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Abstract— In order to accurately identify Linear Parameter-
Varying (LPV) systems, order selection of LPV linear re-
gression models has prime importance. Existing identification
approaches in this context suffer from the drawback that a
set of functional dependencies needs to be chosen a priori
for the parametrization of the model coefficients. However
in a black-box setting, it has not been possible so far to
decide which functions from a given set are required for the
parametrization and which are not. To provide a practical
solution, a nonnegative garrote approach is applied. It is shown
that using only a measured data record of the plant, both
the order selection and the selection of structural coefficient
dependence can be solved by the proposed method.

Index Terms— Linear Parameter-Varying, ARX, identifica-
tion, order selection

I. INTRODUCTION

Since the introduction of Linear Parameter-Varying (LPV)

systems in the 1990s, LPV control has rapidly grown into

a well established framework with a wide range of applica-

tions. The practical use of LPV control design is stimulated

by the fact that it extends the results of Linear Time-Invariant

(LTI) control theory to nonlinear, time-varying plants via

gain scheduling [1] or by LPV synthesis techniques like µ-

synthesis [2] or optimal control [3]. These approaches use

LPV models where the signal relations are considered to

be linear just as in the LTI case, but the model parameters

are assumed to be functions of a measurable time-varying

signal, the so-called scheduling variable p : Z 7→ P. The

compact set P ⊆ R
nP denotes the scheduling space. Using

scheduling variables as changing operating conditions or

endogenous/free signals of the plant, the LPV system class

can describe both nonlinear and time-varying phenomena.

LPV system identification and modeling have not been

able to follow the rapidly advancing control field. Only

recently several methods have been proposed, aiming at

global identification of discrete-time LPV models from

measured data using limited (grey-box) or no structural

knowledge (black-box) about the data-generating system.

These methods can be categorized mainly based on the

used model structures: State-Space (SS) methods [4], [5],

Input/Output (IO) representation based techniques [6], [7],

[8] and truncated series expansions based approaches, e.g.

R. Tóth, P. S. C. Heuerger and P. M. J. Van den Hof are
with the Delft Center for Systems and Control, Delft University of
Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands, email:
{r.toth,p.s.c.heuberger,p.m.j.vandenhof}@tudelft.nl.

C. Lyzell and M. Enqvist are with the Division of Automatic
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Orthonormal Basis Function (OBF) techniques [9], [10],

[11]. The LPV-IO approaches can be seen as an extension

of LTI prediction-error methods. Using the similarities in

terms of the model structures and the identification setting,

the strength of these approaches lies in the possibility to

extend the well-established results of the LTI case. Thus,

they offer to solve the LPV identification problem in a simple

manner even if transformation of LPV-IO models to LPV-SS

descriptions is more complicated than in the LTI case (see

[11], [12]). Investigations of the LPV prediction-error setting

in terms of experiment design [13], consistency of model

estimates [14], and persistency of excitation [15] have only

recently appeared, indicating that many important questions

still need to be explored. One of these issues concerns the

order selection of the LPV-ARX model structure, proposed

in [6].

Estimating adequate orders of ARX models is a widely

studied topic in the LTI context, see e.g. [16], [17]. It can

be seen as the basic step of the model structure selection

phase of the identification cycle. Proper selection of the order

assures accurate representation of the process dynamics with

a limited number of parameters to be estimated. This means

not only an adequate complexity of the obtained model, but

also a decreased variance of the model estimate. For the

same reasons, order selection of LPV-ARX models is also

a question of main importance. Additionally, coefficients of

these model structures, like ai(p(k)), are often parametrized

in the form

ai(p(k)) = θi0 + θi1ψi1(p(k)) + . . . + θi1ψisi
(p(k)), (1)

where θij ∈ R are the unknown parameters and {ψij}si

j=1

with ψij : P 7→ R is a set of a priori chosen functional

dependencies. Thus, the set {ψij} represents an extra free-

dom in the model structure which needs to be selected a

priori. This implies that determining which of these functions

are required in the parametrization can be interpreted as an

additional selection problem. It must also be noted that in

[8], an alternative to the functional dependence estimation

has recently been introduced through a ”non-parametric”

approach which uses dispersion functions instead of (1).

