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Abstract— In this paper, we consider identifying Auto Re-
gressive with eXternal input (ARX) models for both Linear
Time-Invariant (LTI) and Linear Time-Variant (LTV) systems.
We aim at doing the identification from the smallest possible
number of observations. This is inspired by the field of
Compressive Sensing (CS), and for this reason, we call this
problem Compressive System Identification (CSI).

In the case of LTI ARX systems, a system with a large num-
ber of inputs and unknown input delays on each channel can
require a model structure with a large number of parameters,
unless input delay estimation is performed. Since the complexity
of input delay estimation increases exponentially in the number
of inputs, this can be difficult for high dimensional systems.
We show that in cases where the LTI system has possibly
many inputs with different unknown delays, simultaneous
ARX identification and input delay estimation is possible from
few observations, even though this leaves an apparently ill-
conditioned identification problem. We discuss identification
guarantees and support our proposed method with simulations.

We also consider identifying LTV ARX models. In particular,
we consider systems with parameters that change only at a few
time instants in a piecewise-constant manner where neither
the change moments nor the number of changes is known a
priori. The main technical novelty of our approach is in casting
the identification problem as recovery of a block-sparse signal
from an underdetermined set of linear equations. We suggest
a random sampling approach for LTV identification, address
the issue of identifiability and again support our approach with
illustrative simulations.

I. INTRODUCTION

Classical system identification approaches have limited
performance in cases when the number of available data
samples is small compared to the order of the system [1].
These approaches usually require a large data set in order to
achieve a certain performance due to the asymptotic nature of
their analysis. On the other hand, there are many application
fields where only limited data sets are available. Online
estimation, Linear Time-Variant (LTV) system identification
and setpoint-operated processes are examples of situations
for which limited data samples are available. For some
specific applications, the cost of the measuring process or
the computational effort is also an issue. In such situations,
it is necessary to perform the system identification from the
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smallest possible number of observations, although doing so
leaves an apparently ill-conditioned identification problem.
However, many systems of practical interest are less com-
plicated than suggested by the number of parameters in a
standard model structure. They are often either low-order
or can be represented in a suitable basis or formulation in
which the number of parameters is small. The key element
is that while the proper representation may be known, the
particular elements within this representation that have non-
zero coefficients are unknown. Thus, a particular system
may be expressed by a coefficient vector with only a few
non-zero elements, but this coefficient vector must be high-
dimensional because we are not sure a priori which elements
are non-zero. We term this as a sparse system. In terms of
a difference equation, for example, a sparse system may
be a high-dimensional system with only a few non-zero
coefficients or it may be a system with an impulse response
that is long but contains only a few non-zero terms. Multipath
propagation [2], [3], sparse channel estimation [4], topology
identification of interconnected systems [5], [6] and sparse
initial state estimation [7] are examples involving systems
that are high-order in terms of their ambient dimension but
have a sparse (low-order) representation.

Inspired by the emerging field of Compressive Sensing
(CS) [8], [9], in this paper, we aim at performing system
identification of sparse systems using a number of observa-
tions that is smaller than the ambient dimension. We call
this problem Compressive System Identification (CSI). CSI
is beneficial in applications when only a limited data set is
available. Moreover, CSI can help solve the issue of under
and over parameterization, which is a common problem in
parametric system identification. The chosen model structure,
in terms of model order and number of delays and so on, on
one hand should be rich enough to represent the behavior of
the system and on the other hand should involve a minimal
set of unknown parameters to minimize the variance of the
parameter estimates. Under and over parameterization may
have a considerable impact on the identification result, and
choosing an optimal model structure is one of the primary
challenges in system identification. Specifically, this can be
a more problematic issue when: 1) the actual system to be
identified is sparse and/or 2) it is a multivariable (Multi-
Input Single-Output (MISO) or Multi-Input Multi-Output
(MIMO)) system with I/O channels of different system
orders and unknown (possibly large) input delays. Finding
an optimal choice of the model structure for such systems is
less likely to happen from cross-validation approaches.

