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Abstract

This paper presents a nonparametric method for identification of MIMO linear parameter-varying (LPV) models in state-space form. The
states are first estimated up to a similarity transformation via a nonlinear canonical correlation analysis (CCA) operating in a reproducing
kernel Hilbert space (RKHS). This enables to reconstruct a minimal dimensional inference between past and future input, output and
scheduling variables, making it possible to estimate a state sequence consistent with the data. Once the states are estimated, a least-
squares support vector machine (LS-SVM)-based identification scheme is formulated, allowing to capture the dependency structure of the
matrices of the estimated state-space model on the scheduling variables without requiring an explicit declaration of these often unknown
dependencies; instead, it only requires the selection of nonlinear kernel functions and the tuning of the associated hyper-parameters.
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1 Introduction

Linear parameter-varying (LPV) model identification has
attracted a lot of attention within the system identifica-
tion community in the recent past. Although a significant
progress on the identification of LPV systems with input-
output (IO) models has been achieved [3, 16, 19], identi-
fication in an LPV state-space form remains challenging
with several open problems. The main streams of LPV con-
trol synthesis approaches in the literature are derived from
LPV state-space (SS) representations. However, the bulk of
discrete-time LPV identification and modeling is often car-
ried out under an IO structure. Therefore, a possible ap-
proach would be to transform available LPV-IO models to
LPV-SS form. However, such a transformation is compli-
cated as the conversion to equivalent SS models often re-
sults in dynamic dependence of the state-space matrices on
the scheduling variables while approximative “realizations”
deform the dynamical relations between the inputs and out-
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puts, often leading to high output errors [17]. Allowing for
such a dynamic dependence increases the complexity of the
transformed LPV-SS model thereby making controller syn-
thesis more difficult or even computationally infeasible. It is
for this reason that LPV-SS models directly identified from
IO data are of prime importance.

Broadly speaking, LPV identification methods can be cate-
gorized into parametric and nonparametric methods. In para-
metric identification of LPV models, the assumption is made
that the scheduling dependencies of the model coefficients
are known a priori [3]. However, in practice, selecting ad-
equate functions to parameterize these dependencies is a
non-trivial task where often one tries to include a wide ar-
ray of basis functions to ensure that the process dynam-
ics are captured. This often leads to over-parametrization
of the model coefficients [9], causing a large variance in
the estimates. On the other hand, an inappropriate selec-
tion of these functions causes structural bias [19]. Exam-
ples of parametric LPV-SS identification include subspace
identification methods published in [20, 22]. These meth-
ods pertain to systems that can be modeled with affine
parameter-dependence, and are usually only suitable for low-
dimensional cases. For an overview of other LPV-SS identi-
fication schemes, see [16]. An alternative approach with an
attractive bias-variance trade-off is to obtain a nonparametric
reconstruction of the scheduling dependencies in LPV mod-
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els. Kernel-based nonparametric identification techniques
have demonstrated encouraging results for LPV-IO models
in [1, 9, 19], among others; however, very few fully non-
parametric methods for state-space model structures have
been reported. A mixed parametric method based on least-
squares support vector machine (LS-SVM) was proposed
recently in [6]. In this work, the state matrix A is described
by a parametric model, while the state-readout matrix C is
described by a nonparametric one. The problem of selecting
basis functions therefore is solved only partially. Addition-
ally, the work [6] focuses only on single-input single-output
(SISO) LPV-SS models. In our recent work [13], we pro-
posed an LS-SVM-based LPV-SS identification method for
multi-input multi-output (MIMO) systems. Further improve-
ment was presented in [12] by incorporating instrumental
variables, making the technique robust to the presence of
colored noise. A limiting factor in both of these works how-
ever, was the assumption of the availability of state mea-
surements, which, most often, is not the case in practical sit-
uations. To avoid confusion, it is also noted that in [20,23],
kernel-based methods have been applied for an entirely dif-
ferent purpose, namely to increase computational reliability
of regression problems in predictor-based subspace identifi-
cation with a fixed affine dependency structure of the esti-
mated model.

In this paper, we present an LS-SVM-based nonparametric
method for MIMO LPV-SS model identification. The pro-
posed technique works in two steps; first, LS-SVM-based
nonlinear canonical correlation analysis (CCA) is used to
estimate the states of the data-generating system from inputs,
outputs, and scheduling variables data. The estimated states
are then used with the measured data to identify the state-
space matrices of an LPV-SS model of the data-generating
system with no assumption made a priori on the schedul-
ing dependency structure. The main contribution of this pa-
per lies in the formulation of kernelized CCA and LS-SVM
for LPV-SS model identification such that the linearity in
the dynamic relation of the model is retained. The paper is
arranged as follows. The problem is formulated in Section
2. The use of correlation analysis for the estimation of the
states is derived and explained in Section 3. Section 4 details
the LS-SVM-based identification algorithm. To demonstrate
the capabilities of the developed approach, simulation stud-
ies are provided in Section 6. Finally, concluding remarks
are made in Section 7.