Additionally, it has been shown in [12] that for transforma-

tion between LPV-IO and LPV-SS models it is required that

the model coefficients not only depend on the instantaneous

value of the scheduling variable (static dependence) but also

on its time shifted versions (dynamic dependence). Thus,

estimating LPV-ARX models with dynamic dependence is

often required for obtaining accurate models of the underly-
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ing system. Selection of the required order of the time-shifts

in the scheduling is a parametrization problem and can be

interpreted as an adequate selection of {ψij}.

In the LTI literature, recently an order selection method

based on a statistical regularization approach, the Nonnega-

tive Garrote (NNG) [18], has been proposed for LTI-ARX

models [19]. In this method, a natural ordering of model

complexity is inflicted to the parameters, which provides

the possibility to estimate the order of poles and zeros

independently. This yield insight into which parameters are

the most important for obtaining a good adaption to the data.

Due to the possibility of multidimensional ordering of model

complexity, this technique can also be used in the LPV-

ARX case to select the order of the input and output side

polynomials simultaneously with the ordering of the required

structural dependence of the coefficients. In this paper, we

aim at this extension of the NNG approach to the LPV case,

providing a practically useful tool for LPV-IO approaches.

The paper is organized as follows: In Section II, a short

review of the LPV-ARX model structure and its linear-

regression based identification method is given, defining the

problem setting for order selection. Section III gives an intro-

duction to the NNG approach and presents how its modified

form can be used to solve the order selection problem. In

Section III-C, an algorithm is proposed to solve the modified

NNG problem and in Section IV this algorithm is validated

on simulated data. Finally, in Section V, conclusions are

drawn and perspectives on future work are given.

II. LPV IDENTIFICATION VIA ARX MODELS

In this paper we focus on the LPV-ARX model structure,

defined in the SISO case as

y(k)+

na∑

i=1

ai(p(k))y(k−i)=

nb∑

j=0

bj(p(k))u(k−j)+e(k), (2)

where u, y and e denote the input, the output, and the noise

signals, respectively. Furthermore, the coefficient functions

ai, bj : P 7→ R have static dependence on p. Introduce
[

φ1 . . . φng

]⊤
,

[
a1 . . . ana

b0 . . . bnb

]⊤
,

with ng , na + nb + 1. Assume that each function φi is

linearly parameterized as

φi(¦) = θi0 +

si∑

j=1

θijψij(¦), (3)

where {θij}ng,si

i=1,j=1 are unknown parameters and

{ψij}ng,si

i=1,j=1 are functions chosen by the user. In this

case, (2) can be rewritten as

y(k) = ϕ⊤(k)θ + e(k), (4)

where

θ =
[

θ1,0 . . . θ1,s1
θ2,0 . . . θng,sng

]⊤

ϕ(k) =
[
−y(k − 1) −ψ11(p(k))y(k − 1) . . .

−ψ1s1
(p(k))y(k − 1) −y(k − 2) . . .

−ψnasna
(p(k))y(k − na) u(k) . . .

]⊤
.

Note that a LPV-FIR model structure or other series ex-

pansion types of structures like OBF models can be seen

as special cases of the LPV-ARX family with na = 0. An

additional difference in the OBF case is that instead of time-

shifted version of u, ϕ(k) is formed from the outputs of a

preselected set of LTI-OBF filters applied on u (see [10]).