Related works include regularization techniques such
as the Least Absolute Shrinkage and Selection Operator
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(LASSO) algorithm [10] and the Non-Negative Garrote
(NNG) method [11]. These methods were first introduced for
linear regression models in statistics. There also exist some
results on the application of these methods to Linear Time-
Invariant (LTI) Auto Regressive with eXternal input (ARX)
identification [12]. However, most of these results concern
the stochastic properties of the parameter estimates in an
asymptotic sense, with few results considering the limited
data case. There is also some recent work on regularization
of ARX parameters for LTV systems [13], [14].

In this paper, we consider CSI of ARX models for both
LTI and LTV systems. We examine parameter estimation in
the context of CS and formulate the identification problem as
recovery of a block-sparse signal from an underdetermined
set of linear equations. We discuss required measurements
in terms of recovery conditions, derive bounds for such
guarantees, and support our approach with simulations.

II. NOTATION

In this section, we establish our notation. An LTI Single-
Input Single-Output (SISO) ARX model [1] with parameters
{n,m, d} is given by the difference equation

y(t) + a1y(t− 1) + · · ·+ any(t− n) =

b1u(t− d− 1) + · · ·+ bmu(t− d−m) + e(t), (1)

where y(t) ∈ R is the output at time instant t, u(t) ∈ R
is the input, d is the input delay, and e(t) is a zero mean
stochastic noise process. Assuming d+m ≤ p, where p is the
input maximum length (including delays), (1) can be written
compactly as

y(t) = φT (t)θ + e(t) (2)

where

φ(t) =



−y(t− 1)
...

−y(t− n)
u(t− 1)

...
u(t− d− 1)

...
u(t− d−m)

...
u(t− p)



, θ =



a1

...
an
0
...
b1
...
bm
...
0



,

φ(t) ∈ Rn+p is the data vector containing input-output
measurements, and θ ∈ Rn+p is the parameter vector. The
goal of the system identification problem is to estimate the
parameter vector θ from M observations of the system.
Taking M consecutive measurements and putting them in
a regression form, we have

y(t)
y(t+ 1)

...
y(t+M − 1)


︸ ︷︷ ︸

y

=


φT (t)

φT (t+ 1)
...

φT (t+M − 1)


︸ ︷︷ ︸

Φ

θ+


e(t)

e(t+ 1)
...

e(t+M − 1)


︸ ︷︷ ︸

e

or equivalently
y = Φθ + e. (3)

In a noiseless scenario (e = 0), from standard arguments in
linear algebra, θ can be exactly recovered from M > n+ p
observations under the assumption of a persistently exciting
input. Note that Φ in (3) is a concatenation of 2 blocks

Φ = [Φy|Φu] (4)

where Φy ∈ RM×n and Φu ∈ RM×p are Toeplitz matrices.
Equation (4) can be extended for MISO systems with l inputs
as

Φ = [Φy|Φu1 |Φu2 | · · · |Φul
] (5)

where the Φui ’s are Toeplitz matrices, each containing re-
gression over one of the inputs. The ARX model in (1) can
be also represented as

A(q−1)y(t) = q−dB(q−1)u(t) (6)

where q−1 is the backward time-shift operator, e.g.,
q−1y(t) = y(t − 1), and A(q−1) and B(q−1) are vector
polynomials defined as A(q−1) = [1 a1q

−1 · · · anq−n],
and B(q−1) = [b1q

−1 · · · bmq−m]. For a MISO system
with l inputs, (6) extends to

A(q−1)y(t) =

q−d1B1(q−1)u1(t) + · · ·+ q−dlBl(q−1)ul(t) (7)

where Bi(q−1), i = 1, 2, · · · , l, are low-order polynomials.