2 Problem Formulation and Preliminaries

Consider an LPV system represented by the following
discrete-time state-space innovation noise model

xk+1 = A(pk)xk +B(pk)uk +K(pk)ek, (1a)
yk = C(pk)xk +D(pk)uk + ek, (1b)

where k ∈ Z denotes discrete-time, and A(pk) ∈ Rn×n,
B(pk) ∈ Rn×nu , K(pk) ∈ Rn×ny , C(pk) ∈ Rny×n, and
D(pk) ∈ Rny×nu are smooth functions of time-varying
scheduling variables pk ∈ P ⊂ Rnp with P being compact.
Variables uk ∈ Rnu , yk ∈ Rny , and xk ∈ Rn represent the

inputs, outputs, and states of the system at time k, while
ek ∈ Rny is a stochastic white noise process, independent
of u. By substituting ek = yk−C(pk)xk−D(pk)uk in (1a),
we can re-write the above set of equations as

xk+1 = Ã(pk)xk + B̃(pk)uk +K(pk)yk, (2a)
yk = C(pk)xk +D(pk)uk + ek, (2b)

where Ã(pk) = A(pk) − K(pk)C(pk), and B̃(pk) =
B(pk) − K(pk)D(pk). Similar to the LTI case, (2) must
be asymptotically stable in the deterministic sense (even
if asymptotic stability of (1) is not required), otherwise
identification of (1) is ill-posed due to the divergence of
the variance of the resulting stochastic process. Our aim
is to develop a kernelized LS-SVM approach to estimate
the functional dependencies of the state-space matrices
on the scheduling variables, given only the measurements
D = {uk, yk, pk}Nk=1, where N is the number of samples.

3 A KCCA-based Approach for State Estimation

To achieve the aforedescribed objective, first we aim at es-
timating the state sequence {xk}Nk=1 compatible with D.

3.1 Canonical Correlation Analysis

Canonical correlation analysis (CCA) is a statistical method
mainly used to determine linear relations among several
variables and had a major role in the development of LTI
subspace identification. Given two sets of variables, u ∈
Rnu and y ∈ Rny , with N samples of each collected in
U ∈ RN×nu and Y ∈ RN×ny , CCA aims at finding vec-
tors vj ∈ Rnu and wj ∈ Rny to maximize correlation be-
tween projected variables Uvj and Y wj , also known as vari-
ates [15]. This leads to the following constrained optimiza-
tion problem

max
vj ,wj

v>j U
>Y wj , s.t. v>j U

>Uvj = w>j Y
>Y wj = 1.

The optimization solved in the dual form leads to a gener-
alized eigenvalue problem. For more details, see [21]. CCA
only uses second order information to identify the relation
between data sets, an important consequence of which is
that CCA and its regularized versions are easily kernelizable
and can handle nonlinear relationships [4].

3.2 Regularized kernel CCA for LPV state estimation

In our LPV problem setting, we aim to use CCA to find an
estimate of the state sequence associated with D. However,
we will show that the associated relationship between the
inputs and outputs of the data-generating LPV model (1)
that defines the so-called state map is a heavily nonlinear
dynamic function of pk. This state map can be captured by
modifying the linear CCA and incorporating kernel func-
tions to map the nonlinear dynamic relations into a repro-
ducing kernel Hilbert space (RKHS), where classical CCA
is applied, resulting in a kernelized CCA method [2]. The
main idea behind this is that the states are the minimal inter-
face between the past and future input, output and schedul-
ing variable data; therefore, the states are expected to be the
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representative of the past behavior needed to determine the
future behavior [21].

Define the past scheduling variables p̄dk ∈ Rdnp and future
scheduling variables p̄dk+d ∈ Rdnp w.r.t. time instant k as

p̄dk := [ p>k−d · · · p>k−1
]>, (4a)

p̄dk+d := [ p>k · · · p>k+d−1
]>, (4b)

where d denotes the number of past and future samples.
Past and future inputs and outputs ūdk ∈ Rdnu , ȳdk ∈ Rdny ,
ūdk+d ∈ Rdnu , and ȳdk+d ∈ Rdny are defined in a similar

way. Further, we also define z̄dk =
[
ūd
k

ȳdk

]
, z̄dk+d =

[
ūd
k+d

ȳdk+d

]
∈

Rd(nu+ny). The future outputs of (2) can be written in the
observability form 1 (3), described compactly as

ȳdk+d = (Odf � p)(k) · xk + (Hdf � p)(k) · ūdk+d

+ (Ldf � p)(k) · ȳdk+d + ēdk+d, (5)
where (Odf �p)(k) ∈ Rdny×n is the time-varying d-step for-
ward observability matrix 2 at time k along the scheduling
trajectory p, (Hdf � p)(k) ∈ Rdny×dnu is a forward Toeplitz
matrix based on the Infinite Impulse Response (IIR) coeffi-
cients of (2), and (Ldf �p)(k) ∈ Rdny×dny is a lower triangle
matrix. Variable ēdk+d denotes a segment of the sample path
of ek. Without loss of generality, it is assumed that (2) is
structurally observable in the deterministic sense 3 .

1 Note that, in (3), we use a left precedence for multiplication,
e.g., for k=d=4,

∏d
l=2 = Ã(pk+d−l) = Ã(p6)Ã(p5)Ã(p4).

2 The notation (Od
f � p)(k) corresponds to the evaluation of Od

f

along p at time instant k and is used as a shorthand to express
the dynamic dependence of the corresponding matrix functions,
e.g., Od

f at time k depends on the instantaneous and future sample
values of the scheduling variables, i.e., pk, ..., pk+d−1.
3 If the assumption of structural observability is not satisfied,
then (2) is not state-minimal and under some mild assumptions
on the class of functional dependencies of the associated matrix
functions, there exists a structurally observable LPV-SS realization
of the underlying system with equivalent IO map.

Definition 3.1 The LPV-SS representation (2) with state-
dimension n is called structurally observable, if there exists
a scheduling trajectory p ∈ PZ, such that the n-step observ-
ability matrix (Onf �p)(k) is full (column) rank for all k ∈ Z.

