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This chapter presents an overview of the available methods for identi-
fying input-output LPV models both in discrete time and continuous
time with the main focus on noise modeling issues. First, a least-squares
approach and an instrumental variable method are presented for dealing
with LPV-ARX models. Then, a refined instrumental variable approach
is discussed to address more sophisticated noise models like Box-Jenkins
in the LPV context. This latter approach is also introduced in contin-
uous time and efficient solutions are proposed for both the problem of
time-derivative approximation and the issue of continuous-time model-
ing of the noise.

1. Introduction

The identification of LPV systems can be addressed with different repre-

sentations based model structures: Input-Output (IO) [Bamieh and Giarré

(2002); Abbas and Werner (2009); Butcher et al. (2008); Wei and Del Re

(2006)], State-Space [Lovera and Mercère (2007); van Wingerden and Ver-

haegen (2009); Lopes dos Santos et al. (2007)] or Orthogonal Basis Func-
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tions based models [Tóth et al. (2009a)] (see [Tóth (2010)] for an overview

of the existing methods). This Chapter focuses on the IO model represen-

tation which presents several benefits. Firstly, the recent Prediction Error

Minimization (PEM) framework extension [Tóth (2010)] makes possible the

stochastic analysis of identification methods. Moreover, this representation

is well suited for the introduction of different noise models [Laurain et al.

(2010)] depending on the application considered. Finally, the tremendous

need for structure learning/selection in practical applications starts find-

ing answers for both parametric and non-parametric models [Tóth et al.

(2009b); Tóth et al. (2011b)].

Most of the methods developed for IO-LPV models are derived in discrete-

time (DT) under a linear regression form with static dependence on the

scheduling variable p. Moreover, the most widely assumed structure is the

Auto Regressive with eXogeneous Input (ARX) [Bamieh and Giarré (2002);

Wei and Del Re (2006)] model. The ARX noise assumption combined

to a linear parametrization of the scheduling dependencies is mainly moti-

vated by the possible direct extension of Linear Time Invariant (LTI) PEM

framework using linear regression approaches. Though, in the LPV con-

text, not only the ARX assumption means equivalent dynamic properties

between the process and the noise, but also identical nonlinear dependen-

cies on the scheduling variable. In other words, the statement that the

ARX assumption is unrealistic in the LTI framework is even stronger in

the LPV case. However, the extension of the LTI PEM framework to the

LPV case for other types of noise models appears to be non-trivial, mostly

due to the fact that multiplication with q is not commutative over the p-

dependent coefficients. Consequently, it has been only recently understood

how a PEM framework can be established for the estimation of general

LPV models [Tóth (2010)]. Even if some recursive Least Squares (LS) and

Instrumental Variable (IV) methods have been introduced [Giarré et al.

(2003); Butcher et al. (2008)], it was shown in [Laurain et al. (2010)] that

despite the apparent similarity to the LTI identification problem, the meth-

ods available could not lead to the PEM in the LPV case. Furthermore,

it has been detailed how linear regression based methods can still be suc-

cessfully applied to more realistic noise conditions via the reformulation of

the LPV model. Another concern is that even though the identification

methods are mainly derived in DT, most physical processes are expressed

naturally in Continuous-Time (CT) differential equation form. Moreover,

LPV controllers are commonly synthesized in CT as stability and perfor-
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mance requirements of the closed-loop behavior can be more conveniently

expressed in CT. Therefore, the current design tools focus on CT-LPV con-

troller synthesis requiring accurate and low order CT models of the system.

Unfortunately, the DT identification methods cannot cope with this need

as the transformation from DT-LPV models to CT-LPV models is in a

very immature state. The direct identification of CT-LPV models is con-

sequently an attractive approach but presents some intrinsic issues mainly

linked to the sampled nature of the data and the mathematical difficulty to

handle CT stochastic processes [Garnier and Wang (2008)]. Based on the

recent advances of both CT-LTI and DT-LPV identification frameworks,

an IV based method for direct CT-LPV identification has been proposed

in [Laurain et al. (2011)].

Consequently, by retracing an historical background of the IO-LPV iden-

tification framework, this Chapter aims at addressing solutions leading to

the PEM in the LPV framework for different noise assumptions, both in

DT and CT settings. Section 2 details the structure of DT IO-LPV data-

generating systems along with the widely used polynomial model associ-

ated. Section 3 focuses on the solutions offered for the estimation of LPV-

ARX models. The Output Error (OE) and Box-Jenkins (BJ) structures

are introduced in Section 4, where the importance of the noise assumption

as well as the influence of the identification method chosen are illustrated

on a representative example. Section 5 addresses the problematic of direct

identification of CT systems, presenting some intrinsic difficulties generally

involved in CT model identification from sampled data. Section 6 proposes

some direct CT identification solution and the advantages over the DT

identification scheme are illustrated using a representative example derived

from a well-known CT benchmark [Rao and Garnier (2004)]. Finally, the

different contributions are summarized and some conclusions are brought

in Section 7.

2. Discrete-time LPV polynomials models

DT models suit well the sampled nature of the data and consequently,

most models used in the literature are expressed in a DT setting. More-

over, they often assume a static dependence on the scheduling variable p

(the system depends on instantaneous values of p): the relevance of this

static assumption is not discussed here as the presented methods can easily

include delayed version of p in the model for dynamic dependence. This
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section gives a definition of the DT LPV data-generating systems using

polynomial input-output representations based model structures.

2.1. LPV data generating system

In DT, the LPV data-generating system So is commonly formulated in the

identification literature using the following polynomial IO form:

So

{
Ao(pk, q

−1)χo(k) = Bo(pk, q
−1)u(k)

y(k) = χ(k) + vo(k)
(1)

where pk is the value of the scheduling parameter p at sample time k,

χo is the noise-free output, u is the input, vo is the additive noise with

bounded spectral density, y is the noisy output of the system and q is the

time-shift operator, i.e. q−iu(k) = u(k − i). The study of these systems

is here restricted to the Single-Input-Single-Ouput (SISO) case for clarity’s

sake, but the solutions proposed are all extensions of LTI identification

methods which have been also successfully applied to theMulti-Input-Multi-

Ouput (MIMO) case. Therefore, the signals u and y are considered to be

bounded and quasi-stationnary signals on R. Ao(pk, q
−1) and Bo(pk, q

−1)

are polynomials in q−1 of degree na and nb respectively:

Ao(pk, q
−1)=1 +

na∑
i=1

aoi (pk)q
−i, and Bo(pk, q

−1)=

nb∑
j=0

boj (pk)q
−j , (2)

where the coefficients ai and bj are real meromorphic functions (f : Rn → R
is a real meromorphic function if f = g/h with g, h analytic and h ̸=
0) with static dependence on p. It is assumed that these coefficients are

bounded on P, thus the solutions of So are well-defined and the process

part is completely characterized by the coefficient functions {aoi }
na
i=1 and

{boj}
nb
j=0. Like in any identification problem, it is assumed that a data

sequence DN = {y(k), u(k), p(k)}Nk=1 generated by So is available. The

data-generating system in Eq. (1) is then identified by defining a model

set and some information criterion characterizing the quality of the given

model based on DN . As a next step, we explore how such model structures

and criteria can be chosen to efficiently solve the identification problem.
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2.2. Polynomial LPV model

2.2.1. Process model

The studied process is fully characterized by the knowledge of functions

{aoi }
na
i=1 and {boj}

nb
j=0, but in practical cases these functions are a priori

unknown nonlinear functions. Even if some recent work gives some pre-

liminary results oriented towards a model structure selection [Tóth et al.

(2009b); Tóth et al. (2011b)], the usual solution to overcome this problem

is to parameterize these functions using a sum of a priori known basis func-

tions. Consequently, this Chapter focuses on the usual assumption used in

the literature where the process model denoted by Gρ is well defined in an

IO-LPV representation form:

Gρ :
(
A(pk, q

−1, ρ), B(pk, q
−1, ρ)

)
= (Aρ,Bρ) (3)

where the p-dependent polynomials A and B are parameterized as

Aρ


A(pk, q

−1, ρ) = 1 +

na∑
i=1

ai(pk)q
−i,

ai(pk) = ρi,0 +

si∑
l=1

ρi,lψi,l(pk), i = 1, . . . , na

Bρ


B(pk, q

−1, ρ) =

nb∑
j=0

bj(pk)q
−j ,

bj(pk) = ρi,0 +

si∑
l=1

ρi,lψi,l(pk), i = j + na + 1, j = 0, . . . , nb.