III. CS BACKGROUND AND RECOVERY ALGORITHM

First introduced by Candès, Romberg and Tao [8], and
Donoho [9], CS has emerged as a powerful paradigm in
signal processing which enables the recovery of an unknown
vector from an underdetermined set of measurements under
the assumption of sparsity of the signal and certain conditions
on the measurement matrix. The CS recovery problem can
be viewed as recovery of a K-sparse signal x ∈ RN from
its observations b = Ax ∈ RM where A ∈ RM×N is the
measurement matrix with M < N (in many cases M � N ).
A K-sparse signal x ∈ RN is a signal of length N with K
non-zero entries where K < N . The notation K := ‖x‖0
denotes the sparsity level of x. Since the null space of A
is non-trivial, there are infinitely many candidate solutions
to the equation b = Ax; however, it has been shown that
under certain conditions on the measurement matrix A, CS
recovery algorithms can recover that unique solution if it is
suitably sparse.

Several recovery guarantees have been proposed in the CS
literature. The Restricted Isometry Property (RIP) [15], the
Exact Recovery Condition (ERC) [16], and mutual coher-
ence [17], [18] are among the most important conditions. In
this paper, our focus is on the mutual coherence due to its
ease of calculation as compared to other conditions which are
usually hard or even impossible to calculate. On the other
hand, mutual coherence is a conservative measure as it only
reflects the worst correlations in the matrix.
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Algorithm 1 The BOMP – block-sparse recovery
Require: matrix A, measurements b, block size n, stopping

criteria
Ensure: r0 = b, x0 = 0, Λ0 = ∅, l = 0

repeat
1. match: ei = ATi rl, i = 1, 2, · · · , P
2. identify support: λ = arg maxi ‖ei‖2
3. update the support: Λl+1 = Λl ∪ λ
4. update signal estimate:

xl+1 = arg minz:supp(z)⊆Λl+1 ‖b−Az‖2,
where supp(z) indicates the blocks
on which z is non-zero

5. update residual estimate: rl+1 = b−Axl+1

6. increase index l by 1
until stopping criteria true
output: x̂ = xl

Definition 1 ( [17], [18]): For a given matrix A, the mu-
tual coherence equals the maximum normalized absolute
inner product between two distinct columns of A, i.e,

µ(A) :=
maxi,j 6=i |aTi aj |
‖ai‖2‖aj‖2

, (8)

where {ai}Ni=1 are the columns of A.
In general, CS recovery algorithms can be classified into

two main types: 1) greedy algorithms such as Orthogonal
Matching Pursuit (OMP) [18] and 2) convex optimization
algorithms such as Basis Pursuit (BP) [19]. It has been
shown [18] that the OMP and BP algorithms will recover
any K-sparse signal x ∈ RN from b = Ax whenever

µ(A) <
1

2K − 1
. (9)

In other words, a smaller coherence indicates recovery of
signals with more non-zero elements.

The sparse signals that are of our interest in this paper
have a block-sparse structure, meaning that their non-zero
entries appear in block locations.

Definition 2: Consider x ∈ RN as a concatenation of P
vector-blocks xi ∈ Rn where N = Pn i.e.,

x = [xT1 · · · xTi · · · xTP ]T . (10)

A signal x is called block K-sparse if it has K < P non-zero
blocks.

There exist a few recovery algorithms that are adapted
to recover such signals. In this paper, we focus on recov-
ery of block-sparse signals via a greedy algorithm called
Block Orthogonal Matching Pursuit (BOMP) [20]–[22]. We
consider BOMP due to its ease of implementation and its
flexibility in recovering block-sparse signals of different
sparsity levels. The formal steps of the BOMP algorithm
are listed in Algorithm 1 which finds a block-sparse solution
to the equation b = Ax.

The basic intuition behind BOMP is as follows. Due
to the block sparsity of x, the vector of observations b
can be written as a succinct linear combination of the

columns of A, with the selections of columns occurring in
clusters due to the block structure of the sparsity pattern
in x. BOMP attempts to identify the participating indices by
correlating the measurements b against the columns of A and
comparing the correlation statistics among different blocks.
Once a significant block has been identified, its influence
is removed from the measurements b via an orthogonal
projection, and the correlation statistics are recomputed for
the remaining blocks. This process repeats until convergence.
Eldar et al. [22] proposed a sufficient condition for BOMP to
recover any sufficiently concise block-sparse signal x from
compressive measurements. This condition depends on two
coherence metrics, the block and sub-block coherence of the
matrix A. For a detailed description of these metrics see [22].
These metrics are basically related to the mutual coherence
as defined in (8), although more adapted for block structure.