Let P ⊆ PZ be the set of all scheduling trajectories p such
that rank

(
(Onf � p)(k)

)
= n for all k ∈ Z. Then, in order

to guarantee that Odf is injective in (5), it is assumed that
d is chosen such that d ≥ n and p ∈ P in the given data
set D. In other words, we assume that the to-be-estimated
model representation is observable along the given trajectory
of p on all intervals of length d, which corresponds to a
persistency of excitation (PE) condition on p. Dropping the
dynamic dependence argument for notational ease, the state
sequence statistics can be given by

xk =
(
Odf (k)

)† ((
I − Ldf (k)

)
ȳdk+d −Hdf (k)ūdk+d

)
−
(
Odf (k)

)†
ēdk+d, (6)

where (·)† indicates the Moore-Penrose pseudo-inverse,
which exists due to injectivity of the linear map Odf (k) in
(9). Using a similar definition of a d-step backward reach-
ability matrix Rdp(k) depending on pk−d, ..., pk−1 and its
counterpart Vdp(k) with respect to K(pk), xk can also be
given as

xk =
(∏d

i=1 Ã(pk−i)
)

︸ ︷︷ ︸
Xd

p (k)

xk−d +Rdp(k)ūdk + Vdp(k)ȳdk, (7)

which in turn can be substituted into (5) to obtain a relation
of future and past IO data similar to the data equation used
in predictor-based subspace identification:

ȳdk+d = Odf (k)Rdp(k)ūdk +Hdf (k)ūdk+d +Odf (k)Vdp(k)ȳdk

+ (Ldf � p)(k) · ȳdk+d +Odf (k)X dp (k)xk−d + ēdk+d, (8)

where d is chosen such thatX dp (k) ≈ 0 due to the asymptotic
stability of (2b). This reveals that the state sequence can be
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estimated via a CCA between past and future IO data.

To illustrate the concept, one can take (6) and since e is
an independent and identically distributed (i.i.d) zero-mean
process, the expected value of the last term on the right-hand
side is zero, giving us, in the conditional mean sense, the
following unbiased state estimate

x̂k =
(
Odf (k)

)† [
−Hdf (k) I − Ldf (k)

]
︸ ︷︷ ︸

ϕf (p̄dk+d
)

z̄dk+d. (9)

Note that (9) is a non-minimal variance estimator; however,
if we are allowed to change the state basis in terms of the
CCA applied on (8), we can then determine a state trans-
formation (see the discussion of Remark 1) that minimizes
this variance contribution by maximizing the correlation be-
tween the associated variates. Similarly, chosing d such that
X dp (k) ≈ 0 in (7), we can arrive at the predictor

x̂k =
[
Rdp(k) Vdp(k)

]
︸ ︷︷ ︸

ϕp(p̄d
k
)

z̄dk . (10)

Even if both ϕf(p̄
d
k+d) and ϕp(p̄dk) are unknown mappings

(defined by the to-be-estimated matrix functions), the rela-
tions (9) and (10) allow the use of CCA for the estimation of
x̂k. Note that maximization of the covariance of the variates
can result in estimation of x̂k on different state basis, which
can be seen as a p-dependent state transformation applied
on these maps. As these maps at least have polynomial de-
pendence on p̄dk+d and p̄dk even in case of affine dependence
of the original matrix functions of (1), a tailor-made ker-
nelized formulation of CCA is required for the underlying
estimation problem. To develop this formulation, we define
the past and future data sets Φp,Φf ∈ RN×nG as

Φp :=
[
ϕp(p̄d1)z̄d1 · · · ϕp(p̄dN )z̄dN

]>
, (11a)

Φf :=
[
ϕf(p̄

d
1+d)z̄

d
1+d · · · ϕf(p̄

d
N+d)z̄

d
N+d

]>
, (11b)

where ϕp : Rdnp → RnG×d(nu+ny) and ϕf : Rdnp →
RnG×d(nu+ny) represent unknown feature maps that respec-
tively map the past and future scheduling variables into an
RKHS Gk̆ defined uniquely by a symmetric and positive def-
inite kernel function k̆ : Rdnp × Rdnp → R (for details,
see [5]); variable nG represents the dimension of this possi-
bly infinite-dimensional feature space. The kernel function,
with arguments in the input space Rdnp , corresponds to an
inner product in the RKHS as[

ϕp(p̄dk)
]>
i

[
ϕp(p̄dj )

]
i

= k̆
(
p̄dk, p̄

d
j

)
.

Now the CCA problem corresponding to the equivalent rep-
resentation (2) becomes

max
vj ,wj

v>j Φ>f Φpwj s.t. v>j Φ>f Φfvj = w>j Φ>p Φpwj = 1,

(12)

where vj ∈ RnG , wj ∈ RnG with j ∈ {1, . . . N} are direc-
tions in the feature space Gk̆, along which the projections

of the future and past data have maximum correlation. The
KCCA in terms of (12), though regularized, does not pro-
vide a useful canonical correlation of the variables. The Au-
thors of this early version of KCCA, Bach and Jordan, argue
in [2] that the geometric interpretation of (12) is equivalent
to maximizing the cosine of the angle between subspaces
generated by the column spaces of Φp and Φf . If the non-
centered Gram matrices are invertible, as for example, when
the data points are distinct and Gaussian kernels are used,
then the two column spaces are identical and the angle be-
tween them is zero. This results in a canonical correlation
estimate that is always equal to one. In other words, (12)
does not give a useful canonical correlation [2]. To overcome
this “naive kernelization”, different variants of KCCA were
later proposed that can provide a good estimator for general
kernels. An improved regularized version based on LS-SVM
was later introduced in [15], the primal version of which,
adapted to the case of the LPV-SS model (2), is given as

max
vj ,wj

J (vj , wj , s, r) =

γ

N∑
k=1

(
skrk − νf

1

2
s2
k − νp

1

2
r2
k

)
− 1

2
v>j vj −

1

2
w>j wj ,

s.t. sk = v>j ϕf(p̄
d
k+d)z̄

d
k+d, rk = w>j ϕp(p̄dk)z̄dk , (13)

for k = 1, ..., N, where γ, νf , νp ∈ R+ are positive hyper-
parameters needed to be chosen. The main advantage of
this improved CCA lies in the introduction of the last two
terms in the cost function, which help to regularize vj , wj ,
making sure they do not become arbitrarily large. Writ-
ing the above problem in a dual form, we define the La-
grangian as given in (14), where ηj = [η1

j · · · ηNj ]> ∈ RN

and κj = [κ1
j · · ·κNj ]> ∈ RN are Lagrange multipliers.