In this parametrization, {ψi,l}
na+nb+1,si
i=1,l=1 are a priori chosen meromorphic

functions of p, with static dependence on p, allowing the identifiability of the

model (linearly independent functions on P for example). The associated

model parameters ρ are stacked columnwise:

ρ =
[
ρ1,0 . . . ρna,0, ρ1,1 . . . ρna,sna

, ρna+1,0 . . . ρng,sng

]⊤
∈ Rnρ , (4)

with ng = na + nb + 1 and nρ =
∑ng

i=1 si + 1. We introduce also G = {Gρ |
ρ ∈ Rnρ}, as the collection of all process models in the form of Eq. (3).
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2.2.2. Noise model

Another term which needs to be modeled is the process noise vo. In the

PEM framework, the noise model implicitly defines the error criterion which

assesses the quality of a model when minimized. In most practical applica-

tions, information about the noise structure or properties is unavailable. It

is a critical issue considering that the quality of the estimated model will

highly depend on the noise assumption. Consequently, it is important to

introduce a noise structure able to model a large set of behaviors. A rather

general description in the IO-LPV context is a noise model denoted by Hη

and defined by the following representation:

Hη : D(pk, q
−1, η)v(k) = C(pk, q

−1, η)e(k), (5)

where e(k) is assumed to be a white noise process with a normal distribu-

tion, and the p-dependent polynomials are defined as

C(pk, q
−1, η) = 1 +

na∑
i=1

ci(pk)q
−i, i = 1, . . . , nc

D(pk, q
−1, η) = 1 +

nb∑
j=1

dj(pk)q
−j , j = 1, . . . , nd.

(6)

The focus has recently been given to simpler structures in the literature

and the next sections present estimation methods relying on different sim-

plifications of this noise model.

3. Estimating LPV-ARX models in DT

The first model structure which appeared in the IO-LPV identification

framework is the LPV-ARX model [Bamieh and Giarré (2002); Butcher

et al. (2008)]. This very specific assumption on the noise is motivated by

a substantial simplification of the model which renders possible the direct

application of the LTI PEM framework using regression based methods.

3.1. LPV-ARX models

This model is characterized by the fact that the noise model is assumed

to have the same dynamics and nonlinearities as the process model. More

specifically, the noise model is denoted by Hρ and defined by the following
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LPV-IO representation:

Hρ : A(pk, q
−1, ρ)v(k) = e(k), (7)

where e(k) is assumed to be a white noise process. Under this noise as-

sumption and using the process model given in Eq. (3), the full LPV-ARX

model denoted Mρ can be written in the linear regression form:

Mρ : y(k) = φ⊤(k)ρ+ e(k) (8)

with ρ as defined in Eq. (4), and

φ(k) =
[
−y(k − 1) . . . − y(k − na),−y(k − 1)ψ1,1(pk) . . .

− y(k − na)ψna,sna
(pk), u(k) . . . u(k − nb),

u(k)ψna+1,1(pk) . . . u(k − nb)ψng,sng
(pk)

]
. (9)

It must be pointed out that under this polynomial LPV-ARX model as-

sumption, the time-varying nature of the system is transfered to the nρ
signals composing the regressor φ(k). Moreover, the parameter vector ρ is

time-invariant and the error equation e(k) is a white noise with a normal

distribution: consequently, Eq. (8) defines an LTI model.

3.2. The LS solution

By acknowledging that the LPV-ARX model leads to a MIMO LTI formula-

tion of the LPV problem, the LTI PEM framework can be directly used: the

LS solution dedicated to IO-LPV models was introduced by Giarré [Bamieh

and Giarré (2002)] and is described here. Let M = {Mρ | ρ ∈ Rnρ} be the

collection of all models in the form of Eq. (8). If the studied system is well

described by the ARX structure (So ∈M), then So can also be written as

a linear regression:

y(k) = ρ⊤o φ(k) + eo(k), (10)

where ρo ∈ Rnρ is the true parameter vector (Mρo = So) and φ(k) ∈ Rnρ
is the regressor vector (9). In order to estimate ρo, the quality of the model

fit is formulated in terms of a cost function V (ρ,DN ). The minimization

of V (ρ,DN ) corresponds to the estimation of ρ. In case of the so-called LS

estimation, the cost function is the squared equation error :

V (ρ,DN ) =
1

N

N∑
k=1

e2(k) =
1

N
∥e(k)∥2ℓ2 , (11)
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where e is given by Eq. (8). M represents the set of models in which we

are searching for the “best” Mρ that describes So given a dataset DN =

{y(k), u(k), p(k)}Nk=1 generated by So. As Eq. (11) is quadratic in ρ and

under this LTI representation, the LS solution is analytic and given by:

ρ̂LS=

[
N∑
k=1

φ(k)φ⊤(k)

]−1 N∑
k=1

φ(k)y(k). (12)

If the data generating the system is actually in the model set defined,

Eq. (12) is a statistically optimal estimator (minimum variance and unbi-

ased). Nonetheless, it must be pointed out that this model assumption is

very limited in practice. Even though it might be a fair assumption to con-

sider that the process is well parameterized using Eq. (3), the probability

that vo(tk) is correctly described by Eq. (7) is very low. Indeed, in most

cases, there is no reasonable explanation to justify why the noise vo and the

process part of So should contain the same dynamics and nonlinearities.

In terms of estimation, it means that using the LS method in practical

applications will most often lead to biased estimates. Consequently, some

methods have been developed in order to cope with the error induced by

this invalid assumption on the noise. A solution introduced in [Butcher

et al. (2008)] and relying on the IV method is described in the next section.

3.3. Non-white noise: An IV solution

In the LTI context, the PEM methods have evolved in order to deal with

general and realistic types of noise [Ljung (1999)]. Their efficiency and

convergence have been proven for generic types of models such as: ARX,

OE or BJ for example. The most common assumption is the inclusion of the

system studied in the model set defined, both for the process and the noise.

Nonetheless, the physical insight of the noise process is very unrealistic in

practice and some methods have especially been designed to consistently

estimate models when the noise assumption is incorrect: a set of these

approaches are the IVs methods [Young and Jakeman (1980); Söderström

and Stoica (1983)].

3.3.1. Instrumental variable method in the LTI case

It is well-known from the LTI theory that when considering a regression

form y(k) = φ(k)ρ+ ṽ(k), the LS estimate from Eq. (12) is also:
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ρ̂LS=ρo +

[
N∑
k=1

φ(k)φ⊤(k)

]−1N∑
k=1

φ(k)ṽ(k). (13)

This equation induces that ρ̂LS is a consistent estimate of ρo (unbiased for

finite data) if both the following conditions are respected a:

CLS1 Ē{φ(k)φ⊤(k)} is full column rank.

CLS2 Ē{φ(k)ṽ(k)} = 0.

While CLS1 is usually respected if the input is exciting enough, CLS2 only

holds when ṽ(k) is a white noise. Unfortunately, this assumption is only

verified for the ARX case [Ljung (1999)]. Hence, as previously pointed out,

using the LS estimate is not the most pertinent choice in most practical

applications. The original aim of IV methods is to cope with the fact that in

most cases, ṽ(k) is a colored process. The idea is to introduce an instrument

ζ which is used to produce a consistent estimate independently on the noise

model taken. The IV estimate is given as:

ρ̂IV=

[
N∑
k=1

ζ(k)φ⊤(k)

]−1N∑
k=1

ζ(k)y(k), (14)

and using this definition, it can be seen that

ρ̂IV=ρo +

[
N∑
k=1

ζ(k)φ⊤(k)

]−1N∑
k=1

ζ(k)ṽ(k). (15)

Therefore, and similarly to the LS solution ρ̂IV is a consistent estimate of

ρo if

C1 Ē{ζ(k)φ⊤(k)} is full column rank.

C2 Ē{ζ(k)ṽ(k)} = 0.