Given a data set

ZN ,
(
u(k), p(k), y(k)

)N

k=1
, (5)

the least-squares (LS) parameter estimate for the linear

regression model (4) is

θ̂N , arg min
θ∈Rn

VN (θ, ZN ), (6)

where n =
∑ng

i=1 1 + si (according to (3)), and

VN (θ, ZN ) ,
1

N

N∑

k=1

(
y(k) − ϕ⊤(k)θ

)2
. (7)

To guarantee a unique solution of (6) it is assumed that

{ψij}ng,si

i=1,j=1 are chosen such that (2) is globally identifiable

(there exist no θ and θ′, such that the 1-step ahead predictor

resulting from (2) is not distinguishable for θ and θ′) and

that ZN provides a persistently exciting regressor in (4) (see

[20]). By organizing the data as

Y =
[

y(1) y(2) . . . y(N)
]⊤

, (8a)

Φ =
[

ϕ(1) ϕ(2) . . . ϕ(N)
]⊤

, (8b)

the optimal solution to (6) can be written as

θ̂N =
(
Φ⊤Φ

)−1
Φ⊤Y , Φ†Y. (9)

III. ORDER SELECTION BY USING THE NNG

A. The general NNG

The Nonnegative Garrote (NNG) method was first pre-

sented in [18] as a coefficient shrinkage method for linear

regression models in statistics. As the celebrated Lasso

method [21], it uses regularization to penalize the size of

the parameter θ. However, instead of affecting the parameters

directly, the NNG method penalizes the least-squares solution

by attaching weights to it, which in turn are regularized.

Thus, given the least-squares estimate θ̂N of the parameters

of a linear regression model like (4), the NNG problem can

be written as

min
w

N∑

k=1



y(k)−
ng∑

i=1

si∑

j=0

wijϕij(k)θ̂ij





2

+λ

ng∑

i=1

si∑

j=0

wij (10a)

s.t. w º 0 (10b)

where λ is the model complexity parameter, ϕij(k) is the

(j +
∑i−1

τ=1(sτ + 1))-th element of the vector ϕ(k), w ,

[ w10 . . . wngsng
]⊤ are the weights, and º denotes

componentwise inequality. For a given λ, (10a-b) is a convex

optimization problem in the decision variable w, and the

NNG parameter estimate has the elements wij θ̂ij , 1 ≤ i ≤
ng, 0 ≤ j ≤ si, where wij is the optimal solution to (10a-b).

As λ increases, the weights of the less important regressors

will shrink, and finally end up exactly zero. Thus, as λ

increases, the model becomes less complex.
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B. Modification for the LPV case

In system identification, one is typically interested in the

estimation of dynamical models, in contrast to the static

models commonly used in statistics. In dynamic linear

regression models, the regressors are naturally ordered by

their time lag. The higher the model order, the more data

is needed. The original NNG method (10a-b) does not take

such orderings into consideration. It just sets the weights of

the less important regressors low, not considering their order.

On the other hand, it is a particular feature of LPV linear

regression models that besides the natural ordering of time

lags, there is a lack of natural ordering of the functional terms

ψij in the parametrization (3) of the p-dependent coefficients.

By taking into account the natural ordering of time lags

it is possible to penalize a higher model order in the NNG

estimate, leading to an approach to model order selection.

To achieve this, without introducing ordering with respect to

the parameters of the functional terms in each coefficients,

one could modify (10a-b) by adding some constraints on the

weights. For LPV-ARX models, these constraints could be

1 ≥
s1∑

j=0

w1j ≥
s2∑

j=0

w2j ≥ . . . ≥
sna∑

j=0

wnaj , (10c)

1 ≥
sna+1∑

j=0

w(na+1)j ≥ . . . ≥
sng∑

j=0

wngj . (10d)

This is a natural1 extension of the NNG method, for order

selection of LPV-ARX models in system identification. In

(10c-d), the ordering of the weights associated with ai and bj

is independent. This yields automatic order selection, and a

natural way to choose the importance between input lag and

output lag, as their weightings remain independent. More-

over, (10c-d) does not unnecessarily constrain the choices of

basis functions ψij within each group φi in (3). This provides

a way to select the most adequate structural dependencies

for the parametrization of the coefficients, independently

from the model order. Note that this particular freedom of

the NNG method represents an advantage over the use of

classical regressor selection approaches of the LTI case, like

AIC, BIC, etc. (see [17]) for LPV-ARX models. In these

approaches, there is no possibility to provide both order and

structural dependence selection.