The dual form of (13) is obtained via the Karush-Kuhn-
Tucker (KKT) conditions, i.e., finding the derivatives
∂L
∂vj

, ∂L∂wj
, ∂L∂sk ,

∂L
∂rk

, ∂L
∂ηk

j

, ∂L
∂κk

j

and equating them to zero,

which are not shown here due to the space limitations.
Using these conditions to eliminate the primal decision vari-
ables vj , wj , sk, rk, and substituting λj = 1/γ, the above
problem can be simplified to a regularized generalized
eigenvalue problem as

Kppκj = λj(νfKff + I)ηj , (15a)
Kffηj = λj(νpKpp + I)κj , (15b)

where Kff = ΦfΦ
>
f and Kpp = ΦpΦ>p are kernel matrices

that express the inner product of the feature maps in Gk̆. The
elements of the kernel matrices are

[Kff ]l,m = z̄d >l+dk̆(p̄dl+d, p̄
d
m+d)z̄

d
m+d, (16a)

[Kpp]l,m = z̄d >l k̆(p̄dl , p̄
d
m)z̄dm. (16b)

Kernel functions can be chosen from a variety of different
functions, including, but not limited to polynomial kernels
k̆(pi, pj) = ((pi ·pj)+1)q , and radial basis functions (RBF)

k̆(pi, pj) = exp
(
−‖ pi−pj ‖

2
2

σ2

)
. Parameters q ∈ N and σ ∈

R+ denote the degree of the polynomial and the spread of the
RBF function; these are essentially tuning parameters chosen
by the user [14]. By solving (15), one can find the primal

4



L(vj , wj , s, r, ηj , κj) = J (vj , wj , s, r)−
N∑
k=1

ηkj

(
sk − v>j ϕf(p̄

d
k+d)z̄

d
k+d

)
−

N∑
k=1

κkj

(
rk − w>j ϕp(p̄dk)z̄dk

)
, (14)

decision variables vj = Φ>f ηj and wj = Φ>p κj , which are
obtained by solving the KKT conditions ∂L

∂vj
= 0, ∂L∂wj

= 0

and obtain an estimate of the state evolution of (1) w.r.t. D.

As Kpp,Kff ∈ RN×N , the regularized generalized eigen-
value problem (15) can have up to 2N different solutions
ηj , κj , j = 1, . . . , 2N , defining the primal decision variables
vj = Φ>f ηj and wj = Φ>p κj . Since each of these solutions
gives a direction in the feature space correlating past data
with the future data, each solution can give us one compo-
nent, i.e., the jth component, of the state variable that ties
the past behavior to the future. Therefore, the estimate of a
compatible state vector at time instant k follows using the
jth solution to the KCCA problem as

x̆jk = v>j ϕf(p̄
d
k+d)z̄

d
k+d. (17)

Substituting above the earlier solved KKT condition gives
vj = Φ>f ηj , and replacing the feature space dot-product
ϕ>f (·)ϕf(·) with a kernel function k̆(·, ·), we obtain

x̆jk = η>j


z̄d >1+dk̆(p̄d1+d, p̄

d
k+d)

...

z̄d >N+dk̆(pdN+d, p̄
d
k+d)

 z̄dk+d. (18)

Similarly, wj = Φ>p κj gives the estimated jth component
of the state vector at time k as

x̆jk = w>j ϕp(p̄dk)z̄dk = κ>j


z̄d >1 k̄(p̄d1, p̄

d
k)

...

z̄d >N k̄(pdN , p̄
d
k)

 z̄dk . (19)

Remark 1 All 2N solutions of the regularized generalized
eigenvalue problem (15) in terms of normalized eigenvectors
can be analytically calculated via the following economical
singular value decomposition (SVD) νfKff + I 0

0 νpKpp + I

−1 0 Kpp

Kff 0

=WΣ

V1

V2

>
(20)

where Σ is a diagonal matrix containing all non-zero singu-
lar values, and the corresponding solutions are ηj = [V1]j
and κj = [V2]j with [·]j denoting the jth column. An ef-
fective dimension of x̆ can be chosen by only taking into
account those x̆jk which are associated with the n̂ most sig-
nificant singular values. From the stochastic point of view,
without regularization, the reconstructed sequences x̆jk are
independent and the magnitude of their autocorrelation re-

veals their significance in the canonical relationship.

Therefore, given d measurements of inputs, outputs, and
scheduling variables, a state sequence x̆k, compatible with
the system, can be estimated by determining the maxi-
mum correlation between ϕf(p̄

d
k+d)z̄

d
k+d and ϕp(p̄dk)z̄dk in

the CCA sense. The notion of compatibility corresponds
to the fact that the state is estimated up to a linear map
or state transformation T : Rdnp → Rn̂×n, such that
x̆k = E{(T � p)(k) ·xk | D} in the conditional mean sense.
The state transformation T can have dynamic dependence
on pk, ..., pk−d+1 [17] and with n̂ ≥ n it is injective. There-
fore, x̆k is estimated in a state-space basis different from
the basis of x̂k. This state-space basis and its dimension is
determined by the user using the rank-revealing property
of the SVD in (20). This is an established practice in sub-
space identification for LPV (see [23], [7]) and LTI systems
(see [10]). Hence, x̆k corresponds to the estimate of the
state sequence of an equivalent realization of (2) as

x̆k+1 = (Ãe � p)(k)x̆k + (B̃e � p)(k)uk + (Ke � p)(k)yk,

yk = (Ce � p)(k)x̆k +Duk + ek, (21)

where subscript e denotes the estimate and TÃ = ÃeT ,
TB̃ = B̃e, TK = Ke and C = CeT .