There is a considerable amount of freedom in the choice of an instrument

respecting simultaneously C1 and C2. Nonetheless, even if any of these in-

struments leads to a consistent estimate, the amount of correlation between

the instrument and the regressor will have a serious impact on the variance

of the estimated parameters.

aThe notation Ē{.} = limN→∞
1
N

∑N
t=1 E{.} is adopted from the prediction error frame-

work of [Ljung (1999)].
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3.3.2. The optimal instrument for LPV-ARX models

In the LTI context, the choice of the instrument has been widely dis-

cussed and most advanced IV methods offer similar performance as ex-

tended LS methods or other PEM methods (see [Rao and Garnier (2004);

Ljung (2009)]) while providing consistent results even for an imperfect noise

structure. It can be proven that under the ARX model assumption, the

variance of the IV estimate is minimal if the instrument is chosen as the

noise-free version of the regressor. In other words, when directly applying

the IV theory to the LPV-ARX model from Eq. (8) (the LPV-ARX model

is an LTI model), the optimal IV estimate is given by:

ρ̂optIV =

[
N∑
k=1

ζopt(k)φ
⊤(k)

]−1N∑
k=1

ζopt(k)y(k), (16)

where the optimal instrument is defined as [Söderström and Stoica (1983)]:

ζopt(k) =
[
−χo(k − 1) . . . − χo(k − na),−χo(k − 1)ψ1,1(pk) . . .

− χo(k − na)ψna,sna
(pk), u(k) . . . u(k − nb),

u(k)ψna+1,1(pk) . . . u(k − nb)ψng,sng
(pk)

]
(17)

It can be noticed that in the LPV-ARX assumption both the IV solution

from Eq. (16) and the LS solution from Eq. (12) are statistically optimal

estimators. Nonetheless, the deterministic output terms χo contained in

ζopt are a priori unknown in practice. Consequently, some estimates of χo

commonly compose the instrument, requiring some iterative process and

implying some difficulties for the convergence analysis. It could conse-

quently be argued that the LS estimate is simpler and hence, better suited

to solve the identification problem: this statement is true as long as the true

system respects the ARX structure. Nonetheless, this is even more unlikely

in the LPV context than in the LTI context: the ARX assumption implies

that not only the dynamics of the noise and process are the same but that

the measuring devices are affected by the external scheduling variable in

the exact same nonlinear way as the system studied. In the probable situa-

tion where the noise assumption is violated, the IV method is a consistent

estimate while the LS is inevitably biased.

3.3.3. The LPV-IV4 method

As the knowledge of the deterministic output χo is unavailable, an algorithm
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is needed to approximate the deterministic output terms and to build the

optimal instrument ζopt. Therefore, the use of an IV method similar to

the IV4 method ([Ljung (1999)]) is proposed in [Butcher et al. (2008)],

where the instrument is built using the simulated data generated from an

estimated auxiliary ARX model. This method is detailed as:

Algorithm 1 (LPV-IV4 method).

Step 1 Estimate an ARX model by the LS method (minimizing Eq. (11))

using the extended regressor (9).

Step 2 Generate an estimate χ̂(k) of χ(k) based on the resulting ARX

model of the previous step. Build an instrument based on χ̂(k) and

then estimate ρ using the IV method.

In [Butcher et al. (2008)], it was shown that according to the theory, in

case So corresponds to an LPV-OE model (vo = eo), Algorithm 1 leads to

an unbiased estimate. Moreover, like in the LTI case, the noise modeling

error results in a bias for the LS estimates while only the variance is af-

fected when using this IV method. Nevertheless, the bigger the difference

between the true noise process and the noise model assumed is, the higher

the resulting variance in the IV estimates will be. Depending on the size

of the dataset, the increasing variance of the IV estimates can lead to less

relevant results than the LS method (for which the variance is known to

remain low). Consequently, it is highly important to assume a noise model

as realistic as possible in the first place. In the LTI case, many IV meth-

ods are dedicated to more general noise models such as OE of BJ [Young

(2008)]. The next section describes some available methods for LPV-OE

and LPV-BJ which were introduced in [Laurain et al. (2010)].

4. Addressing estimation with general noise models

In order to assess more efficiently the quality of a given model, more realistic

noise models have to be taken into consideration. Hence, this section intro-

duces noise structures which have been widely used in the LTI framework

and which have not been dealt with in the LPV case until recently.

4.1. LPV-BJ model

The general LPV-BJ model structure from Eq. (5) has never been dealt
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with in the literature so far. Nevertheless, as a preliminary step towards

this p-dependent noise, it can be assumed that the rational spectral density

is not dependent on p. In the case of high-tech applications where the

major source of noise is due to measurement error (e.g. wafer-scanners),

this assumption often holds true and is in general far more realistic than

the LPV-ARX assumption.

4.1.1. Noise model

In the defined LPV-BJ structure, the noise model denoted by H is defined

as a DT autoregressive moving average (ARMA) model

Hη : (H(q, η)) , (18)

where H is a monic rational function given in the form of

H(q, η) =
C(q−1, η)

D(q−1, η)
=

1 + c1q
−1 + . . .+ cncq

−nc

1 + d1q−1 + . . .+ dnd
q−nd

(19)

and all roots of zndD(z−1) and zncC(z−1) are inside the unit disc. It can

be noticed that in case C(q−1) = D(q−1) = 1, Eq. (19) defines an OE

model. The associated model parameters η are stacked columnwise in the

parameter vector,

η =
[
c1 . . . cnc d1 . . . dnd

]⊤ ∈ Rnη , (20)

where nη = nc + nd. Additionally, denote H = {Hη | η ∈ Rnη}, the

collection of all noise models in the form of Eq. (18).

4.1.2. Whole model

With respect to a given process and noise part (Gρ,Hη), the parameters

can be collected as θ = [ρ⊤ η⊤ ] and the signal relations of the LPV-BJ

model Mθ, are defined as:

Mθ


A(pk, q

−1, ρ)χ(k)=B(pk, q
−1, ρ)u(k)

v(k)=
C(q−1, η)

D(q−1, η)
e(k)

y(k)=χ(k) + v(k)

(21)
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Based on this model structure, the model set, denoted as M, with process

(Gρ) and noise (Hη) models parameterized independently, takes the form

M =
{
(Gρ,Hη) | [ρ⊤, η⊤]⊤ = θ ∈ Rnρ+nη

}
. (22)

4.1.3. The LPV-BJ model issue

If the system belongs to the model set defined in Eq. (22), then y(k) can

be written in the linear regression form:

y(k) = φ⊤(k)ρ+ ṽ(k) (23)

with ρ and φ(k) as defined in Eq. (4) and Eq. (9), respectively. Under the

LPV-BJ assumption, it can be seen from Eq. (21) that

ṽ(k) = A(pk, q
−1, ρ)

C(q−1, η)

D(q−1, η)
e(k) = Q(pk, q

−1, ρ, η)e(k). (24)

Hence, using Eq. (12) to estimate ρ corresponds to the minimization of the

LS criterion on ṽ(k), which is clearly different from the PEM (the minimiza-

tion of the LS criterion on e(k)) [Laurain et al. (2010)]. It must be pointed

out that despite the apparent similarity between Eq. (8) and Eq. (23),

the estimation problem of the LPV-BJ model cannot be considered as an

LTI problem like it is under the LPV-ARX assumption. This statement

is motivated by the presence of the filter Q in Eq. (24) which is obviously

p-dependent. In an LTI context, Q is p-independent and most estimation

methods use the inverse filtering of Q to solve the estimation problem in

an optimal way. Nonetheless, in this LPV case, it was shown in [Laurain

et al. (2010)] that the non-commutativity of LPV filters as well as the im-

possibility to compute the exact inverse of an LPV filter in practice renders

the PEM impossible under the regression form (23). A possible solution to

overcome this problem is to reformulate the model from Eq. (21) in order

to use directly the LTI theory. This reformulation is detailed in the next

section.

4.1.4. Reformulation of the model equations

In order to introduce a method which provides a solution to the identifi-

cation problem of LPV-BJ models, rewrite the signal relations of Eq. (21)
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as

Mθ



χ(k) +

na∑
i=1

ai,0χ(k − i)︸ ︷︷ ︸
F (q−1,ρ)χ(k)

+

na∑
i=1

si∑
l=1

ai,lψi,l(pk)χ(k − i)︸ ︷︷ ︸
χi,l(k)

=

nb∑
j=0

sj̃∑
l=0

bj,lψj̃,l(pk)u(k − j︸ ︷︷ ︸)
uj,l(k)

v(k)=
C(q−1, η)

D(q−1, η)
e(k)

y(k)=χ(k) + v(k),

(25)

where F (q−1, ρ) = 1 +
∑na

i=1 ai,0q
−i, j̃ = j + na + 1 and ψj̃,0(k) = 1.

