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Abstract— Commonly, controllers for Linear Parameter-
Varying (LPV) systems are designed in continuous-time using a
Linear Fractional Representation (LFR) of the plant. However,
the resulting controllers are implemented on digital hardware.
Furthermore, discrete-time LPV synthesis approaches require
a discrete-time model of the plant which is often derived from
continuous-time first-principle models. Existing discretization
approaches for LFRs suffer from disadvantages like alternation
of dynamics, complexity, etc. To overcome the disadvantages,
novel discretization methods are derived. These approaches are
compared to existing techniques and analyzed in terms of ap-
proximation error, considering ideal zero-order hold actuation
and sampling.

Index Terms— Linear fractional representation, discretiza-
tion

I. INTRODUCTION

Control synthesis approaches for Linear Parameter-

Varying (LPV) systems ([1], [2]), often require LPV models

in a Linear Fractional Representation (LFR), as depicted in

Figure 1a. In the LPV interpretation of LFRs, the feedback

gain ∆ is assumed to vary in time as ∆ is a function

of a measurable signal, the so-called scheduling variable

p : R → P. The compact set (or polytope) P ⊆ R
nP denotes

the scheduling space. Using scheduling variables as changing

operating conditions or endogenous/free signals of the plant,

LPV representations can describe both nonlinear and time-

varying phenomena.

In practice, implementation of LPV control designs in

physical hardware often meets significant difficulties, as

mostly continuous-time (CT) LPV controllers [1] are pre-

ferred in the literature over discrete-time (DT) solutions [3].

The main reason is that stability and performance require-

ments can be more conveniently expressed in CT, like in a

mixed sensitivity setting [2]. Therefore, the current design

tools focus on continuous-time LPV controller synthesis in

an LFR form, requiring efficient discretization of such system

representations for implementation purposes. Next to that,

DT approaches require a DT model of the plant which is

often available only through the use of CT first-principle

models. It follows that discretization of LFRs is a crucial

issue for both control design and controller implementation.

In the existing literature, some approaches of LFR dis-

cretization are available. However, the validity of the used

discretization settings or the introduced approximation error
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has not been analyzed so far. Basically the available methods

use Zero-Order Hold (ZOH) and First-Order Hold (1OH)

approaches to restrict the variations of the signals of the LFR

in the sample interval which results in a DT description of

the dynamics [4], [5], [6], [7], [8], [9], [10], [11]. Almost

all of these methods suffer from various disadvantages like

significant approximation errors, loss of stability, high com-

plexity etc., see Section III.

In this paper we aim to give an analysis of discretization

settings in the LFR case and to derive exact extensions of

the approaches of the LTI framework. We intend to develop

reliable and easy to use LFR discretization methods. We also

compare the properties of the resulting approaches in terms

of preservation of stability and discretization errors.

The paper is organized as follows: First, in Section II,

LFRs of LPV systems are defined. In Section III existing

approaches of LFR discretization are investigated pointing

out the need for improvement. Using an exact discretization

setting in Section IV, popular discretization methods of

the LTI framework are extended to LFRs. In Section V

properties of the introduced methods are presented in terms

of discretization error and preservation of stability. In Section

VI a numerical example is given for the comparison of the

approaches.

II. LINEAR FRACTIONAL REPRESENTATIONS

For a given continuous-time LPV system S, the LFR of

S, denoted by RLFR(S), is defined as




ẋ(t)
z(t)
y(t)



 =





A B1 B2

C1 D11 D12

C2 D21 D22









x(t)
w(t)
u(t)



 (1a)

where u : R 7→ U = R
nu and y : R 7→ Y = R

ny are

the input and output signals of the system S, containing dis-

turbance/actuated input and measurable/unmeasurable output

channels alike. x : R 7→ X = R
nx is the state variable of

the representation. {A, . . . ,D22} are constant matrices with

appropriate dimensions and

w(t) = ∆(p(t))z(t), (1b)

where ∆ : P 7→ R
np×np is a function of the scheduling

signal p of S. Commonly, ∆ has a block diagonal structure

containing the elements of p and ∆ is assumed to vary in a

polytope. Note that (1a-b) is a Differential Algebraic Equa-

tion (DAE), instead of an Ordinary Differential Equation

(ODE) encountered in state-space representations. Addition-

ally, x, w, z are latent (auxiliary) variables of RLFR(S).
By defining yd, ud, pd as the sampled signals of y, u,

p with sampling time Td > 0, e.g., ud(k) := u(kTd),
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Fig. 1. (a) Linear fractional representation of LPV systems. (b) Full ZOH discretization of LFRs. (c) First/Zero-order hold discretization of LFRs.