IV. CSI OF LTI ARX MODELS

Identification of LTI ARX models in both SISO and MISO
cases is considered in this section. As a first step towards
CSI and for the sake of simplicity we consider the noiseless
case. Inspired by CS, we show that in cases where the LTI
system has a sparse impulse response, simultaneous ARX
model identification and input delay estimation is possible
from a small number of observations, even though this leaves
the aforementioned linear equations highly underdetermined.
We discuss the required number of measurements in terms of
metrics that guarantee exact identification, derive bounds on
such metrics, and suggest a pre-filtering scheme by which
these metrics can be reduced. The companion paper [23]
analyzes the consistency properties of CSI and explores the
connection with LASSO and NNG sparse estimators.

A. CSI of LTI Systems with Unknown Input Delays

Input delay estimation can be challenging, especially for
large-scale multivariable (MISO or MIMO) systems when
there exist several inputs with different unknown (possibly
large) delays. Identification of such systems requires esti-
mating (or guessing) the proper value of the di’s separately.
Typically this is done via model complexity metrics such
as the AIC or BIC, or via cross-validation by splitting the
available data into an identification set and a validation set
and estimating the parameters on the identification set for
a fixed set of parameters {di}. This procedure continues by
fixing another set of parameters, and finishes by selecting the
parameters that give the best fit on the validation set. How-
ever, complete delay estimation would require estimation and
cross validation with all possible delay combinations, which
can grow quickly with the number of inputs. For instance,
with 5 inputs, checking for delays in each channel between 1
and 10 samples requires solving 105 least-squares problems.
A review of other time-delay estimation techniques is given
in [24]. For a sufficiently large number of inputs with
possibly large delays, we will show that by using the tools in
CS, it is possible to implicitly estimate the delays by favoring
block-sparse solutions for θ.
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Letting mi be the length of Bi and bounding the maximum
length (including delays) for all inputs by p (maxi(di +
mi) ≤ p), we build the regression matrix with each Φui ∈
RM×p to be a Toeplitz matrix associated with one input. This
results in an M × (n+ lp) matrix Φ. However, considering
a low-order polynomial for each input (maximi ≤ m) for
some m, the corresponding parameter vector θ ∈ Rn+lp

has at most n + lm non-zero entries. Assuming m < p,
this formulation suggests sparsity of the parameter vector
θ and encourages us to use the tools in CS for recovery.
Moreover, this allows us to do the identification from an
underdetermined set of equations Φ where M < n+ lp.

B. Simulation Results

Fig. 1(a) illustrates the recovery of a {2, 2, 40} SISO LTI
ARX model where m and d are unknown. The only knowl-
edge is of p = 62. For each system realization, the input is
generated as an independent and identically distributed (i.i.d.)
Gaussian random sequence. Assuming at least d iterations of
the simulation have passed, M consecutive samples of the
output are taken. As n is known, we modify the BOMP
algorithm to include the first n locations as part of the
support of θ. The plot shows the recovery success rate over
1000 realizations of the system. As shown in Fig. 1(a), with
25 measurements, the system is perfectly identified in 100%
of the trials. The average coherence value as defined in (8) is
also depicted in Fig. 1(b) (solid curve). After taking a certain
number of measurements, the average coherence converges
to a constant value (dashed line). We will address this in
detail in the next section.

Identification of a MISO system is shown in Fig. 2 where
the actual system has parameters n = 2, m = 2 for all inputs,
and d1 = 60, d2 = 21, d3 = 10, d4 = 41. Assuming p = 64,
the parameter vector θ has 258 entries, only 10 of which are
non-zero. Applying the BOMP algorithm with n given and
m and {di} unknown, implicit input delay estimation and
parameter identification is possible in 100% of the trials by
taking M = 150 measurements.