Note that in this way, the LPV-BJ model is rewritten as a Multiple Input

Single Output (MISO) system with
∑ng

i=1 si + 1 inputs {χi,l}
na,si
i=1,l=1 and

{uj,l}
nb,sj̃
j=0,l=0 as represented in Fig. 1. Given the fact that the polynomial

operator commutes in this representation (F (q−1, ρ) does not depend on

pk), Eq. (25) can be rewritten as

y(k) = −
na∑
i=1

si∑
l=1

ai,l
F (q−1, ρ)

χi,l(k) +

nb∑
j=0

sj̃∑
l=0

bj,l
F (q−1, ρ)

uj,l(k) +H(q, η)e(k),

(26)

which is an LTI representation. Consequently, it becomes possible to apply

the LTI theory in order to solve the estimation problem.

LTI model

u(k)

1

y(k)

q -1

q -n a

+
+

+
+

H(q,η)

e(k)

F -1(q,ρ)

LPV-BJ model

b0,0

χ1,1(k)

χn ,s  (k)

u0,0(k)

un ,s  (k)

v(k)

bn ,snb g

a1,0

an ,sna a

χ(k)

q -1

q -nb

na a

nb g

ψ1,1(k)

ψn ,s  (k)na a

1

ψn +1,1(k)a

ψn ,s  (k)ng g

Fig. 1. MISO LTI interpretation of the LPV-BJ model.
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4.2. A refined instrumental approach

Based on the MISO-LTI formulation Eq. (26), it becomes possible in theory

to achieve optimal PEM using linear regression. The only method available

for LPV-BJ models in the literature so far is an extended version of the

Refined IV (RIV) approach of the LTI identification framework [Laurain

et al. (2010)] which provides an efficient way of identifying LPV-BJ mod-

els. It derives directly from the extended IV scheme developed for LTI-BJ

models which is described in the next section.

4.2.1. Instrumental variable for LTI-BJ models

Based on Eq. (26), it is possible to introduce some LS-based methods to

solve the identification problem. However, it is important to realize that

in experimental conditions, even if a realistic noise assumption will lead

to more accurate estimates, the chances that the true noise process is not

perfectly described are high. In this case, similarly to the LPV-ARX case,

an LS based method will produce biased results. Therefore, the need to

cope with noise modeling errors remains. As a refinement of the IV scheme

presented in Section 3.3, IV methods have been developed to cope with

more general structures such as the BJ case, which can be expressed in the

linear regression form y(k) = φ⊤(k)ρ + Q(q)e(k) (Q(q) is an LTI transfer

function, with Q−1(q) stable and e(k) a white noise). Based on this form,

the extended-IV estimate can be given as [Söderström and Stoica (1983)]:

ρ̂XIV(N) = arg min
ρ∈Rnρ

∥∥∥∥∥
[
1

N

N∑
k=1

L(q)ζ(k)L(q)φ⊤(k)

]
ρ

−

[
1

N

N∑
t=1

L(q)ζ(k)L(q)y(k)

]∥∥∥∥∥
2

W

, (27)

where ζ(k) is the instrument, ∥x∥2W = xTWx, with W a positive definite

weighting matrix and L(q) is a stable prefilter. The conditions for consis-

tency now read:

CX1 Ē{L(q)ζ(k)L(q)φ⊤(k)} is full column rank.

CX2 Ē{L(q)ζ(k)L(q)ṽ(k)} = 0.

Again, there is a considerable amount of freedom in the choice of the instru-

ments. Nonetheless, if the studied system belongs to the model set defined,
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i.e. if there exists ρo and Qo (Q−1
o being stable) such that

So : y(k) = φ⊤(k)ρo +Qo(q)eo(k), (28)

with eo(k) a white noise, it has been shown in [Söderström and Stoica

(1983)] and [Young (1984)] that the minimum variance estimator can be

achieved in the BJ case if:

CX3 W = I.

CX4 ζ is chosen as the noise-free version of the extended regressor φ.

CX5 L(q) is chosen as Q−1
o (q).

In case of noise modeling error, the extended IV method is consistent and

the variance of the estimates should be significantly decreased with respect

to the IV4 method: even if the noise process is not in the noise model set

defined, it is more likely to be better described by the BJ model than by

the ARX model.

4.2.2. The optimal instrument for LPV-BJ systems

Using Eq. (26), y(k) can be written in the regression form:

y(k) = φ⊤(k)ρ+ ṽ(k), (29)

where

φ(k) =
[
−y(k − 1) . . . −y(k − na) −χ1,1(k) . . .

−χna,sna
(k) u0,0(k) . . . unb,sng

(k)
]⊤
,

ṽ(k) = F (q−1, ρ)v(k),

= F (q−1, ρ)
C(q−1, η)

D(q−1, η)
e(k) = Q(q, ρ, η)e(k). (30)

It is important to notice that Eq. (29) and Eq. (23) are not equivalent

as the extended regressor in Eq. (29) contains the noise-free output terms

{χi,l}. Therefore, by momentary assuming that {χi,l(k)}
na,si
i=1,l=0 are known

a priori and that the data-generating system So is in the model set defined

(vo(k) = Co(q
−1, η)/Do(q

−1, η)eo(k) and eo(k) is a white noise), then the

conditions for optimal estimates expressed in [CX3-CX5] lead to the choice
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of optimal instrument given in this LPV-BJ case as [Laurain et al. (2010)]:

ζopt(k) =
[
−χo(k − 1) . . . − χo(k − na) − χo

1,1(k)

−χo
na,sna

(k) u0,0(k) . . . unb,sng
(k)
]⊤

(31)

while the optimal filter is given as:

Lopt(q) =
Do(q

−1)

Co(q−1)Fo(q−1)
. (32)

4.2.3. Iterative LPV-RIV algorithm for BJ models

In a practical situation, the optimal instrument (31) and filter (32) are

unknown a priori. Therefore, the RIV estimation normally involves an

iterative (or relaxation) algorithm in which, at each iteration, an ‘auxiliary

model’ is used to generate the instrument (which guarantees CX2), as well

as the associated filters. This auxiliary model is based on the parameter

estimates obtained at the previous iteration. Consequently, if convergence

occurs, CX4 and CX5 are fulfilled. Based on the previous considerations,

the iterative scheme of the RIV algorithm dedicated to the LPV case is

given as:

Algorithm 2 (LPV-RIV).

Step 1 Generate an initial estimate of the process model parameter

ρ̂(0)(e.g. using the LS method). Set C(q−1, η̂(0)) = D(q−1, η̂(0)) = 1.

Set τ = 0.

Step 2 Compute an estimate of χ(k) via

A(pk, q
−1, ρ̂(τ))χ̂(k) = B(pk, q

−1, ρ̂(τ))u(k),

where ρ̂(τ) is the estimated obtained at the previous iteration. Based on

M
θ̂
(τ) , deduce {χ̂i,l(k)}

na,si

i=1,l=0 as given in Eq. (25).

Step 3 Compute the filter:

L(q−1, θ̂
(τ)

) =
D(q−1, η̂(τ))

C(q−1, η̂(τ))F (q−1, ρ̂(τ))

and the associated filtered signals {ufj,l(k)}
nb,sj̃
j=0,l=0, yf(k) and

{χf
i,l(k)}

na,si
i=1,l=0.
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Step 4 Build the filtered estimated regressor φ̂f(k) and in terms of CX4

the filtered instrument ζ̂ f(k) as:

φ̂f(k) =
[
−yf(k − 1) . . . −yf(k − na) −χ̂f

1,1(k)

. . . −χ̂f
na,sna

(k) uf0,0(k) . . . u
f
nb,sng

(k)
]⊤

ζ̂ f(k) =
[
−χ̂f(k − 1) . . . −χ̂f(k − na) −χ̂

f
1,1(k)

. . . −χ̂f
na,sna

(k) uf0,0(k) . . . u
f
nb,sng

(k)
]⊤

Step 5 The IV solution is obtained as

ρ̂(τ+1)(N)=

[
N∑
k=1

ζ̂ f(k)φ̂
⊤
f (k)

]−1N∑
k=1

ζ̂f(k)yf(k).

The resulting ρ̂(τ+1)(N) is the IV estimate of the process model as-

sociated parameter vector at iteration τ + 1 based on the prefiltered

input/output data.

Step 6 An estimate of the noise signal v is obtained as

v̂(k) = y(k)− χ̂(k, ρ̂(τ)). (33)

Based on v̂, the estimation of the noise model parameter vector η̂(τ+1)

follows, using in this case the ARMA estimation algorithm of the

MATLAB identification toolbox (an IV approach can also be used for

this purpose, see [Young (2008)]).

Step 7 If θ(τ+1) has converged or the maximum number of iterations is

reached, then stop, else increase τ by 1 and go to Step 2.

4.2.4. LPV-SRIV algorithm for OE models

Based on a similar concept, the so-called simplified LPV-RIV (LPV-SRIV)

method, can also be developed for the estimation of LPV-OE models.