the definition of a LFR can be established in DT as the

representation of an underlying sampled continuous-time

LPV system S:




xd(k + 1)
zd(k)
yd(k)



 =





Φ Γ1 Γ2

Υ1 Ω11 Ω12

Υ2 Ω21 Ω22









xd(k)
wd(k)
ud(k)



 (2)

where {Φ, . . . ,Ω22} are constant matrices with appropriate

dimensions and wd(k) = ∆d(pd(k))zd(k) with ∆d : P 7→
R

np×np . Note that it is not necessary that zd, wd, or xd are

also sampled signals of their CT counterparts (they are just

latent variables). In the sequel, this representation is denoted

as RLFR(S, Td). Now we can define the problem we intend

to focus in the rest of the paper:

Problem 1 (Discretization problem): For a sampling time

Td > 0 and for a given LFR of a CT-LPV system S, find a

DT-LFR that describes or approximates the sampled behavior

of the output signal y of S for all possible trajectories of the

input u and the scheduling variable p. ¤

III. EXISTING DISCRETIZATION APPROACHES

Before deriving a solution to Problem 1, the existing LFR

discretization approaches are investigated by evaluating their

performance in terms of the proposed problem setting and

also pointing out the need for improvements.

A. Basic concepts of the discretization settings

In the available literature, only the isolated setting (stand

alone discretization of the system) is treated. Similar to the

LTI case, in this setting it is necessary to restrict the free

variables of the system, i.e., u and p, to vary in a predefined

manner during fixed time intervals, called the sampling

period. This is required in order to describe the evolution

of all non-free variables inside the sampling interval. The

latter makes it possible to derive a DT description of the

system where signals are only observed at the sampling

time instants. The simplest case is when a Zero-Order-Hold

(ZOH) is applied on u and p, restricting their variation

to be piecewise-constant. However, this restriction can be

relaxed to include a larger set of possible signal trajectories

like piece-wise linear (called first-order-hold), or 2nd-order

polynomial (called second-order-hold), etc.

In order to simplify the discretization problem we face in

this setting, the following assumption is commonly used:

Assumption 1 (Discretization setting): The hold and the

sampling devices are perfectly synchronized with Td > 0 as

the sampling time or discretization time-step. Furthermore,

these devices have infinite resolution (no quantization error)

and their processing time is zero. ¤

Note that due to the assumed ideal hold devices, at the

beginning of each sample interval a switching effect occurs.

Contrary to the LTI case, the switching effect on p introduces

additional dynamics into the system which hardly occurs in

reality. Thus to avoid the overcomplicated analysis of such

effects the following assumption is made:

Assumption 2 (Switching effects): The switching behavior

of the hold devices has no effect on the CT plant, i.e., the

switching of the signals is assumed to take place smoothly.

B. Full zero-order hold approaches

A commonly used approach, like in [4], [5], is to apply

ZOHs and sampling on all signals of (1a-b) (see Figure 1b).

This setting implies that (1a) is discretized as a stand-alone

(open-loop) LTI system disregarding (1b). The advantage of

this method lays in its simplicity, however it can seriously

alter the dynamics, i.e., stability, of the DT approximation

as it assumes that all terms in the state-equation that are

coupled with ∆ are constant inside the sampling interval.

C. First/Zero-order hold approaches

Other methods ([6], [7]), use a mixed discretization setting

of first and zero-order holds, depicted in Figure 1c. By

considering future samples of p and z in terms of the 1OH,

the approximation of the variations of x that are coupled

with ∆ improves. However, this also often turns out to

be a disadvantage, as the resulting DT-LFR depends on

future samples of p and w, which results in a non-causal

representation. In case the ultimate goal of the discretization

is analysis or simulation, this causality problem may be

insignificant (see [6]).