Note that the states associated with an LPV-SS representa-
tion of the system summarize all information from the past
behavior needed to predict the future behavior. In that sense,
the past input and output data z̄dk =

[
ūd >k ȳd >k

]>
forms

a non-minimal state representation of the system. This fact
of LTI system theory also holds in the LPV case, i.e., for
any finite dimensional LPV-SS representation (1) with up to
meromorphic p dependencies, it is possible to give an LPV-
SS realization with a state vector z̄dk which has an equivalent
IO map in an almost everywhere sense (i.e., all compatible
trajectories are equal, except a subset of trajectories with
measure zero due to possible singularity of the matrix func-
tions). To illustrate this fact, we next show that the future
output behavior is a function of past data z̄dk , p̄

d
k, and uk, pk

plus a contribution of the noise in terms of ēdk and ek.

Lemma 3.1 Let (2) be structurally observable and d ≥ n.
Then, there exists a function f : Rnf → Rny with nf =
(d+ 1)(nu + np + n) + dny such that for any trajectories
p ∈ P , u ∈ (Rnu)Z and e ∈ (Rny)Z

yk = f(uk, pk, ek, z̄
d
k , p̄

d
k, ē

d
k). (22)

Proof 1 As (2) is observable along any p ∈ P , shifting (6)
d-samples backward in time is used to substitute xk−d in (7)
to arrive at
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xk =Md
p(k)

((
I − Ldf (k − d)

)
ȳdk −Hdf (k − d)ūdk

)
+Rdp(k)ūdk + Vdp(k)ȳdk −Md

p(k)ēdk. (23)

where Md
p(k) =

∏d
i=1 Ã(pk−i)

(
Odf (k − d)

)†
. Using (23)

and substituting it into (2b) gives

yk = C(pk)
[
Rdp(k) Vdp(k)

]
z̄dk +D(pk)uk

− C(pk)Md
p(k)

[
Hdf (k−d) Ldf (k−d)−I

]
z̄dk

+ ek − C(pk)Md
p(k)ēdk. (24)

4 Matrix Function Estimation via LS-SVM

Once we have obtained an estimate {x̆k}Nk=1 of the state
sequence {xk}Nk=1, we can form an extended data set D̆ =
{uk, yk, x̆k, pk}Nk=1 to estimate the matrix functions in (2).
We parameterize our LPV-SS model as 4

x̆k+1 = Wxϕ
>
x (pk) + εk, (25a)

yk = Wyϕ
>
y (pk) + ςk, (25b)

where x̆k is the estimate of xk, εk and ςk are resid-
ual errors on the states and outputs, respectively, Wx =
[W1 W2 W3] ∈ Rn×3nH and Wy = [W4 W5] ∈ Rny×2nH

are weighting matrices. The functions ϕ>x (pk) ∈ R3nH×1

and ϕ>y (pk) ∈ R2nH×1 are defined by

ϕ>x (pk) =
[(

Φ1(pk)x̆k
)> (

Φ2(pk)uk
)> (

Φ3(pk)yk
)>]>

,

ϕ>y (pk) =
[(

Φ4(pk)x̆k
)> (

Φ5(pk)uk
)>]>

,

where Φ1,Φ4 : Rnp → RnH×n, Φ2,Φ5 : Rnp → RnH×nu ,
and Φ3 : Rnp → RnH×ny are unknown feature maps
that map the scheduling variables to a high dimensional
(RKHS) Hk̄ defined uniquely by the kernel functions
k̄i : Rnp × Rnp → R with i ∈ 1, . . . , 5. From (25a)-
(25b), we can gauge that Ã(pk) ∼ W1Φ1(pk), B̃(pk) ∼
W2Φ2(pk), K(pk) ∼ W3Φ3(pk), C(pk) ∼ W4Φ4(pk),
and D(pk) = W5Φ5(pk), where ∼ stands for an equiva-
lent function under a state transformation. The problem in
this paper, therefore, reduces to finding the dependency of
WiΦi(pk) on pk given the data D̆. To achieve this, we aim
to minimize the following cost function

min
Wx,Wy,ε,ς

I(Wx,Wy, ε, ς) =

1

2

(
‖Wx‖2F + ‖Wy‖2F +

N∑
k=1

ε>k Γεk + ς>k Ψςk,

)
(26)

over Wx,Wy, where ‖·‖F denotes the Frobenius norm. Ma-
trices Γ = diag(γ1, · · · , γn) and Ψ = diag(ψ1, · · · , ψny

)
are diagonal positive weighting matrices on these residuals,

4 Compared to the possible case of dependencies in (21), for the
sake of simplicity, here we restrict our dependency class to be
static (as in the original representation form (2)).

and are known as regularization matrices. This problem can
be solved in the dual form by introducing the Lagrangian as

K(Wx,Wy,α, β, ε, ς) = I −
N∑
j=1

β>j
(
Wyϕ

>
y (pj) + ςj − yj

)
−

N∑
j=1

α>j
(
Wxϕ

>
x (pj) + εj − x̆j+1

)
, (27)

where αj ∈ Rn, βj ∈ Rny are the Lagrange multi-
pliers at time j. The solution is obtained by solving
the KKT conditions, i.e., equating the partial derivatives
∂K
∂Wx

, ∂K
∂Wy

, ∂K∂αj
, ∂K∂βj

, ∂K∂εj ,
∂K
∂ςj

to zero. For brevity, we do
not list the KKT conditions here (see [12]). Substituting
these conditions in (25a)-(25b), we can eliminate the primal
decision variables and obtain the following equations

x̆k+1 =

{
N∑
j=1

αjϕx(pj)︸ ︷︷ ︸
Wx

}
ϕ>x (pk) + Γ−1αk︸ ︷︷ ︸

εk

, (28a)

yk =

{
N∑
j=1

βjϕy(pj)︸ ︷︷ ︸
Wy

}
ϕ>y (pk) + Ψ−1βk︸ ︷︷ ︸

ςk

. (28b)

By replacing the inner-product Φ>i (pk)Φi(pj) by a kernel
function k̄i(pj , pk) and defining

[Ω]j,k =

3∑
i=1

z>i (j)k̄i(pj , pk)zi(k), (29a)

[Ξ]j,k =

5∑
i=4

z>i (j)k̄i(pj , pk)zi(k), (29b)

where zi(k) =


x̆k, i = 1, 4

uk, i = 2, 5

yk, i = 3.