This method is based on a model structure Eq. (21) with C(q−1, η) =

D(q−1, η) = 1 and consequently, Step 6 of Algorithm 2 can be skipped. In

practical cases, it is a fair assumption to consider that the noise model as-

sumed is incorrect for both LPV-OE and LPV-BJ models. In this case, the

LPV-SRIV algorithm might perform as well as the LPV-RIV algorithm:

the BJ assumption might be more realistic, but this is compensated by the

reduced number of parameters to be estimated under the OE assumption.
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4.3. Examples

This section presents the performance of the presented algorithm on a rep-

resentative set of examples.

4.3.1. Data-generating system

The system taken into consideration is inspired by the example in [Butcher

et al. (2008)] and is mathematically described as

So


Ao(q, pk) = 1 + ao1(pk)q

−1 + ao2(pk)q
−2

Bo(q, pk) = bo0(pk)q
−1 + bo1(pk)q

−2

vo(k) =
1

1− q−1 + 0.2q−2
eo(k),

(34)

where v(k) = Ho(q)e(k) and

ao1(pk) = 1− 0.5pk − 0.1p2k, a
o
2(pk) = 0.5− 0.7pk − 0.1p2k, (35a)

bo0(pk) =0.5−0.4pk+0.01p2k, b
o
1(pk) = 0.2− 0.3pk − 0.02p2k. (35b)

4.3.2. Model assumptions

In order to identify the presented data generating system by using the

different methods described, three different model structures are defined:

LPV-ARX, LPV-OE and LPV-BJ. In the example presented, all the meth-

ods assume a correct process model by using the representation:

Gρ

{
A(pk, q

−1, ρ) = 1 + a1(pk)q
−1 + a2(pk)q

−2

B(pk, q
−1, ρ) = b0(pk)q

−1 + b1(pk)q
−2,

where

a1(pk) = a1,0 + a1,1pk + a1,2p
2
k, a2(pk) = a2,0 + a2,1pk + a2,2p

2
k (36a)

b0(pk) = b0,0 + b0,1pk + b0,2p
2
k, b1(pk) = b1,0 + b1,1pk + b1,2p

2
k (36b)

Both the LS and LPV-IV4 methods [Bamieh and Giarré (2002); Butcher

et al. (2008)] presented in Section 3 assume an LPV-ARX model structure

and therefore the following noise model:

H LS,IV4
ρ

{
A(pk, q

−1, ρ)v(tk) = e(tk).
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The LPV Simplified RIV (LPV-SRIV) assumes a more realistic type of

noise using the OE hypothesis:

H LPV−SRIV
ρ

{
v(tk) = e(tk).

Finally, the LPV Refined Instrumental Variable method ( LPV-RIV) repre-

sents the situation where both the process and noise are correcty modeled

using the following LPV-BJ representation:

H LPV−RIV
η

{
v(tk) =

1

1 + d1q−1 + d2q−2
e(tk).

The robustness of the proposed and existing algorithms are investigated

with respect to different signal-to-noise ratios SNR = 10 log
Pχo

Peo
, where

Pχo
and Peo are the average power of signals χo and eo, respectively.

4.3.3. Results

In the upcoming examples, the scheduling signal p is considered as a peri-

odic function of time: pk = 0.5 sin(0.35πk) + 0.5. The input u(k) is taken

as a white noise with a uniform distribution U (−1, 1) and with length

N = 4000 to generate data sets DN of So. To provide representative re-

sults, a Monte Carlo simulation is realized based on Nrun = 100 random

realization, with the Gaussian white noise eo being selected randomly for

each realization at different noise levels: 15dB, 10dB, 5dB and 0dB. With

respect to the considered methods, Table 1 shows the norm of the bias (BN)

and standard deviation (SN) of the estimated parameter vector with{
BN = ||ρo − Ē(ρ̂)||ℓ2 ,
SN = ||Ē(ρ̂− Ē(ρ̂))||ℓ2 ,

(37)

where Ē is the mean operator over the Monte Carlo simulation. The table

also displays the mean number of iterations (Nit) the algorithms needed to

converge to the estimated parameter vector.

It can be seen from Table 1 that the IV methods are unbiased according to

the theoretical results. It might not appear clearly for the LPV-IV4 method

when using SNR under 10dB but considering the variances induced, the

bias is only due to the relatively low number of simulation runs. The LPV-

SRIV method offers satisfying results, considering that the noise model

assumption is also not correct. The better behavior of the LPV-SRIV

method with respect to the LPV-IV4 method is justified by two facts. On

the one hand, the LPV-IV4 method suffers from the ARX assumption which
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Table 1. Estimator bias and variance norm at different
SNR.

Method 15dB 10dB 5dB 0dB

LPV-LS BN 2.9107 3.2897 3.0007 2.8050

SN 0.0074 0.0151 0.0215 0.0326

LPV-IV4 BN 0.1961 1.8265 6.9337 10.85
SN 1.3353 179.42 590.78 11782

BN 0.0072 0.0426 0.1775 0.2988
LPV-SRIV SN 0.0149 0.0537 0.4425 0.4781

Nit 22 22 25 30

BN 0.0068 0.0184 0.0408 0.1649
LPV -RIV SN 0.0063 0.0219 0.0696 0.2214

Nit 31 30 30 32

is not as realistic as the OE assumption for the considered BJ system. On

the other hand, the LPV-SRIV method profits from an iterative process

which leads to a close estimate of the optimal instrument and filter. The

consequences are a variance in close range to the LS method for the LPV-

SRIV algorithm while the LPV-IV4 method can be considered as irrelevant

for a SNR under 10dB. Finally, and for SNR down to 5dB, the LPV-RIV

method produces variance in the estimated parameters which is very close

to the LPV-LS method, not mentioning that the bias has been completely

suppressed. This latter result shows on this example, that the LPV-RIV

algorithm dramatically improves the accuracy of the estimates.

4.4. LPV noise system example

The assumption of a p-independent noise model assumption is a restriction

in comparison to the general case presented in Section 2.2.1. In practice, the

true noise might actually be of a p-dependent nature, in which case none of

the presented algorithms is suited for statistically optimal estimation. Any

IV-based method is unbiased as long as the instrument is not correlated to

noise and the noise modeling error will mainly have impact on the variance.

Furthermore, the variance of the estimators will depend on how close the

noise model and the true noise process are. The example chosen is derived

from the system (34) in which the noise model is turned into an LPV model

and the studied system is consequently expressed by:
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So


Ao(q, pk) = 1 + ao1(pk)q

−1 + ao2(pk)q
−2,

Bo(q, pk) = bo0(pk)q
−1 + bo1(pk)q

−2,(
1 + do1(pk)q

−1 + do2(pk)q
−2
)
vo(k) = eo(k),

(38)

where aoi and boj are chosen as in Eq. (36a-b) and

do1(pk) = −1 + 0.2pk − 0.1p2k, do2(pk) = 0.2− 0.1pk + 0.05p2k. (39)

The excitation conditions are the same as previously, and the results of a

Monte Carlo simulation are exposed in Table 2 with a new realization of

eo for each run. The compared methods and their respective associated

models are the same as the ones considered in Section 4.3.2. The Monte

Carlo simulation results are based on Nrun = 100 using a SNR = 10dB and

a number of samples N = 4000. Again, the bias and standard deviation

norms of the resulting estimates are analyzed and given in Table 2. From

this example, it can be seen that the methods LPV-LS, LPV-IV4, LPV-

SRIV give similar performance as in the previous example. This can be

easily explained considering that in both examples, the noise assumption is

false for these methods. Consequently, the bias of the LPV-LS method is

identical, the LPV-IV4 method displays a very large parameter estimate

variance, while the LPV-SRIV technique keeps a low variance and removes

the bias. The variance for the LPV-RIV parameter estimates is larger than

in the p-independent noise case: it can be explained by the wrong noise

model assumption in this example. Nonetheless, the standard deviation

remains lower than the one obtained with LPV-SRIV. In practice, for more

general type of noise (e.g. if it cannot be expressed in a stochastic way),

it might be better to use LPV-SRIV as the number of parameters to be

estimated is lower.

Table 2. Results for a LPV noise model.