The modified NNG problem (10a-d) can be written as a

quadratic problem with linear inequality constraints, i.e.

min
1

2
w⊤Qw + f⊤w + λE⊤w, (11a)

s.t. Γw ¹ b, (11b)

where Q = 2Θ̂Φ⊤ΦΘ̂, f = −2Θ̂Φ⊤Y , Θ̂ , diag(θ̂),
E = [ 1 . . . 1 ], and the inequality constraints (11b)

are derived from (10a-d). Given the solution wλ to (11a-

b), for a specific λ, the modified NNG parameter estimate is

θ̂λ = Θwλ.

1Note that other choices for the ordering of the parameters, e.g. the
maximum instead of the sum, are also possible. The effect of using different
choices has not been evaluated.

C. The algorithm

Basically, what we need to do is to solve (11a-b) for in-

creasing values of λ, resulting in less and less complex model

estimates, as long as the overall fit of the model estimate

on validation data is still acceptable. An efficient way to

implement this strategy is to use a path following parametric

estimation. For this purpose a Lagrangian multipliers based

method has been proposed in [19]. Starting form λ = 0, this

method calculates a piece-wise affine solution path for λ. In

this way it efficiently explores the change in the model fit as

a function of λ. For more details see [19].

IV. SIMULATIONS

In order to test the applicability of the proposed method,

two examples are considered where the modified NNG is

applied to simulated data.

A. LPV-ARX model

In the first simulation example, the data-generating system

is an LPV-ARX(9, 3) model:

A(q, p)y = B(q, p)u + e, (12)

where the noise e is white with a Gaussian distribution

N (0, 0.1), p(k) ∈ P with P = [−2π, 0] and

A(q, p) = 1 + (0.24 + 0.1p)q−1 − (0.1
√−p − 0.6)q−2

+ 0.3 sin(p)q−3 + (0.17 + 0.1p)q−4

+ 0.3 cos(p)q−5 − 0.27q−6 + (0.01p)q−7

− 0.07q−8 + 0.01 cos(p)q−9,

B(q, p) = 1 + (1.25 − p)q−1 − (0.2 +
√−p)q−2,

are polynomials in q with a static coefficient dependence on

p. In Figure 1a, the poles of (12) are plotted for all constant

trajectories of p. As all frozen poles are in the unit disc, the

LPV-ARX(9, 3) model is stable for all constant trajectories

of p (uniform frozen stability). Figure 1a also indicates that

the model has fast and slow modes which change rapidly

with the variation of p.

The system (12) is simulated using a white noise u

with distribution N (0, 1) and a white noise p with uniform

distribution U(−2π, 0). With these signals, 2N data points

are collected with N = 5000, and the obtained data record

is divided equally in an estimation and a validation part.

Under these conditions, the Signal to Noise Ratio (SNR) in

the generated data set is 35 dB.

To evaluate the different model outcomes, the Best Fit Rate

(BFR) is used [22]:

BFR = 100% · max

(

1 − ‖y(k) − ŷ(k|θλ)‖2

‖y(k) − ȳ‖2

, 0

)

, (13)

where ȳ is the mean of y. The BFR measures how much

better the model describes the process compared to the mean

of the output. In order to compare the results to other LPV

identification approaches (like the subspace methods, see

[4]), the Variance Accounted For (VAF) percentage is also

computed:
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VAF = 100% · max

(

1 − var (y(k) − ŷ(k|θλ))

var (y(k))
, 0

)

, (14)

which is a measure of the percentage of the observed output

variation that is explained by the model.