C. Bound on Coherence

As depicted in Fig. 1(b), the typical coherence µ(Φ) has an
asymptotic behavior. In this section, we derive a lower bound
on the typical value of µ(Φ) for SISO LTI ARX models.
Specifically, for a given system excited by a random i.i.d.
Gaussian input, we are interested in finding E [µ(Φ)] where
µ is defined as in (8) and Φ is as in (3).

Theorem 1: Consider the system described by difference
equation in (1) (ARX model {n,m, d}) is characterized by
its impulse response h(k) in a convolution form as

y(t) =

∞∑
k=−∞

h(k)u(t− k). (11)

Then, for a zero mean, unit variance i.i.d. Gaussian input,

lim
M→∞

E [µ(Φ)] ≥ max
s 6=0

{
|H(s)|
‖h‖22

,
|h(s)|
‖h‖2

}
(12)

where H(s) =
∑∞
k=−∞ h(k)h(k + s).
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(a) In the recovery algorithm, m and d are unknown. The plot
shows the recovery success rate over 1000 realizations of the
system.
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(b) Averaged mutual coherence of Φ over 1000 realizations of the
system (solid curve). Lower bound of Theorem 1 (dashed line).

Fig. 1. CSI results on a {2, 2, 40} SISO LTI ARX system.

Proof: See Appendix A.
Discussion: As Theorem 1 suggests, the typical coherence

of Φ is bounded below by a non-zero value that depends on
the impulse response of the system and it has an asymptotic
behavior. For example, for the system given in Fig. 1, the
typical coherence does not get lower than 0.88 even for large
M . With this value of coherence, the analytical recovery
guarantees for the BOMP algorithm [22], which can be
reasonably represented by mutual coherence defined in (8),
do not guarantee recovery of any one-block sparse signals.
However, as can be seen in Fig. 1(a), perfect recovery is
possible. This indicates a gap between available analyti-
cal guarantee and the true recovery performance for ARX
systems. This suggests that coherence-based performance
guarantees for matrices that appear in ARX identification
are not sharp tools as they only reflect the worst correlations
in the matrix. As a first step towards investigating this gap,
we suggest a pre-filtering scheme by which the coherence of
such matrices can be reduced.

D. Reducing Coherence by Pre-Filtering

In this section, we show that we can reduce the coherence
by designing a pre-filter g applied on u and y.

Theorem 2: Assume the system described as in Theo-
rem 1. Given a filter g, define ug = u ∗ g and yg = y ∗ g.
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Fig. 2. CSI results on a {2, 2, {60, 21, 10, 41}} MISO LTI ARX system.
In the recovery algorithm, m and {di}4i=1 are unknown. The plot shows
the recovery success rate over 1000 realizations of the system.
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(a) Pre-filtering scheme.
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(b) For each α, the filter G(z) is applied on the input/output
signals and the limit of the expected value of coherence is
calculated over 1000 realizations of system.

Fig. 3. Reducing coherence by pre-filtering.

Build the regression matrix Φg from ug and yg as in (3). The
pre-filtering scheme is shown in Fig. 3(a). Then we have

lim
M→∞

E [µ(Φg)] ≥ max
s6=0

{
|G(s)|
‖g‖22

,
|F(s)|
‖f‖22

,
|GF(s)|
‖g‖2‖f‖2

}
where f = g ∗ h, G(s) =

∑∞
k=−∞ g(k)g(k + s), F(s) =∑∞

k=−∞ f(k)f(k+s), and GF(s) =
∑∞
k=−∞ g(k)f(k+s).

Proof: See Appendix B.
Theorem 2 suggests that by choosing an appropriate filter

g(t), the typical coherence can possibly be reduced, although

it is bounded below by a non-zero value. We follow the dis-
cussion by showing how the coherence of Φ can be reduced
by pre-filtering within an illustrative example. Consider a
SISO system characterized by the transfer function

H(z) =
z − 0.4

(z + 0.9)(z + 0.2)
. (13)

Using the bound given in Theorem 1, for large M , E [µΦ] ≥
0.95 which indicates a highly correlated matrix Φ. However,
using the analysis given in Theorem 2, we can design a filter
G(z) such that the coherence of the resulting matrix Φg is
reduced almost by half. For example, consider a notch filter
G(z) given by

