then the L1 recovery problem, as presented in
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Fig. 2. 3-D plot of the frozen frequency response functions of the system
for all values of P.

(18a-b), is formulated. As this is the minimal realization case,
ε is chosen to be very small, i.e, 0 < ε� 1, and it represents
the machine round-off only. This recovery problem results in
the elimination of all non-significant sub-Markov parameters
corresponding to the negligible dependency structure. For the
given system, dependency is determined to be only on pk.
The maximally sparse vector x of the sub-Markov parameters
is mapped to the extended Hankel matrix. The LPV Ho-
Kalman algorithm is then invoked, the non-zero singular
values are of magnitude 2.8501 and 0.0142 respectively,
which determine the minimal state-order of the model. By
using the steps in the Section II the system matrices are
recovered as follows:[
A B
C 0

]
=

0.875− 0.080pk −0.045− 0.035pk −1.001

0.039 + 0.043pk 0.974− 0.019pk 0.045

−1.001 −0.061 0


(25)

The 3-D plot of the difference between the FRF of the
given system model and its minimal realization is shown
for all values of P in Figure 3. The system model given in
(24) can also be converted by a state-transformation to the
minimal state-space representation as shown below:[

A B
C 0

]
=

 0.9− 0.1pk −(0.2− 0.2pk) 1

0 0.95 0.1
1 0 0

 . (26)

This representation is indeed connected with a state-
transformation to (24) via the state transformation matrix

T (pk) =

[
2pk + 1 2pk − 1
pk pk − 1

]
. (27)

This proves that that realization determined by our proposed
method is a particular minimal realization of (24).

The reduced model is also compared with the original
system in terms of time domain responses with respect to a
1000 sample long randomly generated input sequence with
u(k) ∈ U(0, 1) and p(k) = 0.25+0.25w1(k)+w2(k) where
w1 is a normalized random phase multisine with frequencies
10, 100, 200 Hz and w2(k) ∈ U(0, 5). To quantify the time-
domain approximation error, the Best Fit Rate (BFR)

BFR = 100%.max

(
1− ‖y(k)− ŷ(k)‖2

‖y(k)− ȳ‖2
, 0

)
, (28)
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Fig. 3. The difference between frozen frequency response of the given
system and of the minimal realization of the system for all values of P.

and the Variance Accounted For (VAF) percentage

VAF = 100%.max

(
1− var(y(k)− ŷ(k))

var(y(k))
, 0

)
, (29)

are used where ȳ is the mean of y (the output of the given
system) and ŷ is the simulated output of the algorithm
provided model. In the minimum realization case, both the
VAF and the BFR are 100%.

2) Reduced representation of the original system: In case
of the reduced representation, the calculation of the Markov
parameters and the L1 recovery problem is formulated in the
similar way as shown in the minimal realization case, except
that now, ε is chosen according to the following selection rule
to limit the approximation error:

ε = (1 + ng ×
log(N)

N
)‖b− Φ+b‖22,

where Φ+ = Φ(Φ>Φ)−1Φ> is an orthogonal projection and
ng is the number of sub-Markov parameters in x. This selec-
tion rule has a direct connection with the BIC based threshold
selection for L1 sparse estimators [10]. Considering that in
these scheduling dependencies the Markov parameters can
be realized without representation error, therefore this bound
εopt and the resulting ε are very small and they are in
the magnitude of the machine round-off. The L1 recovery
determines the significant dependency to be on pk only.
This is followed by applying the LPV Ho-Kalman approach.
However now only the significant singular value, 2.850 is
considered, due to the fact that it is much larger than the
other singular value 0.0153. The corresponding first-order
reduced system model is obtained. The 3-D plot of the FRF
difference between the given system model and the reduced
first order model for all values of P is shown in Figure 4.
The reduced system matrices are given as:[

A B
C 0

]
=

[
0.8764− 0.0814pk −1.0014

−1.0014 0

]
. (30)

The resulting BFR is 39.59% due to a slight gain differ-
ence, while the VAF is 96.88% which shows that the output
variations are perfectly explained by the reduced model.

VI. CONCLUSIONS

A new method has been proposed in this paper for the
model reduction of LPV systems offering joint state-order
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Fig. 4. Difference between frozen frequency response of the given system
and of the first order reduced model for all values of P.

and scheduling-dependency reduction. It has been shown
that, in case of affine static dependency, reduction of the
scheduling-dependency and order-reduction can be under-
stood as two decoupled problems in terms of signal recovery
and state-space realization. While the first problem can be
solved via reducing the number of sub-Markov parameters,
associated with a given affine dependency structure, by using
L1 norm based convex optimization, the second problem
can be handled by a previously introduced LPV Ho-Kalman
algorithm. The resulting approach inherits the properties of
the existing Ho-Kalman method in terms of simplicity and
applicability on non quadratically-stabilizable systems. An
example is presented to verify the proposed algorithm.
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