1) Perfect model order: As a first step, a LPV-ARX(9, 3)
model is estimated based on the collected data and using the

coefficient parametrization (3) with

ψi1(p) = p, ψi3(p) = sin(p),

ψi2(p) =
√−p, ψi4(p) = cos(p),

for all i, i.e. s1 = . . . = s12 = 4. This parametrization

corresponds to 5 · 12 = 60 unknown θij’s to be estimated.

The obtained LS estimate has been computed with a slightly

modified version of the arx command in MATLAB. Note

that (12) is in the model class and the model order is correct,

but the coefficients are overparametrized, as only a subset of

{ψij} is required for the estimation of each φi.
2

Plugging this estimate into the NNG problem (11a-b) and

solving it with the proposed algorithm of [19] yield a piece-

wise affine solution path wλ. For this solution path, the BFR

and VAF of the associated model estimates are calculated for

the validation data. As the performance path is similar for the

BFR and VAF error measures, except that in the VAF case

it is in the 100% - 99% region, only the BFR path is shown

in Figure 1b. Note that the calculation time of this figure

together with the solution of the NNG problem and the model

estimate only takes a few seconds on a Pentium 4, 2.8 GHz

PC running under Windows XP with SP2. The maximum of

fit occurs for λ42 with BFR = 99.63% and VAF = 99.99%,

for which the corresponding model is a LPV-ARX(9, 3) with

coefficients given in Table I. The coefficient dependencies

clearly indicate a high similarity to the original A(q, p) and

B(q, p). From the obtained graph it is also obvious that a

model reduction is possible without too much loss in BFR.

By choosing λ = λ66, the corresponding model is a LPV-

ARX(8, 3) model with coefficients given in Table I. Note

that all parameters of a7 are set to zero by the method.

This model approximates (12) with BFR = 95.36% and

VAF = 99.79%, which implies that the NNG method may

also be used as a model reduction method for LPV-ARX

models.

2) Overfitting: Now consider the situation of overfitting

by estimating an LPV-ARX(12, 6) model based on the col-

lected data and using the coefficient parametrization (3) with

ψi1(p) = p, ψi3(p) = sin(p), ψi5(p) = p2,

ψi2(p) =
√−p, ψi4(p) = cos(p),

for all i, i.e. s1 = . . . = s18 = 5. Note that the true

system (12) is again in the model class, but both the model

order and the coefficient dependencies are overparametrized

(108 parameters compared to 17). Plugging this estimate into

the NNG problem (11a-b) and solving it with the proposed

2In the noise-free case, the initial parameter estimate for the over-

parametrized model will lead to zero elements in θ̂. This, in turn, yields
columns that are zero in the regressor matrix for the weights w (10a) and
the problem will be rank-deficient. Thus, special care is needed, where a
rank-revealing decomposition may be used to transform the problem into a
well conditioned one.

algorithm yield a piecewise affine solution path wλ for which

the fit values are shown in Figure 1c. Again calculations only

take a few seconds on the specified PC.

In Figure 1c, the fit values have an obvious maximum

at λ = λ103, which corresponds to a LPV-ARX(9, 2) with

coefficients given in Table I. Values for the parameters of p2

are not reported as they are all zero. Note that this model

has the correct model order and coefficient dependencies of

the original data-generating plant. This underlines the value

of the proposed method.

Remark 1: If the data-generating system is not in the

model class due to undermodelling or inappropriate choice of

the noise model, the proposed NNG approach still provides

a reliable solution (see [19]). However, the investigation of

the effect of structural modeling error in terms of the used

{ψij} functions remains the objective of future research.

B. LPV-SS model

As a next example, the identification of an LPV-SS model

is demonstrated by using the LPV-ARX structure with dy-

namic dependence. In this setting, the NNG method is used

to select the required dynamic dependence of the ARX model

coefficients in order to deliver an adequate estimate of the

data-generating system.