G(z) =
z + 0.9

(z + α)
(14)

where α is a parameter to be chosen. For a given α, the
filter G(z) is applied on the input/output data as illustrated
in Fig. 3(a) and the average coherence of Φg is calculated.
The result of this pre-filtering and its effect on the coherence
is shown in Fig. 3(b). The results indicate that actual perfor-
mance of Φ may actually be better than what µ(Φ) suggests.
As it can be seen, for α around 0.1, the coherence is reduced
to 0.55 which is almost half of the primary coherence.

V. CSI OF LTV ARX MODELS

In (2) the parameters are assumed to be fixed over time.
In this section, we study ARX models where the parameter
vector θ(t) is varying over time. As an extension of (2), for
time-varying systems, we have

y(t) = φT (t)θ(t) + e(t).

Collecting M consecutive measurements of such a system
and following similar steps, for a SISO LTV ARX model
we can formulate the parameter estimation problem as

y(t)
y(t+ 1)

...
y(t+M − 1)


︸ ︷︷ ︸

y

=


φT (t) 0 0 0

0 φT (t+ 1) 0 0

0 0
. . . 0

0 0 0 φT (t+M − 1)


︸ ︷︷ ︸

Ω


θ(t)

θ(t+ 1)
...

θ(t+M − 1)


︸ ︷︷ ︸

ϑ

+e

or equivalently
y = Ωϑ+ e (15)

where for simplicity d = 0, p = m, y ∈ RM , Ω ∈
RM×M(n+m) and ϑ ∈ RM(n+m). The goal is to solve (15)
for ϑ from y and Ω. Typical estimation is via

min
ϑ
‖y− Ωϑ‖22. (16)

However, the minimization problem in (16) contains an
underdetermined set of equations (M < M(n + m)) and
therefore has many solutions.
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A. Piecewise-Constant θ(t) and Block-Sparse Recovery
Assuming θ(t) is piecewise-constant, we show how the

LTV ARX identification can be formulated as recovery of
a block-sparse signal. Using the developed tools in CS we
show the identification of such systems can be done from
relatively few measurements. Assume that e = 0 and that
θ(t) changes only at a few time instants ti ∈ C where C ,
{t1, t2, . . . } with |C| �M , i.e.,

θ(t) = θ(ti), ti ≤ t < ti+1. (17)

Note that neither the change moments ti nor the number of
changes is known a priori to the identification algorithm. An
example of ϑ would be

ϑ =
[
θT (t1) · · · θT (t1) θT (t2) · · · θT (t2)

]T
(18)

which has 2 different constant pieces, i.e., C = {t1, t2}. In
order to exploit the existing sparsity pattern in ϑ, define the
differencing operator

∆ =



−In+m 0n+m · · · · · · 0n+m

In+m −In+m
. . . . . .

...

0n+m In+m
. . . . . .

...
...

. . . . . . . . . 0n+m

0n+m · · · 0n+m In+m −In+m


.

Applying ∆ to ϑ, we define ϑδ as

ϑδ = ∆ϑ, (19)

which has a block-sparse structure. For the given example
in (18), we have

ϑδ =
[
−θT (t1) 0 · · · 0 θT (t1)− θT (t2) 0 · · · 0

]T
. (20)

The vector ϑδ ∈ RM(n+m) in (20) now has a block-sparse
structure: out of its M(n+m) entries, grouped in M blocks
of length n+m, only a few of them are non-zero and they
appear in block locations. The number of non-zero blocks
corresponds to the number of different levels of θ(t). In
the example given in (18), θ(t) takes 2 different levels over
time and thus, ϑδ has a block-sparsity level of 2 with each
block size of n + m. By this formulation, the parameter
estimation of LTV ARX models with piecewise-constant
parameter changes can be cast as recovering a block-sparse
signal ϑδ from measurements

y = Ωδϑδ (21)

where Ωδ = Ω∆−1.