D. Bilinear transformation technique

As an alternative, the time operator can be extracted as

an integrator (see Figure 2a) which is discretized via the z-

substitution of its Laplace transform 1/s (see [8], [9]). For

the substitution, the bilinear transformation

1

s

≈ Td

2

z + 1

z − 1
, (3)
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Fig. 2. (a) Extraction of the integrator for bilinear discretization. (b) Exact
ZOH discretization of LFRs.

is used, resulting in a Tustin type of discretization approach.

It can be shown that this intuitive method introduces ZOH

only on u and p, depicted in Figure 2b, and it does not restrict

variations of the state. Furthermore, this concept preserves

stability of the original representation. On the other hand,

the formulation of the approach is only based on the analogy

with the LTI case and it does not give an understanding of

the introduced approximations.

E. Discretization in state-space form

Another discretization approach is to rewrite the LFR (1a-

b) into an LPV State-Space (SS) representation:

ẋ = A(p)x + B(p)u, (4a)

y = C(p)x + D(p)u. (4b)

This reformulation is possible if the following is satisfied:

Assumption 3: I −D11∆(p) is invertible for all p ∈ P. ¤

In (4a-b) the matrices are given as

A(p) = A + B1∆(p)(I − D11∆(p))−1C1, (5a)

B(p) = B2 + B1∆(p)(I − D11∆(p))−1D12, (5b)

C(p) = C2 + D21∆(p)(I − D11∆(p))−1C1, (5c)

D(p) = D22 + D21∆(p)(I − D11∆(p))−1D12. (5d)

As a next step, the discretization formulas of LPV-SS rep-

resentations derived in [10], [11] are applied on (4a-b).

Then, the resulting discrete-time LPV-SS representation is

transformed to a discrete-time LFR. This approach provides a

wide range of fully analyzed methods with criteria to choose

the sampling time. However, conversion between the LFR

and SS representations is complicated and the resulting DT-

SS representations might not be realizable by an LFR without

introducing conservatism (see Section IV-A).

IV. EXACT ZOH DISCRETIZATION OF LFRS

As we have seen, many existing approaches suffer from

disadvantages, due to the effect of hold devices on the loop

(1b). This makes the setting of Figure 2b attractive, which

is also proved by the properties of the associated bilinear

method. As this method is only approximative, the question

rises whether we can do more in this setting to give a solution

to Problem 1. This is investigated in the sequel, by using the

exact ZOH setting presented in Figure 2b.

The following assumption is introduced:

Assumption 4 (exact ZOH setting): We are given a CT-

LPV system S, with CT input signal u, scheduling signal

p, and output signal y, where u and p are generated by an

ideal ZOH device and y is sampled. Additionally, the ZOHs

and the sampling satisfy Assumptions 1-2 with Td > 0. ¤

These assumptions imply for k ∈ Z that

u(t) := ud(k), ∀t ∈ [kTd, (k + 1)Td), (6a)

p(t) := pd(k), ∀t ∈ [kTd, (k + 1)Td), (6b)

yd(k) := y(kTd). (6c)

A. Complete approach

First the complete signal evolution approach [12] of the

LTI framework is extended to the LFR case. Let a CT-LFR be

given in the ZOH setting of Figure 2b. Based on Assumption

4, (1a) can be written as




ẋ(t)
z(t)
y(t)



=





A B1∆(p(kTd)) B2

C1 D11∆(p(kTd)) D12

C2 D21∆(p(kTd)) D22









x(t)
z(t)

u(kTd)



 (7)

which corresponds to a DAE. Now in the kth sampling

interval, the state evolution x(t) reads as

x(kTd)+

∫ t

kTd

Ax(τ)+B1∆(p(kTd))z(τ)+B2u(kTd)dτ. (8)

If Assumption 3 holds, then (7) is an index-0 DAE, meaning

that its solution can be obtained by algebraically eliminating

the latent variable z to obtain an ODE form. Then, for t =
(k + 1)Td, (8) yields

x((k + 1)Td) = eTdA(p(kTd))x(kTd)+

A−1(p(kTd))[eTdA(p(kTd)) − I]B(p(kTd))u(kTd). (9)