Consider the LPV-SS model

qx =

A(p)
︷ ︸︸ ︷
[

0 p

1 p

]

x +

B(p)
︷ ︸︸ ︷
[

1
1

]

u +

[
1
1

]

e, (15a)

y =
[

1 0
]

︸ ︷︷ ︸

C(p)

x (15b)

where x denotes the state variable, e is white noise with

distribution N (0, 0.02) and p ∈ P where P = [−0.4, 0.4].
Note that the matrices in (15a-b) depend only on the instan-

taneous value of p. Based on the frozen poles of (15a-b)

given in Figure 2a, this system is uniformly frozen stable.

Using the transformation theory presented in [11], [12], the

equivalent LPV-IO realization of (15a-b) reads as
(

1−p(k−1)
[
q−1 + q−2

])

y(k) = u(k−1)+e(k−1). (16)

Note in (16) that the coefficients of the output side poly-

nomial depend on the time-shifted value of p, which is

called dynamic dependence. Recently, it has been shown that

in order to estimate adequate models of physical systems,

possible dynamic dependence of the model coefficients must

be taken into account as is obvious from (16). However,

guessing the required order of time-shifts in the scheduling

variable only from measured data is a non-trivial problem.

To test the NNG method in this setting, the system (15a-b)

is simulated using a white noise u with distribution N (0, 1)
and a white noise p with uniform distribution U(−0.4, 0.4).
With these signals, just like in the previous case, 2N data

points are collected with N = 1000, and the obtained data

record is divided equally into an estimation and a validation

data set. In the obtained data the SNR is 35 dB.
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Fig. 1. (a) The pole locations of the LPV-ARX(9, 3) data-generating system (see (12)) for all constant trajectories of p with P = [−2π, 0]. (b) Using
the model order (9, 3) in the NNG problem, the BFR for the break points of the piecewise affine solution path in terms of λ, calculated for the validation
data. (c) Piecewise affine solution path of λ for model order (12, 6).
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Fig. 2. (a) The pole locations of the LPV-SS data-generating system (see (15a-b)) for all constant trajectories of p with P = [−0.4, 0.4]. (b) Using the
model order (2, 2) in the NNG problem, the BFR for the break points of the piecewise affine solution path in terms of λ, calculated for the validation
data. (c) Piecewise affine solution path of λ for model order (5, 5).

1) Perfect model order: We demonstrate the capabilities

of the NNG method to solve the dynamic dependence

selection problem by estimating a LPV-ARX(2, 2) model

based on the collected data and by using the coefficient

parametrization (3) with

ψi1(p) = p, ψi2(p) = q−1p,

for all i, i.e. s1 = . . . = s4 = 2. Note that the true system

(15a-b) is in the model class.

Again the initial LS model estimate has been computed

in MATLAB and the NNG problem (11a-b) has been solved

for all nonnegative λ. The resulting piecewise affine solution

path wλ is depicted in Figure 2b in terms of the achieved

BFR and VAF of the associated model estimates with respect

to the validation data. By choosing λ = λ9, which has the

highest BFR = 99.10% and VAF = 99.99%, the corre-

sponding model is a LPV-ARX(2, 2) model with coefficients:

a1(p)(k) = −1.01p(k − 1), b0(p)(k) = −0.0083,

a2(p)(k) = −0.99p(k − 1), b1(p)(k) = 0.9971,

which has only coefficient dependencies on p(k − 1). By

considering that b0 ≈ 0, the obtained model is almost a

perfect match with (16). This proves that the NNG method

correctly selects the required dynamic dependence for the

identification of LPV-ARX models.
2) Overfitting: Now we consider an overfitting scenario

by estimating an LPV-ARX(5, 5) model based on the col-

lected data and by using the coefficient parametrization (3)

with
ψi1(p) = p, ψi2(p) = q−1p,

ψi3(p) = q−2p, ψi4(p) = q−3p,

for all i, i.e. s1 = . . . = s10 = 4. Note that the true system

(11a-b) is again in the model class, but both the model order

and the coefficient dependencies are overparametrized and

except for ψi2 none of {ψij} show up in the true system

as a part of any coefficient dependence (see (16)). Again,

plugging this estimate into the NNG problem (11a-b) and

solving it with the proposed algorithm yield a piecewise

affine solution path wλ for which the fit values are shown in

Figure 2c.