B. Identifiability Issue
Before presenting the simulation results, we address the

identifiability issue faced in the LTV case. The matrix Ωδ
has the following structure.

Ωδ =


−φT (t) 0 0 · · ·
−φT (t+ 1) −φT (t+ 1) 0 · · ·
−φT (t+ 2) −φT (t+ 2) −φT (t+ 2) · · ·

...
...

...
. . .

 .

0 100 200 300 400 500 600 700

M
 =

 1
0

0 100 200 300 400 500 600 700

M
 =

 3
0

0 100 200 300 400 500 600 700

M
 =

 5
0

Time Sample (t)

Fig. 4. Random sampling scheme for M = {10, 30, 50} measurements.
Samples are chosen randomly according to a uniform distribution. System
parameters are assumed to change at t = 300 and t = 400.

If the change in the system actually happens at time instant
t+ 2, the corresponding solution to (21) has the form

ϑδ =
[
−θT (t1) 0 θT (t1)− θT (t2) 0 · · ·

]T
.

However, due to the special structure of the matrix Ωδ , there
exist other solutions to this problem. For example

ϑ̂δ =
[
−θT (t1) 0 θT (t1)− θT (t2) + γT − γT · · ·

]T
is another solution where γ is a vector in the null space
of φT (t), i.e., φT (t)γ = 0. However, this only results in a
small ambiguity in the solution around the transition point.
Therefore, ϑ̂δ can be considered as an acceptable solution as
ϑ̂ = ∆−1ϑ̂δ is exactly equal to the true parameter vector ϑ
except at very few time instants around the transition point.
In the next section, we consider ϑ̂δ as a valid solution.

C. Sampling Approach for LTV System Identification

In this section, we suggest a sampling scheme for iden-
tifying LTV systems. Note that in a noiseless scenario, the
LTV identification can be performed by taking consecutive
observations in a frame, identifying the system on that frame,
and then moving the frame forward until we identify a
change in the system. Of course, this can be very inefficient
when the time instants at which the changes happen are
unknown to us beforehand as we end up taking many
unnecessary measurements. As an alternative, we suggest
a random sampling scheme (as compared to consecutive
sampling) for identifying such LTV systems. Fig. 4 shows
examples of this sampling approach for M = 10, M = 30
and M = 50 measurements. As can be seen, the samples are
chosen randomly according to a uniform distribution. Note
that these samples are not necessarily consecutive. By this
approach, we can dramatically reduce the required number
of measurements for LTV system identification.

D. Simulation Results

Consider a system described by its {2, 2, 0} ARX model

y(t)+a1y(t−1)+a2y(t−2) = b1u(t−1)+b2u(t−2) (22)
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Fig. 6. Time-varying parameters of a 3-model system.

with i.i.d. Gaussian input u(t) ∼ N (0, 1). Fig. 5 shows one
realization of the output of this system whose parameters
are changing over time as shown in Fig. 6. As can be seen,
the parameters change in a piecewise-constant manner over
700 time instants at t = 300 and t = 400. The goal of the
identification is to identify the parameters of this time-variant
system along with the location of the changes.

Fig. 7 illustrates the recovery performance of 4 LTV
systems, each with a different number of changes over time.
For each measurement sequence (randomly selected), 1000
realizations of the system are carried out. We highlight
two points about this plot. First, we are able to identify
a system (up to the ambiguity around the time of change
as discussed in Section V-B) which changes 3 times over
700 time instants by taking only 50 measurements without
knowing the location of the changes. Second, the required
number of measurements for perfect recovery scales with
number of changes that a system undergoes over the course
of identification. Systems with more changes require more
measurements to be identified.

VI. CONCLUSION

We considered CSI of LTI and LTV ARX models for
systems with limited data sets. We showed in cases where
the LTI system has possibly many inputs with different
unknown delays, simultaneous ARX model identification
and input delay estimation is possible from a small number
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Fig. 7. Recovery performance of 4 different systems. The plots show the
recovery success rate over 1000 realizations of the system.

of observations. We also considered identifying LTV ARX
models. In particular, we considered systems with parameters
changing only at a few time instants where neither the
change moments nor the number of changes is known a
priori. The main technical novelty of our approach is in
casting the identification problem in the context of CS as
recovery of a block-sparse signal from an underdetermined
set of linear equations. We discussed the required number of
measurements in terms of recovery conditions and derived
bounds for such guarantees and supported our approach by
illustrative simulations.