We can now write (28) in a compact form as follows

X̆k+1 = αΩ + Γ−1α, (30a)
Y = βΞ + Ψ−1β, (30b)

where Ω ∈ RN×N and Ξ ∈ RN×N are kernel matrices
as defined above, α = [α1 · · ·αN ] ∈ Rn×N and β =
[β1 · · ·βN ] ∈ Rny×N are the matrices containing the La-
grange multipliers, X̆k+1 = [x̆2 · · · x̆N+1] ∈ Rn×N and
Y = [y1 · · · yN ] ∈ Rny×N contain the estimated states and
outputs for the N samples, respectively. The solution to the
above equations can be obtained as:

vec(α) =
(
IN ⊗ Γ−1 + Ω> ⊗ In

)−1
vec(X̆k+1), (31a)

vec(β) =
(
IN ⊗Ψ−1 + Ξ> ⊗ Iny

)−1
vec(Y ), (31b)

where matrices IN and Iny
represent identity matrices of

dimensions N and ny, respectively. For a given solution to
(31a)-(31b), the estimate of the state-space matrices can be
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calculated by using the KKT conditions in (25a)-(25b) as

Ãe(·) = W1Φ1(·) =

N∑
j=1

αj x̆
>
j k̄1(pj , ·), (32a)

B̃e(·) = W2Φ2(·) =

N∑
j=1

αju
>
j k̄2(pj , ·), (32b)

Ce(·) = W4Φ4(·) =

N∑
j=1

βj x̆
>
j k̄4(pj , ·), (32c)

Ke(·) = W3Φ3(·) =

N∑
j=1

αjy
>
j k̄3(pj , ·), (32d)

De(·) = W5Φ5(·) =

N∑
j=1

βju
>
j k̄5(pj , ·). (32e)

This gives a nonparametric estimate of the SS matrices.

5 Tuning of the Hyper-parameters

Both the state trajectory estimation in terms of the KCCA
problem and the estimation of the matrix functions of
the state-space representation require the choice of hyper-
parameters for the definition of the associated kernel func-
tions and other regularization parameters. Let θc be the
collection of hyper-parameters: νf , νp and kernel coeffi-
cients, e.g., σc associated with the state estimation detailed
in Section 3, while θs be the collection of hyper-parameters:
γ1, . . . , γn, ψ1, . . . , ψny

and kernel coefficients, e.g., σs,
associated with the matrix function estimation problem in
Section 4. Let θ = [ θ>c θ>s ]>.

Denote the modelM(θ) as the solution of the specified state
and matrix function estimation problems using the estima-
tion data setD and a fixed choice of θ. Additionally, letDval

be an independent data set generated by (1) and define

BFR(θ) = 100% ·max

(
1−
‖yk − ŷk(θ)‖2
‖yk − ȳ‖2

, 0

)
, (33)

as fitness score or best fit rate (BFR) between the actual
output trajectory y of Dval, its mean ȳ, and the simulated 5

output ŷ of the identified modelM(θ) w.r.t. the inputs and
scheduling trajectory of Dval. We seek to maximize (33)
over θ. This results in a nonlinear optimization problem with
a quadratic cost function, which can be seen as an inference
problem between the data sets D and Dval under the given
parametrization of the estimation problems in terms of θ.

Alternatively, we also formulate the choice of the hyper-
parameters θc and θs under a Bayesian setting by assuming a
Gaussian distribution (with an RBF kernel) of the state vari-
ation and matrix functions and a uniform distribution of θc

5 Alternatively, one can formulate a similar objective function
w.r.t. the predicted output of M(θ) using the predictor form (2).

and θs. Note that in this setting, the matrix function estima-
tion problem (Section 4) is conditioned on the estimated x̆,
dependent on the prior θc, and as the estimation involves an
SVD, even in case of a fixed choice of n no joint formulation
of the hyper-parameter estimation of θc and θs can be given.
Furthermore, [8] provides a detailed theoretical analysis of
KCCA from the stochastic point of view. However, the prob-
lem of choosing the regularization parameter even under a
Gaussian setting remains largely unsolved without using any
approximation of the resulting expressions. These problems
somewhat undermine the stochastic efficiency of the result-
ing methodology. Nevertheless, for illustration purposes the
choice of θs is formulated in terms of a log marginal likeli-
hood (ML) function conditioned on it. Following the work
in [11], and using (30), we define the log marginal likeli-
hood function as

log p̄(Y |X̆, U, P, θs) = −1

2

(
ny∑
i=1

YiΞ
−1
i Y >i + log|Ξi|

)
− 1

2

(
nx∑
i=1

X̆iΩ
−1
i X̆>i + log|Ωi|

)
− N

2
log 2π, (34)

where the kernel matrices Ξi and Ωi are defined as Ξi =
Ξ + ψ−1

i IN , Ωi = Ω + γ−1
i IN and Yi, X̆i denote the ith

output/state or ith row of Y and X̆ , p̄ denotes probability,
and Y,U, P , and X̆ represent the measurements of outputs,
inputs, scheduling variables, and the estimated states, re-
spectively. By maximizing the log ML function (34) over
the parameter set θs, we seek the set of hyper-parameters
that maximize the likelihood of fitting the estimated LPV-SS
model outputs to the given observations Y and X̆i, corre-
sponding to a nonlinear optimization problem over D̆.