This solution implies a DT realization of the original system,

however as eTdA(p) is not a rational function of ∆(p), it is not

possible to find an exact DT-LFR which describes the state-

transition from (x(kTd), u(kTd)) to x((k +1)Td) defined by

(9). One option is to introduce

∆d(k) =

[

∆(p(kTd)) 0
0 eTdA(p(kTd))

]

, (10)

and provide a DT-LFR realization of (9), which might be

rather unattractive for controller synthesis due to issues of

conservatism.
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Now consider the case when Assumption 3 is not satis-

fied1. Then, (7) is an index-1 DAE, meaning that its solution

(if it exists) can only be obtained by differentiating (7)

once. In general, such solution also has no exact DT-LFR

realization.

These conclusions underline that opposite to the LTI and

the LPV-SS cases, no exact DT projection of the dynamics

is available in the LFR case under Assumption 4.

B. Approximative approaches

As we have seen, complete discretization of LFRs is

rather difficult, thus it is important to develop approximative

methods. By looking at the state-equation of (1a) as a pure

ODE, numerical approximations of the resulting CT solution

can be applied. Then, by using the algebraic constraints in

(1a-b), a DT-LFR can be obtained that approximates the

original behavior under Assumption 4. In the literature of

numerical methods, such an approach is reported to work

well for DAE’s with index 0 and 1. Using this methodology,

the following approximative methods can be derived:

1) Rectangular (Euler’s forward) method: Denote the

righthand-side of the state-equation in (1a) as

f(x,w, u)(t) = Ax(t) + B1w(t) + B2u(t). (11)

Then,

x(t) = x(kTd) +

∫ t

kTd

f(x,w, u)(τ) dτ, (12)

defines the state-evolution of (1a) in [kTd, (k + 1)Td). Left-

hand rectangular evaluation of (12) gives that

x((k + 1)Td) = x(kTd) + Tdf(x,w, u)(kTd). (13)

Based on this rectangular approach, the DT approximation

of RLFR(S) reads as

RLFR(S, Td) ≈





I + TdA TdB1 TdB2

C1 D11 D12

C2 D21 D22



 (14)

with ∆d(pd(k)) = ∆(p(kTd)). Note that using a first-

order Taylor approximation of eTdA(p(kTd)) in (9) (which

is called the Euler method) results in the same DT-LFR

realization as (14). It is also important to highlight that the

rectangular approach gives the same solution as the full ZOH

setting of Figure 1b with Euler discretization of the LTI part,

suggesting very poor performance for this method.

2) Polynomial (Hanselmann) method: It is possible to

develop other methods that achieve a better approximation

of the complete solution (9) but with increasing complex-

ity. One way leads through the use of higher-order Taylor

expansions of the matrix exponential:

eTdA(p(kTd)) ≈ I +
∑n

l=1
T

l

d

l! A(p(kTd)). (15)

For n = 2, this gives the following DT-LFR :










∑2
l=0

T
l

d

l! Al
∑2

l=1
T

l

d

l! Al−1B1
T
2
d

2 B1

∑n

l=1
T

l

d

l! Al−1B2

C1 D11 0 D12

C1A C1B1 D11 C1B2

C2 D21 0 D22











1Note that invertibility of I − D11∆(p) is only a sufficient but not a
necessary condition for the well-posedness of LFRs (see [13]).

with ∆d(pd(k)) =
[ ∆(p(kTd)) 0

0 ∆(p(kTd))

]

. It is also possible

to derive a general formula for n > 2, but it is not reported

here, due to space limitations. Additionally, the above defined

method is not equivalent to applying polynomial discretiza-

tion of the LTI part in the spirit of Figure 1b.

3) Padé’s expansion method: A different way of approx-

imating the exponential term in (9), is to use a rational

approximation in the form of a Padé (i, j) expansion:

eTdA(p) ≈ [Tij(TdA(p))]
−1

Nij(TdA(p)), (16)
where

Tij(TdA(p)) =
∑j

l=0
(i+j−l)!j!