APPENDIX

A. Proof of Theorem 1

Proof: Without loss of generality, assume d = 0 as
the input delays do not affect the coherence of Φ. Using the
definition of µ(Φ), we can write µ(Φ) = ‖µΦ‖∞ where µΦ

is a vector whose entries are all the normalized distinct inner
products of the columns of Φ and ‖ · ‖∞ is the maximum
absolute entry of a vector. From Jensen’s inequality for
convex functions (‖ · ‖∞), we have

E [µ(Φ)] = E [‖µΦ‖∞] ≥ ‖E [µΦ] ‖∞.

First we look at the numerator of the entries of µΦ. From
the definition of Φ, ∀φi,φi+s ∈ Φy , s 6= 0,

φTi φi+s =

t0+M∑
t=t0

y(t)y(t− s). (23)

Combining (23) with (11) and reordering the sums we have

φTi φi+s =

t0+M∑
t=t0

y(t)y(t− s) =

t0+M∑
t=t0

( ∞∑
k=−∞

h(k)u(t− k)

)( ∞∑
l=−∞

h(l)u(t− l − s)

)
=

∞∑
k=−∞

∞∑
l=−∞

h(k)h(l)

t0+M∑
t=t0

u(t− k)u(t− l − s). (24)
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Taking the expected value of both sides of (24), we have

E
[
φTi φi+s

]
= M

∞∑
l=−∞

h(l)h(l + s) (25)

where we used the fact that E [u(t− k)u(t− l − s)] = 1 for
k = l+s and 0 otherwise. Similarly, ∀φi ∈ Φy , ∀φi+s ∈ Φu,

φTi φi+s =

t0+M∑
t=t0

y(t)u(t− s) =

t0+M∑
t=t0

( ∞∑
l=−∞

h(l)u(t− l)

)
u(t− s) =

∞∑
l=−∞

h(l)

t0+M∑
t=t0

u(t− l)u(t− s). (26)

Taking the expected value of both sides of (26), we have

E
[
φTi φi+s

]
= Mh(s). (27)

It is trivial to see that ∀φi,φi+s ∈ Φu with s 6= 0,
E
[
φTi φi+s

]
= 0. Using concentration of measure inequal-

ities, it can be shown that as M → ∞, the entries of the
denominator of µΦ are highly concentrated around their
expected value [3]. We have ∀φi ∈ Φu, E

[
‖φi‖22

]
= M and

∀φi ∈ Φy , E
[
‖φi‖22

]
= M‖h‖22. By putting together (25)

and (27) and applying the required column normalizations
the proof is complete.

B. Proof of Theorem 2

Proof: We follow a similar argument to the proof
of Theorem 1. Define ug(t) =

∑∞
k=−∞ g(k)u(t − k) and

yg(t) =
∑∞
k=−∞ g(k)y(t− k). Then we have

t0+M∑
t=t0

yg(t)ug(t− s) =

t0+M∑
t=t0

( ∞∑
k=−∞

g(k)y(t− k)

)( ∞∑
l=−∞

g(l)u(t− l − s)

)
and by taking the expected value of both sides, we get

E

[
t0+M∑
t=t0

yg(t)ug(t− s)

]
= M

∞∑
l=−∞

g(l)f(l + s)

where f = g ∗ h. In a similar way,

E

[
t0+M∑
t=t0

yg(t)yg(t− s)

]
= M

∞∑
k=−∞

f(k)f(k + s),

E

[
t0+M∑
t=t0

ug(t)yg(t− s)

]
= M

∞∑
k=−∞

f(k)g(k + s),

E

[
t0+M∑
t=t0

ug(t)ug(t− s)

]
= M

∞∑
k=−∞

g(k)g(k + s).
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