LPV-LS LPV-IV4 LPV-SRIV LPV-RIV

BN 3.4943 4.2293 0.0335 0.0257

SN 0.0148 1377 0.0466 0.0318

5. Direct estimation of continuous-time LPV systems

Commonly LPV controllers are synthesized in CT as stability and perfor-

mance requirements of the closed loop behavior can be more conveniently

expressed in CT, like in a mixed-sensitivity setting [Zhou and Doyle (1998)].
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Furthermore, developing CT-LPV models based on first principle laws is

a very costly and time consuming process, often resulting in a high order

model unsuitable for control design. On the other hand, identification meth-

ods are almost exclusively expressed in DT, this being mainly motivated

by an easier estimation of the parameter-varying dynamics. Unfortunately,

transformation of DT-LPV models to CT-LPV models is more complicated

than in the LTI case and despite recent advances in LPV discretization the-

ory (see [Tóth et al. (2010)]), the theory of CT realization of DT models is

still in an immature state. Thus, it is often difficult in practice to obtain an

adequate CT realization from an identified DT model. In order to illustrate

the underlying problems, consider the following simple CT-LPV model

d

dt
y(t) + p(t)y(t) = bu(t), (40)

where p, y and u are the scheduling, output and input signals of the system

respectively and b ∈ R is a constant parameter. When approximating the

derivative in DT by, for example, using the backward Euler approximation:
d
dty(k) =

y(k)−y(k−1)
Ts

with Ts > 0 the sampling period, Eq. (40) transforms

into:

y(k) =
1

1 + Tsp(k)
y(k − 1) +

bTs
1 + Tsp(k)

u(k). (41)

This discretized model has now two p-dependent coefficients to be estimated

instead of the one single constant parameter in Eq. (40). Moreover, the

dependence of the coefficients on p is not linear anymore but rational with

a singularity whenever p(k) = − 1
Ts
. An alternative way to approximate

derivatives in DT is to apply a forward Euler approximation: d
dty(k) =

y(k+1)−y(k)
Ts

, which turns the CT model into:

y(k) = (1− Tsp(k − 1))y(k − 1) + bTsu(k − 1). (42)

This discretized model has only one p-dependent coefficient and the linear-

ity of the dependence is preserved, however the model equation depends

now on p(k − 1) instead of p(k). This so-called dynamic dependence (de-

pendence of the model coefficients on time-shifted versions of p) is a com-

mon result of model transformations in the LPV case and rises problems

in LPV system identification and control alike (see [Tóth et al. (2008)]).

Furthermore, it is well-known in numerical analysis that the forward Euler

approximation is more sensitive for the choice of Ts in terms of numerical

stability than the backward Euler approximation [Atkinson (1989)]. This

means that Eq. (42) requires much faster sampling rate than Eq. (41) to



October 1, 2011 15:53 World Scientific Review Volume - 9in x 6in 00˙LPVBook/5

118 V. Laurain et al.

give a stable approximation of the system and it is more sensitive to param-

eter uncertainties which rises problems if Eq. (42) is used for estimation.

Consequently, it can be seen that even for a very simple CT-LPV model,

estimation of a DT model with the purpose of obtaining afterwards a CT

realization is a tedious task with many underlying problems for which there

are no general theoretical solutions available: there is a large gap between

the possibilities offered in terms of CT-LPV system modeling and the need

of the control framework. A possible solution to the CT system identi-

fication is to use a direct approach in which the parameters of the CT

model are directly identified [Garnier and Wang (2008)]. However, in prac-

tice, CT systems can only be identified based on sampled measured data

records which results in several intrinsic issues for which some solutions are

presented in this section.

5.1. System description

Consider the data generating CT-LPV system with static dependence on p

described by the following equations

So

{
Ao(pt, d)χo(t) = Bo(pt, d)u(t)

y(t) = χo(t) + vo(t),
(43)

where d denotes the differentiation operator with respect to time, i.e., d =
d
dt , p : R→ P is the scheduling variable with pt = p(t), χo is the noise-free

output, vo is a quasi stationary noise process with bounded spectral density

and uncorrelated to p. Ao and Bo are polynomials in d with coefficients aoi
and boi that are meromorphic functions of p

Ao(pt, d)=d
na +

na∑
i=1

aoi (pt)d
na−i, and Bo(pt, d)=

nb∑
j=0

boj (pt)d
nb−j . (44)

In terms of identification we can assume that sampled measurements of

(y, p, u) are available using a sampling period Ts > 0. Hence, we will denote

the DT samples of these signals as u(k) = u(kTs), where k ∈ Z.

5.2. Handling the time derivatives

In comparison with the DT counterpart, direct CT model identification

raises several technical issues. The first is related to implementation: the

differential equation model is not a linear combination of the sampled pro-

cess input and output signals but contains time-derivatives of the signals.
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A suitable model fitting the system description assumes that these time-

derivatives are available, and therefore, the parameter estimation procedure

can be directly applied on them. However, these input and output time-

derivatives are not available as measured data in most practical cases. A

standard approach used in CT model identification is to introduce a low-

pass stable filter F , i.e., define

xf (t) = f(d)x(t), (45)

where the subscript f is used to denote the prefiltered forms of the asso-

ciated variable x. The filtered time-derivatives can then be obtained by

applying an array of filters in the form f(d)pi:

x
(i)
f (t) = (f(d)dix)(t), (46)

where x(i)(k) denotes the value of the time-derivative of signal x(t). Various

types of CT filters have been devised to deal with the need to reconstruct

the time-derivatives [Garnier et al. (2003)]. Nonetheless, a critical issue is

that these filters depend on design parameters, that need to be adequately

chosen with respect to the underlying system (which is actually unknown

in practice) to achieve reasonable performance of the estimation.

5.3. Hybrid models

Another technical issue is that direct CT model estimation, even in the

LTI case, implies dealing with CT random noise sources, requiring a com-

plicated mathematical machinery and introducing many problematic issues

regarding estimation [Pintelon et al. (2000)]. Therefore, the basic idea to

solve the noisy CT modeling problem is to assume that the CT noise process

can be written at the sampling instances as a DT noise process filtered by

a DT transfer function [Johansson (1994)]. This avoids the rather difficult

mathematical problem of treating sampled CT random process and their

equivalent in terms of a filtered piece-wise constant CT noise source (see

[Pintelon et al. (2000); Johansson (1994)]). In terms of Eq. (43), y(k) can

be written as

y(k) = χo(k) + vo(k), (47)

which corresponds to a so called hybrid Box-Jenkins system concept al-

ready used in CT identification of LTI systems (see [Pintelon et al. (2000);

Johansson (1994); Laurain et al. (2008)]).
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5.4. Hybrid LPV-BJ polynomial models

This section aims at presenting some possible tools in order to handle the

estimation of CT LPV models. In this case, the p-dependent polynomials

A and B are now polynomials in d:

A(pt, d, ρ)=d
na +

na∑
i=1

ai(pt)d
na−i, and B(pt, d, ρ)=

nb∑
j=0

bj(pt)d
nb−j .

Their parametrization is defined using the set of functions ψi,l as given in

Section 4.1 and the coefficients are gathered into ρ in a very similar way

as in the DT case. Moreover, in order to avoid the complexity of CT noise

processes, the noise process is expressed in DT using the exact same model

as in Eq. (19) and the parameters are stored in the vector η. Consequently,

the full hybrid LPV polynomial model is expressed as:

Mθ



χ(t) +

na∑
i=1

ai,0χ
(na−i)(t)︸ ︷︷ ︸

F (d,ρ)χ(t)

+

na∑
i=1

si∑
l=1

ai,lψi,l(p(t))χ
(na−i)(t)︸ ︷︷ ︸

χi,l(t)

=

nb∑
j=0

sj̃∑
l=0

bj,lψj̃,l(p(t))u
(nb−j)(t︸ ︷︷ ︸)

uj,l(t)

v(k)=
C(q−1, η)

D(q−1, η)
e(k)

y(k)=χ(k) + v(k)

(48)

where j̃ = j+na+1 F (d, ρ) = 1+
∑na

i=1 ai,0d
na−i and ψ(i, 0)(t) = 1. In this

way, just like as in the DT case, the hybrid LPV-BJ model is rewritten as a

MISO system with
∑na+nb+1
i=1 si + 1 inputs {χi,l}

na,si
i=1,l=1 and {uj,l}

nb,sj̃
j=0,l=0:

χi,l(t) = ψi,l(p(t))χ
(na−i)(t) {i, l} ∈ {1 . . . na, 1 . . . si}, (49)

uj,l(t) = ψj̃,l(p(t))u
(nb−j)(t) {j, l} ∈ {1 . . . nb, 1 . . . sj̃}. (50)

The hybrid representation of the model in Eq. (48) is a combined operation

of CT and DT filtering. In order to clearly define the coexistence of DT and

CT filtering, a detailed investigation and discussion about the assumptions

and the structure of the model are needed. As previously pointed out, the

practically feasible situation such that only sampled measurements of the

CT signals (y, p, u) are available is considered here. In order to apply a

CT filter on sampled data one can either interpolate the samples to obtain

a CT signal and apply the CT filter on this reconstructed signal or use a
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numerical approximation, i.e., DT approximation of the considered system.