(i+j)!l!(j−l)! (−TdA(p))
l
, (17a)

Nij(TdA(p)) =
∑i

l=0
(i+j−l)!i!

(i+j)!l!(i−l)! (TdA(p))
l
. (17b)

In general (16) has a much faster convergence rate than (15).

Approximation of matrix exponentials by Padé expansions

is also viewed as an attractive approach in the numerical

literature [14], [15]. Substituting (16) into (9) gives

Tij(TdA(p(kTd)))x((k+1)Td)=Nij(A(Tdp(kTd)))x(kTd)+

TdN̂ij(TdA(p(kTd)))B(p(kTd))u(kTd), (18)

where for i = j

N̂ii(TdA(p))=A(p)−1
(

Nii(TdA(p))−Tii(TdA(p))
)

. (19)

As Tij , Nij , and N̂ij are rational functions of ∆(p), there

exists a DT-LFR realization of (18). In the case i = j = 1,

the DT-LFR reads














Ψ(I + Td
2 A) Td

2 ΨB1
Td
2 ΨB1

Td
2 ΨB1 TdΨB2

Ψ(I + Td
2 A) Td

2 ΨB1
Td
2 ΨB1

Td
2 ΨB1 TdΨB2

C1 0 D11 0 D12

0 0 0 D11 D12

C2 0 D21 0 D22















with Ψ = (I − Td
2 A)−1 and

∆d(pd(k)) =
[ ∆(p(kTd)) 0 0

0 ∆(p(kTd)) 0
0 0 ∆(p(kTd))

]

.

Again, it is important to note that the above defined method

is not equivalent to applying Padé discretization on the LTI

part in the spirit of Figure 1b.

4) Trapezoidal (Tustin) method: Another approach is to

use different numerical formulas to approximate (12). By

using a trapezoidal evaluation, we obtain:

x((k + 1)Td) ≈ x(kTd) + Td
2 f |kTd + Td

2 f |(k+1)Td , (20)

where f |t = f(x,w, u)(t). Now by applying a change of

variables:

x̆d(k) = 1√
Td

(

I − Td
2 A

)

x(kTd) −
√
Td
2 B1w(kTd)−
√
Td
2 B2u(kTd), (21)

and assuming that I − Td
2 A is invertible, substitution of (21)

into (20) gives the DT-LFR:




(

I + Td
2 A

)

Ψ
√
TdΨB1

√
TdΨB2√

TdC1Ψ
Td
2 C1ΨB1 + D11

Td
2 C1ΨB2 + D12√

TdC2Ψ
Td
2 C2ΨB1 + D21

Td
2 C2ΨB2 + D22





with ∆d(pd(k)) = ∆(p(kTd)) and Ψ = (I − Td
2 A)−1. It

can be shown that the trapezoidal approach gives the same

solution as the bilinear method introduced in Section III-D.
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5) Multi-step methods: (12) can also be approximated via

multi-step formulas like the Runge-Kutta, Adams-Moulton,

or the Adams-Bashforth approaches [16]. However, in the

considered ZOH discretization setting, the sampling rate is

fixed and sampled data is only available at past and present

sampling instants. Therefore it is complicated to apply the

Runge-Kutta or the Adams-Moulton approaches. The family

of Adams-Bashforth methods does fulfill these requirements

(see [16]). The 3-step version of this numerical approach

uses the following approximation of x((k + 1)Td):

x(kTd) +
Td

12
[5f |(k−2)Td − 16f |(k−1)Td + 23f |kTd ]. (22)

Then introducing a new state-variable

x̆d(k) = [ x⊤(kTd) f |⊤(k−1)Td
f |⊤(k−2)Td

]⊤ (23)

leads to the DT-LFR:












I + 23Td
12 A − 16Td

12 I 5Td
12 I 23Td

12 B1
23Td
12 B2

A 0 0 B1 B2

0 I 0 0 0
C1 0 0 D11 D12

C2 0 0 D21 D22













with ∆d(pd(k)) = ∆(p(kTd)).