6 Numerical Examples

Example 1: Consider the following discrete-time data-
generating system

xk+1 = A(pk)xk +B(pk)uk +K(pk)ek,

yk = C(pk)xk + ek.

with

A(pk)=


sat(pk) 1 0 0

1
2

p3k
8

4
10

1
5

3
10 0

p2k
5

1
8

0 0 1
2

1
5

 ,

K(pk)=


tanh(pk)

3pk
0

0 0

0 sin(2πpk) + cos(2πpk)

0 1

 ,
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C(pk)=

[
p2k
5 1 0 0

0 0 1 0

]
, B(pk) =

[
p4k
5 0 1

5 0
]>

,

where sat(pk) is a saturation function with limits at±0.5 and
unity slope. Given the measurements uk, yk, and pk inD, we
want to estimate the matrix functions A, . . . ,K. The data-
generating system with initial condition x0 = [0 0 0 0]

>

has been simulated with uniformly distributed input signal
uk ∼ U(−1, 1), pk = sin(0.3k) and normally distributed
measurement noise ek ∼ N (0, Iσ2

e ) to generate a data set
D = {uk, yk, pk}Nk=1 with N = 1100, where σ2

e has been
chosen to guarantee a 20dB signal-to-noise ratio (SNR).
The data is divided into 800 and 300 samples for estima-
tion D and validation Dval, respectively. Polynomial kernel
is chosen for the state estimation step and the past and fu-
ture window size of d = 4 is selected while for the ma-
trix function estimation problem RBF kernels are employed.
Other kernels have also been tested and the selection of the
kernel, and its associated hyper-parameters, is made based
on the minimization of the cross-validation objective func-
tion (33). This optimization problem is solved 6 using the
fmincon solver in MATLAB. Followed by this, the ML
approach corresponding to the maximization of (34) is also
implemented. While the solution θ depends on initialization
of the optimization problem, we observe that in the best
case, the maximization of likelihood function (34) gives us
comparable, and in some cases, slightly improved solution.
The proposed kernel CCA-based algorithm is run and the
state sequence is estimated. The order of the system is se-
lected by solving the SVD problem (20). A plot of the first
50 singular values σ̃j , j = 1, ..., 50, is shown in Figure 1.
We observe a significant gap between the first four singu-
lar values and the next four that follow them. Using the ex-
tended data set D̆ = {uk, yk, x̆k, pk}Nk=1, we then run the
LS-SVM identification algorithm of Section 4 based on dif-
ferent choices of system order to estimate the state-space
matrices. An RBF kernel is chosen to find an estimate of
the matrix functions. For independently generated data sets,
the estimation is repeated 100 times in a Monte-Carlo study
and the fitness score statistics are tabulated in Table 1. We
observe that by selecting the order to be n̂ = 8, a slightly
higher fitness rate is obtained compared to n̂ = 4. Note that
this can be explained by the fact that the non-smooth sat-
uration function based state-map is difficult to be captured
by a polynomial kernel. For n̂ = 9 and onwards, no signif-
icant improvement is observed in terms of accuracy of the
simulated outputs. This is also corroborated by the singular
values plot shown in Figure 1. Figure 2 shows, the simu-
lated outputs of an identified model (dashed red line) in the
Monte-Carlo run compared to the original noise-free out-
puts of the data-generating system (solid blue line). In order
to quantify how well the simulated outputs of the estimated

6 For n̂ = 8, the optimization problem resulted in νf =
1000, νp = 8200, deg = 2 for the polynomail kernel,
{σs,i}4i=1 = {1.05, 10.15, 2 × 10−4, 9.1} for the RBF ker-
nel, {γi}8i=1 = {700, 400, 750, 700, 500, 1400, 1400, 720} and
{ψi}2i=1 = {5500, 0.5}.

Figure 1. Singular values of the SVD problem (20).

Figure 2. Simulated output response of the estimated LPV model
in the given example computed on Dval (red) and the noise free
response of the original system (blue); for the sake of clarity, only
100 of the validation data points are shown here.

Table 1
Monte-Carlo simulation results for Example 1.

n̂ Mean (BFR %) Std. (BFR %)

SNR 25dB 4 85.15 1.12

8 87.03 0.751

SNR 20dB 4 83.91 0.911

8 86.31 0.022

9 86.03 1.015

LPV-SS model fit the actual outputs, the BFR is evaluated
on the validation data set Dval and the statistics are tabu-
lated in Table 1. Obtained average BFR values with small
standard deviation demonstrate consistent performance of
the proposed LPV model identification algorithm.

Example 2: The model of an ideal continuous stirred tank
reactor (CSTR) is considered here. Schematic diagram of
the CSTR process is shown in Figure 3. It shows the chem-
ical reaction that converts an inflowing liquid to a product;
this reaction is non-isothermal as described in [18]. The first
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Figure 3. An ideal continuous stirred tank reactor.