This is a common problem for simulation of CT systems. For simulation

purposes, DT approximation of the system can efficiently be dealt with

by using powerful numerical algorithms available [Atkinson (1989)]. Note

that to derive an accurate DT approximation of the system, it is often

sufficient in terms of the classical discretization theory to assume that the

sampled free CT signals of the system are restricted to be constant in the

sampling period [Goodwin et al. (2000)], which has also been shown in case

of LPV systems with static dependence [Tóth (2010)]. This provides the

hypothesis, also used in [Pintelon et al. (2000); Johansson (1994)], that if

CT (p, u) are piecewise constant between two samples, then the trajectory

of y is completely determined by its observations at the sample period Tsk.

Therefore, under these inter-sampling conditions, the following operation

is well-defined [Garnier and Wang (2008)]:

(F (d)y) (tk) = F (d)y(tk), (51)

Under this assumption, and considering that a CT filter can only be applied

to sampled data through numerical approximation, the usual filter prop-

erties such as commutativity holds between a DT filter and the numerical

approximation of a CT filter. Nevertheless, it is important to notice that

the numerical approximation method used for the evaluation of a CT filter

does not have any impact on the coefficients to be estimated which remain,

the coefficients of the parsimonious CT model. Consequently, Mθ can be

rewritten as

y(k)=−

(
na∑
i=1

si∑
l=1

ai,l
F (d, ρ)

χi,l

)
(k)+

 nb∑
j=0

sj̃∑
l=0

bj,l
F (d, ρ)

uk,j

(k)+H(q, η)e(k).

(52)

which is an LTI representation.

Based on this model structure, the model set, denoted as M, with process

takes the form

M =
{

Mθ |
[
ρ⊤, η⊤

]⊤
= θ ∈ Rnρ+nη

}
. (53)

6. Instrumental variable approach in continuous-time

Based on the MISO-LTI formulation Eq. (52), the LTI theory can be ex-

tended to achieve optimal PEM using linear regression. Nonetheless, the
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inherent problem of the time-derivative estimation still holds and a solu-

tion based on the RIV method for CT models (RIVC) proposed in [Laurain

et al. (2011)] is detailed in this section.

6.1. The optimal instrument for hybrid LPV-BJ systems

Using the LTI model Eq. (48), y(k) can be written in this CT case under

the regression form:

y(na)(k) = φ⊤(k)ρ+ ṽ(k), (54)

where

φ(k)=[−y(na−1)(k). . . −y(k)−χ1,1(k). . .−χna,sna
(k)u0,0(k). . .unb,sng

(k) ]⊤

ṽ(k) = F (d, ρ)v(k) = F (d, ρ)
C(q−1, η)

D(q−1, η)
e(k).

The definition of the optimal filter and instrument can be defined in a

very similar way as in the DT case [Laurain et al. (2011)]. The optimal

instrument is given as:

ζopt(k) =
[
−χ(na−1)

o (k − 1) . . . − χo(k)− χo
1,1(k) . . .

−χo
na,sna

(k) u0,0(k) . . . unb,sng
(k)
]⊤

(55)

while the optimal filter is given as [Young et al. (2007)]

yf(k) =
Do(q

−1)

Co(q−1)

[(
1

Fo(d)
y

)
(k)

]
. (56)

As pointed out in Section 5.2, it is important to note that the regressor

and instrument contain time-derivatives of y and u which, in the assumed

framework considering sampled data, can only be approximated and there-

fore need some low pass filtering. However, it can be seen from Eq. (27),

that the IV optimization problem does not require the knowledge of the in-

strument and regressor, but of their filtered version. It can be moreover seen

from the filter expression (56) that Fo(d) (or its estimated version F (d, ρ)

in practice) achieves this stable low-pass filtering directly. Therefore, it

is a particular strength of the presented reformulation that the estimated

filter F (d, ρ) is not only used for the minimization of the prediction er-

ror but it also provides an efficient solution to the signal time-derivatives

approximation problem.
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6.1.1. The LPV-RIVC algorithm for BJ models

Just as in the DT case, the signals {χi,l(k)}
na,si
i=1,l=0 and the knowledge of

the different filters involved in Eq. (56) are unknown a priori. Therefore,

similarly to the DT case, an iterative procedure is proposed to refine these

unknowns and to aim at the PEM. The iterative RIV algorithm for hybrid

LPV-BJ models reads as follows.

Algorithm 3 (LPV-RIVC).

Step 1 Generate an initial estimate ρ̂(0) using the SRIVC algorithm (by

forcing an LTI structure). Set C(d, η̂(0)) = D(d, η̂(0)) = 1. Set τ = 0.

Step 2 Compute an estimate of χ(k) via numerical approximation of

A(pt, d, ρ̂
(τ))χ̂(t) = B(pt, d, ρ̂

(τ))u(t).

Step 3 Compute the estimated CT filter using:

Lc(d, ρ̂
(τ)) =

1

F (d, ρ̂(τ))
(57)

where F (d, ρ̂(τ)) is as given in Eq. (48).

Step 4 Use the CT filter Lc(d, ρ̂
(τ)) as well as χ̂(k) in order to generate

the estimates of the derivatives which are needed:

{Lc(d, ρ̂
(τ))χ̂(i)(k)}na−1

i=0 , {Lc(d, ρ̂
(τ))ŷ(i)(k)}na−1

i=0

{Lc(d, ρ̂
(τ))uj,l(k)}

nb,sj̃
j=0,l=0, {Lc(d, ρ̂

(τ))χ̂i,l(k)}
na,si
i=1,l=0

Step 5 Compute the estimated DT filter:

Ld(q, η̂
(τ)) =

D(q−1, η̂(τ))

C(q−1, η̂(τ))
.

Step 6 The filtered signals {ufj,l(k)}
nb,sj̃
j=0,l=0, yf(k) and {χf

i,l(k)}
na,si
i=1,l=0 are

computed using the DT filter on the estimated derivatives obtained from

Step 4.

Step 7 Build the filtered regressor φ̂f(k) and, in terms of C4, the filtered

instrument ζ̂ f(k) as:

φ̂f(k) =
[
−y(na−1)

f (k) . . . −yf(k)

−χ̂f
1,1(k) . . . −χ̂

f
na,sna

(k) uf0,0(k) . . . u
f
nb,sng

(k)
]⊤
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ζ̂ f(k) =
[
−χ̂(na−1)

f (k − 1) . . . −χ̂f(k)

−χ̂f
1,1(k) . . . −χ̂

f
na,sna

(k) uf0,0(k) . . . u
f
nb,sng

(k)
]⊤

.

Step 8 The IV solution is obtained as

ρ̂(τ+1)(N)=

[
N∑
k=1

ζ̂f(k)φ̂
⊤
f (k)

]−1N∑
k=1

ζ̂f(k)y
(na)
f (k).

The resulting ρ̂(τ+1)(N) is the IV estimate of the process model as-

sociated parameter vector at iteration τ + 1 based on the prefiltered

input/output data.

Step 9 An estimate of the noise signal v is obtained as

v̂(k) = y(k)− χ̂(k, ρ̂(τ)). (58)

Based on v̂, the estimation of the noise model parameter vector η̂(τ+1)

follows, using in this case the ARMA estimation algorithm of the

MATLAB identification toolbox (an IV approach can also be used for

this purpose, see [Young (2008)]).

Step 10 If θ(τ+1) has converged or the maximum number of iterations is

reached, then stop, else increase τ by 1 and go to Step 2.

6.1.2. The LPV-SRIVC algorithm for OE models

Based on a similar concept and like in the DT framework, the so-called

simplified LPV-RIVC (LPV-SRIVC) method, can also be developed for

the estimation of CT-LPV-OE models. Therefore LPV-SRIVC uses the

same algorithm as LPV-RIVC except for Step 5, 6 and 10 of Algorithm 3

which are skipped. It can be noticed, as well, that CT-LPV-OE models do

not involve any DT filtering and, consequently, their structure is fully CT

unlike the hybrid BJ LPV model.