V. PROPERTIES OF THE APPROACHES

A. Discretization error

Using a similar line of reasoning as in [10], [11], the

discretization error of the introduced approaches can be

investigated through their numerical properties. These results

together with other properties are summarized in Table

I. Based on Table I, all the approximative methods are

numerically consistent and convergent, which means that by

decreasing Td the approximation error of the sampled CT

behavior also converges to zero. Furthermore, the order of

numerical consistency also indicates the convergence rate of

this error. This implies that methods with high convergence

rate, like the polynomial and Padé approaches, provide more

accurate approximations than the other methods with de-

creasing Td. Using the results of the numerical convergence

analysis it also becomes possible for each method to derive

bounds on Td which guarantee a certain discretization error.

B. Preservation of frozen stability

Preservation of stability through the discrete time projec-

tion can be also analyzed. Consider the CT-LFR (1a-b). For

a constant trajectory of p, i.e. p(t) = p for all t ∈ R, A(p) is

a constant matrix ((1a-b) reduces to a LTI system). We call

(1a-b) uniformly frozen stable if (1a-b) is stable (it admits

only solutions that are bounded on the right half plane) for

all constant trajectories of p. In terms of Assumption 2, this

means that A(p) is Hurwitz for all p ∈ P. An analogous

definition of frozen stability can be given for DT-LFR’s. By

analyzing the numerical stability of the DT projection, it can

be concluded that the preservation of uniform frozen stability

of the CT-LFR is always guaranteed with the trapezoidal

and the Padé approaches. With respect to other methods,

analytic bounds T̆d of the sampling time can be given for

which preservation of frozen stability is guaranteed.

C. Complexity of ∆d

As in LPV control synthesis mostly low complexity

(dimension, type of dependence, structure, etc.) of ∆ is

preferred (see [1]), therefore both for modeling and controller

discretization purposes - beside the preservation of stability

- the preservation of the original ∆ without repetition is

highly valued. This favors approximative methods that give

acceptable performance, but with less repetition of ∆ in

the new ∆d block. For the rectangular, trapezoidal and

the Adams-Bashforth methods, ∆d = ∆, making these

approaches attractive from this point of view. However, in the

Adams-Bashforth case, discretization also results in the order

increase of the DT system which requires extra memory

storage or more complicated controller design depending on

the intended use.

D. Overall assessment

If the quality of the DT model has priority, then the trape-

zoidal, polynomial, and the Padé methods are suggested due

to their fast convergence and large stability radius. The Padé

(n, n)-method is especially attractive as it merges the good

properties of the trapezoidal and polynomial approaches like

preservation of stability and fast convergence rate for high

n. However the price to be paid is an increased number

of repetitions of the ∆ block. The above stated properties

also clearly point out that there exists no ’best’ discretization

method as in specific scenarios one approach can be more

attractive than the others. It remains on the users to choose

a method based on Table I, that offers the most attractive

properties with respect to the problem at hand.

VI. SIMULATION EXAMPLES

In the following a simple example is presented to visu-

alize/compare the properties of the analyzed discretization

methods. Consider the following LFR of a continuous-time

SISO LPV system S:

RLFR(S) =











66 −136 1 0 1
116 −86 0 1 1
−58 123 0 0 1
−10 75 0 0 1
1 1 −0.1 −0.1 0.1











with ∆(p) =
[

p 0
0 p

]

and P = [−1, 1]. For each constant

scheduling trajectory, RLFR(S) is equivalent to a stable LTI

system, so S is uniformly frozen stable on P.

Consider RLFR(S) in the exact ZOH setting of Figure 2b

with sampling rate Td = 0.02. By applying the discretization

methods of Section IV, approximative DT-LFRs of S have

been calculated. For comparison, the full ZOH approach

has also been applied on RLFR(S). To demonstrate the

performance of the resulting DT descriptions, the output

of the original system and its DT approximations have

been simulated on the [0, 1] time interval for zero initial

conditions and for 100 different realizations of white ud and

pd with uniform distribution U(−1, 1). For fair comparison,

the achieved MSE2 of the resulting output signals ŷd has

2Mean Square Error, the expected value of the squared estimation error:

E{ 1
N

∑

N−1
k=0 (y (kTd) − yd (k))2}, where E is the expectation operator.
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Property Complete Rectangular nth-polynomial Trapezoidal Padé (n, n) Adams-Bashforth

consistency / convergence always 1st-order nth-order 2nd-order nth-order 3rd-order

preservation of stability / N-stab. always global frozen with T̆d frozen with T̆d always frozen always frozen frozen with T̆d

preservation of instability + - - + + -

∆d-block complexity not realizable 1 × ∆ n × ∆ 1 × ∆ 3n × ∆ 1 × ∆

system order preserved preserved preserved preserved preserved increased

TABLE I

PROPERTIES OF THE DERIVED DISCRETIZATION METHODS

MSE of yd

Td Complete full ZOH Rectangular 2nd-polynom. Trapezoidal Padé (1, 1) Adams-Bash.

2 · 10−2, (50Hz) 1.2 · 10−8 8.67 · 10−2 (∗) (∗) 1.14 · 10−1 3.37 · 10−1 (∗)

5 · 10−3, (0.2kHz) 6.7 · 10−9 1.2 · 10−3 (∗) 2.04 · 10−3 9.67 · 10−4 3.64 · 10−4 1.14 · 10−2

10−4, (10kHz) 5.37 · 10−8 5.37 · 10−8 2.19 · 10−7 5.37 · 10−8 9.77 · 10−8 5.37 · 10−8 3.15 · 10−7

TABLE II

DISCRETIZATION ERROR OF S , GIVEN IN TERMS OF THE ACHIEVED AVERAGE MSE FOR 100 SIMULATIONS. (∗) INDICATES INSTABILITY.

been calculated with respect to the output y of RLFR(S)
and presented in Table II.

Table II shows that, except for the rectangular, polyno-

mial and the Adams-Bashforth methods, all approximations

converge. As expected, the error of the complete method is

extremely small while the trapezoidal and the Padé (1, 1)
method give a moderate, but acceptable performance. Sur-

prisingly, the full ZOH approach also gives a stable projec-

tion with an acceptable error. This underlines that the full

ZOH approach can provide effective discretization of LFRs

in some cases. However, its weakness is its unpredictable

nature.

As a next step, discretizations of RLFR(S) with Td =
0.005, the half of the stability bound T̆d for the polynomial

method, are calculated. The simulation results for this case

are given in the second row of Table II. The rectangular

method again results in an unstable projection, while the

Adams-Bashforth method seems to be stable, but its numer-

ical stability is not guaranteed for all trajectories of pd. The

trapezoidal and the Padé method also improve significantly

in performance, however the Padé seems to outperform the

trapezoidal method due to its faster convergence rate.

Finally, discretizations of RLFR(S) with Td = 10−4,

the half of the T̆d bound for the rectangular method, are

calculated and simulated. The results are given in the third

row of Table II: the rectangular method converges and

also the approximation capabilities of the other methods

reach the numerical step-size (10−8) of the continuous-time

simulation.
VII. CONCLUSIONS

In this paper, discretization approaches of Linear Frac-

tional Representations of LPV systems were introduced

using an exact ZOH setting where the variation of the

state coupled by the scheduling dependent ∆-block is not

restricted inside the sampling interval. This provides an

advantage over existing methods to reduce the introduced

discretization error. The developed approaches were analyzed

in terms of applicability and numerical properties, giving an

overview of which methods are attractive depending on the

aim and achievable sampling time of the discretization. An

illustrative example was provided to give insight into the

derived methods and their properties.
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[12] K. J. Åström and B. Wittenmark, Computer controlled systems.
Prentice-Hall, 1990.

[13] A. L. Tits and M. K. H. Fan, “On the small-µ theorem,” Automatica,
vol. 31, pp. 1199–1201, 1995.

[14] C. B. Moler and C. F. Van Loan, “Nineteen dubious ways to compute
the exponential of a matrix, twenty-five years later,” SIAM Review,
vol. 45, no. 1, pp. 3–49, 2003.

[15] B. N. Datta, Numerical methods for linear control systems. Elsevier,
2004.

[16] K. E. Atkinson, An Introduction to Numerical Analysis. John Wiley
and Sons, 1989.

FrB03.4

7429