In Figure 2c, the fit values have an obvious maximum at

λ = λ71 with BFR = 99.17% and VAF = 99.99%, which

corresponds to a LPV-ARX(2, 2) model with coefficients:

a1(p)(k) = −1.022p(k − 1), b0(p)(k) = 0.0148p(k − 3),

a2(p)(k) = −0.989p(k − 1), b1(p)(k) = 0.9963,
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TABLE I

PARAMETERS OF THE MODEL ESTIMATES IN EXAMPLE IV-A FOR

DIFFERENT VALUES OF λ. (ONLY THE NON-ZERO ROWS ARE GIVEN)

True λ42 λ66 λ103

a1 1 0.24 0.2401 0.2425 0.2434
p 0.1 0.1003 0.1021 0.1060√−p 0 0 0 0.0068

a2 1 0.6 0.6001 0.5710 0.5911
p 0 0 0 0.0022√−p −0.1 −0.1001 −0.0856 −0.0908

a3 1 0 0.0001 0 −0.0075
p 0 −0.0002 0 0.0054√−p 0 −0.0070 0 0.0139

sin(p) 0.3 0.2993 0.2991 0.3008
cos(p) 0 0 0 0.0028

a4 1 0.17 0.1710 0.1448 0.1679
p 0.1 0.1002 0.09039 0.0995

a5 sin(p) 0 0.0014 0 0
cos(p) 0.3 0.3006 0.3018 0.3007

a6 1 −0.27 −0.2714 −0.2692 −0.2698
a7 p 0.01 0.0097 0 −0.0120

sin(p) 0 0 0 0.0018
a8 1 −0.07 −0.0693 −0.0645 −0.0698
a9 1 0 0.0004 0 0

cos(p) 0.01 0.0091 0 0.0116
b0 1 1 1.0069 1.0226 1.0328

p 0 −0.0003 0 −0.0704√−p 0 −0.0070 −0.0227 −0.1141
sin(p) 0 −0.0004 0 −0.0121
cos(p) 0 −0.0005 0 0

b1 1 1.25 1.2474 1.1978 1.2578
p −1 −1.0017 −1.0103 −1.0006

b2 1 −0.2 −0.1815 0 −0.1748√−p −1 −1.0117 −1.1134 −1.0122

Note that this model has the correct model order and coef-

ficient dependencies of the original data-generating plant if

one considers b0 to be approximately zero. This underlines

the value of the proposed method, giving strong evidence

that it is able to select appropriate order and structural

dependence of LPV-ARX model structures.

Remark 2: Ordering of the dynamical coefficient depen-

dence can also be introduced in (10c-d), by penalizing higher

lags in p (similar to input and output lags).

V. CONCLUSIONS AND FUTURE WORK

In this paper a method for order and structural depen-

dence selection of LPV-ARX models was introduced as the

extension of the order selection approach presented in [19]

for LTI-ARX models. The method is a modified variant of

the NNG method [18], where constraints on the weights are

added according to the natural ordering of the regressors

in ARX models. At the same time, the weights of the

prior given set of candidate scheduling dependencies are left

unconstrained for each coefficient, to give equal chances for

the selection of the most important candidates. This also

provides the possibility to estimate the order of the required

dynamic dependence in LPV-ARX models, giving a practical

tool for the support of LPV-IO identification approaches.

The proposed method is extendable to the multivariable case,

providing an important objective for further research.

The order and structure selection problem of LPV-ARX

models is a special case of the related NARX problem, which

will be studied in the future together with the Instrumental

Variable Regression Shrinkage version of the presented al-

gorithm.
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[11] R. Tóth, “Modeling and identification of linear parameter-varying
systems, an orthonormal basis function approach,” Ph.D. dissertation,
Delft University of Technology, 2008.
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