6.2. Examples

As a next step, the performance of the described algorithms are presented

on a representative simulation example. The system taken into considera-

tion is inspired by a benchmark example proposed by Rao and Garnier in
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[Rao and Garnier (2004)]. Since then, it has been widely used to demon-

strate the performance of direct CT identification methods [Ljung (2003);

Campi et al. (2008); Laurain et al. (2008); Rao and Garnier (2004)]. In

order to create a CT-LPV system on which the strength of direct CT iden-

tification can be demonstrated, a “moving pole” is considered. A particular

feature of LPV systems is that they have an LTI representation for every

constant trajectory of p. Such an LTI representation describes the so-called

frozen behavior of the system and can be expressed in a transfer function

form. In terms of the frozen concept, the “moving pole” means that a par-

ticular pole of these frozen transfer functions of So is a function of p. This

phenomenom often occurs in mechatronic applications such as for instance,

wafer scanners [Wassink (2002)]. In our case, the Rao-Garnier benchmark

inspired “moving pole” LPV system is a fourth order system with non-

minimum phase frozen dynamics and a p-dependent complex pole pair. It

is defined as follows:

So



Ao(d, p) = ω2
2(p)ω

2
1 +

(
2ζ2ω2(p)ω

2
1 + 2ζ1ω

2
2(p)ω1

)
d+(

ω2
1 + ω2

2(p) + 4ζ2ζ1ω2(p)ω1

)
d2 + (2ζ2ω2(p) + 2ζ1ω1) d

3 + d4

Bo(d, p) = −Kω2
2(p)ω

2
1d+ ω2

2(p)ω
2
1

Ho(q) =
1

1− q−1 + 0.2q−2
,

(59)

where K = 4 [sec], ω1 = 20 [rad/s], ζ1 = 0.1, ζ2 = 0.5. The slow frozen

mode ω2 is p-dependant and chosen as: ω2 = 2+0.5p. Notice that the frozen

behavior (p is fixed to a constant trajectory) of So for p = 0 corresponds

exactly to the Rao-Garnier benchmark defined as

GRG(d) =
−Kd+ 1

( d
2

ω2
1
+ 2ζ1

d
ω1

+ 1)( d2

ω2
2(0)

+ 2ζ2
d

ω2(0)
+ 1)

. (60)

So takes therefore the following form

So


Ao(d, p) = d4 + ao1(p)d

3 + ao2(p)d
2 + ao3(p)d+ ao4(p)

Bo(d, p) = bo0(p)d+ bo1(p)

Ho(q) =
1

1− q−1 + 0.2q−2
,

(61)

where

ao1(p) = 5 + 0.25p, ao2(p) = 408 + 3p+ 0.25p2, (62a)

ao3(p) = 416 + 108p+ p2, ao4(p) = 1600 + 800p+ 100p2, (62b)

bo0(p) = −6400− 3200p− 400p2, bo1(p) = 1600 + 800p+ 100p2. (62c)
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Fig. 2. Bode plot of the frozen behaviors of the true LPV system for 20 values of the
scheduling variable p (between −1 to 1).

The Bode plot of 20 frozen behaviors of So is depicted in Fig. 2 for 20 fixed

values of the scheduling variable p equally distributed from −1 to 1 where

the consequence of the moving low frequency mode can be clearly observed.

To obtain data records for identification purposes, the input signal u is

chosen as a uniformly distributed sequence U (−1, 1), with a scheduling

trajectory p(t) = sin(πt). Furthermore, the sampling period is chosen as

Ts = 1ms, and the simulation time is Tmax = 10s which, considering the

currently available acquisition possibilities, is a fair assumption. In the

sequel, the LPV-RIVC algorithm is studied for the identification of the data

generating system So. The proposed LPV-RIVC method is applicable to

hybrid LPV-BJ model and assumes the following model structure:

MLPV−RIVC


A(d, p) = d4 + a1(p)d

3 + a2(p)d
2 + a3(p)d+ a4(p)

B(d, p) = b0(p)d+ b1(p)

H(q) =
1

1 + d1q−1 + d2q−2
,

where

a1(p) = a1,0 + a1,1p, a2(p) = a2,0 + a2,1p+ a2,2p
2, (63a)

a3(p) = a3,0 + a3,1p+ a3,2p
2, a4(p) = a4,0 + a4,1p+ a4,2p

2, (63b)

b0(p) = b0,0 + b0,1p+ b0,2p
2, b1(p) = b1,0 + b1,1p+ b1,2p

2. (63c)

In terms of identification, the model MLPV−RIVC corresponds to the case

So ∈ M and 19 parameters are to be estimated. The results of a Monte

Carlo simulation are presented, using Nrun = 200 random realizations with

a SNR of 20dB. In order to assess the performance of the presented method,

the Bode plot of each estimated model (NMC = 200) at 20 frozen values of p

from −1 to 1 are depicted in Fig. 3. It can be clearly observed from the Bode

plot that there is a lack of excitation in the low frequencies area. To analyze

the distribution of responses at low frequencies, the densities of curves
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Fig. 3. Bode plots of the estimated models.

at frequency ω = 0.1 rad/s are displayed on the left hand-side of Fig. 3

for both magnitude and phase diagrams. Furthermore, this distribution

density is used as color coding for drawing the frequency responses in the

Bode plot: the darker a given line, the higher the number of estimated

models having the same response at ω = 0.1 rad/s. It becomes clear that

the estimated models are normally distributed and centered on the true

model. Finally, the most interesting advantage of the direct CT estimation

in LPV framework is shown in Fig. 4 where the poles of the 200 estimated

models at 20 fixed values of p between −1 and 1 are plotted along with the

true model poles. This figure also displays in the top part the density of

the pole real parts. Using the same idea as in Fig. 3, the intensity of each

displayed pole is related to the number of estimated poles which have the

same real part. Using this representation, it can be clearly seen that the

pole distribution around the “fixed pole” (around −2±20i) has a Gaussian

distribution while there is a sparse repartition around the “moving pole”

(around (−0.5 ± 0.16) ± (2 + 0.5p)i). Furthermore, the imaginary part of

all estimated poles is close to the true imaginary part of the “fixed pole”.

This means that by using a parsimonious CT model, the estimated models

perfectly capture the time-varying nature of So as well as the transient

behavior from one operating condition to the other, which is a relevant

achievement considering the complexity of the studied system and the level

of additive noise. It must be noticed that trying to identify a DT model
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Fig. 4. Poles of the estimated models and of the true system.

for such a system is quite a tedious task. As pointed out in Section 5, the

discretization of the system Eq. (59) would result in i) the augmentation

of the number of parameters to be estimated, ii) the non-linear-in-the-

parameter dependence on p iii) some dynamic dependence on p (appearance

of p(k − 1), p(k − 2) . . . terms). Moreover, the time-varying property of the

LPV system (in this case, a “moving pole”) would not anymore explicitly

appear in the DT model coefficients and might not be clearly identified.

7. Conclusion

Input-output LPV models are widely used in real world applications but the

dedicated identification methods have not focused on realistic noise condi-

tions until recently. This chapter aimed at presenting some recently devel-

oped methods dedicated to the identification of IO models under different

noise assumptions. It was pointed out that the most common assumption

of an LPV-ARX model is attractive in the sense that it allows the direct ex-

tension of well-known LTI methods (LS and IV4). Unfortunately, this noise

assumption is very restrictive and is very unlikely to be verified in practice.

In order to cope with more general types of noise, a reformulation of the

LPV model into a MISO LTI representation has been proposed along with

some RIV based methods to solve the estimation problem. The importance
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of the noise model assumption and of the associated identification methods

have been demonstrated through a bias and variance analysis on represen-

tative examples. Whereas most methods are developed in DT settings, very

few solutions have been proposed in the literature to deal with the direct

identification of CT-LPV models. Therefore, there is a large gap between

the control needs and the identification solutions proposed. The inherent

difficulties of direct CT identification have been listed and some solutions

have been proposed relying on a hybrid representation of CT systems. An

RIVC based method has been introduced, based on the same model refor-

mulation as the one presented in the DT framework. In the CT framework

however, the iterative filtering used for aiming at the PEM allows also an

accurate time-derivative approximation. The method was analyzed on a

fourth order moving pole system with colored noise and the advantages of

direct approaches such as the possibility of capturing the true dynamical

behavior of the system have been addressed. It can be finally pointed out

that most of the methods presented here can be extended to the closed-loop

case [Boonto and Werner (2008); Abbas and Werner (2009); Butcher et al.

(2008); Tóth et al. (2011a)] for which the added difficulty lies in the noise

corrupted input.
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