Figure 4. Scheduling trajectory C1(kg/m
3) for Example 2.

principles-based model is described by

Ṫ2 =
Q1

V
(T1 − T2)− UHE

AHE
(T2 − Tc) +

∆Hk0

ρcρ
e−

EA
RT2 C2,

Ċ2 =
Q1

V
(C1 − C2)− k0e

− EA
RT2 C2, (35)

where Tc, T1, T2 are the temperatures for the coolant, the
inflowing and outflowing liquids, andC1, C2 denote the con-
centration of the raw material and the product, respectively.
Variable Q1 denotes the input flow of raw material to the
CSTR. A typical control objective is often to regulate the
concentration C2 or the temperature T2 in the reactor; these
two signals make up the internal states of the system. In this
study, we consider the product temperature T2 to be the reg-
ulated output. Variables Q1 and Tc are used as manipulat-
able signals. Steady-state operating conditions and parame-
ter values are taken from [18] and are not reproduced here.
Raw material concentration C1 is taken as the scheduling
variable p. This is because step changes in the manipulated
variables at different values of C1 show significantly dif-
ferent dynamics in terms of time constants, relative gains,
and even the sign of the gain exhibits non-minimum-phase
behavior at certain operating points [18]. The process is as-
sumed to be a first order reaction with a temperature rela-
tion according to Aarrhenius law; it is also assumed that the
temperature increase in the coolant over the coil can be ne-
glected. The inflow and outflow rates, Q1 and Q2, are kept
equal. Previously, we published our LPV-SS identification
study of the CSTR model in [13] under the strong assump-
tion that both the internal statesC2, T2 were available for full
measurement. Here, we intend to assess the capabilities of
our KCCA-based LS-SVM algorithm to predict the internal
states when they are not available in full for measurements,
and then use them for LPV identification. We then intend
to compare the performance with our previous results that

Table 2
CSTR output fitness simulation results.

SNR (dB) BFR (%)

LS-SVM (full states measurement) 25 86.72

KCCA-based LS-SVM 25 83.23

assumed full measurements of states. For this purpose, the
measurements for C2 are assumed not available, and only
output measurements T2 are taken. Pseudo random binary
sequences (PRBS) of the two inputs with± 10% of the nom-
inal values are used to excite the CSTR model. Gaussian
white noise is added such that 25dB SNR is maintained for
the output T2. A slowly-varying trajectory for the schedul-
ing variable C1 with limits at ±50% of the nominal value
is used, as shown in Figure 4. A sampling time of 60s is
chosen to generate the input-output data. We choose RBF
kernel for the KCCA-based state estimation, and make use
of optimization of (34) to obtain the hyper-parameter set 7 .
The past and future window size for the input, output and
scheduling variables data is set to d = 4. The KCCA-based
LS-SVM algorithm estimates state sequences x̆ and then
uses the augmented data set to find the state-space matrix
functions. The fitness score based on BFR percentage (33)
are also calculated, and their values are presented in Table 2.
Compared to the LS-SVM algorithm that assumes complete
measurement of both states, the KCCA-based LS-SVM al-
gorithm obtains slightly lower, but comparable BFR values.
However, the proposed kernelized CCA algorithm does well
to find directions in the RKHS where correlation between in-
puts and outputs are maximized, and then uses this solution
to estimate transformed estimates of the states. This gives
us, despite the lack of state measurements in full, a compa-
rable prediction for T2. Negligibly small improvements are
observed if an attempt is made to fit a higher order model.
Simulated values of the identified models with and without
state measurements are shown in Figure 5. Overall, the pro-
posed kernelized CCA for state estimation in LPV-SS mod-
els shows an encouraging ability to estimate state variables
that can tie past and future input-output behavior together.

7 Concluding Remarks

This paper has presented a nonparametric method for iden-
tification of LPV-SS models. The proposed technique relies
only on the inputs, outputs, and scheduling variables data.
The states are estimated up to a similarity transformation by
using correlation analysis between the past and future data.
Once estimated, an LS-SVM-based non-parametric scheme
is used to identify the underlying LPV model. The proposed
scheme solves a convex optimization problem and provides
encouraging results on a MIMO numerical example with
challenging nonlinearities in the presence of noise. The pro-
posed algorithm is further validated on the model of a con-
tinuous stirred tank reactor process, and results are compared

7 For n̂ = 2, the tuned values of the hyper-parameters are as fol-
lows: σc = 470, νf = 1000, νp = 1000, {σs,i}4i=1 = {360, 2600,
360, 7000}, {γi}2i=1 = {500, 500} and ψ = 1.2× 105.
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Figure 5. Example 2: (left) Validation results for CSTR output temperature T2(
oC) using LS-SVM-based identification with and without

full states measruements, and (right) validation error.

with an earlier study that assumes complete knowledge of
the states. We find that kernel CCA provides encouraging
state reconstruction results, which can then be augmented
with the measured data in order to build an LPV-SS model.
The main contribution of this paper lies in formulating the
kernel CCA and LS-SVM solution for this identification
problem by preserving the linearity structure in parameter-
dependent state-space models. The proposed method also
does not impose any dependency structure on the matrix
functions, affine or otherwise. Since LPV-SS models are im-
portant for LPV control synthesis purposes, we believe that
this work has the potential to pave the way for efficient low-
order LPV modeling for control synthesis.
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[19] R. Tóth, V. Laurain, W.X. Zheng, and K. Poolla. Model structure
learning: A support vector machine approach for LPV linear-
regression models. In Proc. of the 50th IEEE Conf. Decision and
Control, and European Control Conf., pages 3192–3197, Dec 2011.

[20] J.W. van Wingerden and M. Verhaegen. Subspace identification of
bilinear and LPV systems for open-and closed-loop data. Automatica,
45(2):372–381, 2009.

[21] V. Verdult, J.A.K. Suykens, J. Boets, I. Goethals, and B. De Moor.
Least squares support vector machines for kernel CCA in nonlinear
state-space identification. In Proc. of the 16th Intl. Symp. Math.
Theory of Networks and Syst, Leuven, Belgium, 2004.

[22] V. Verdult and M. Verhaegen. Subspace identification of multivariable
linear parameter-varying systems. Automatica, 38(5):805–814, 2002.

[23] V. Verdult and M. Verhaegen. Kernel methods for subspace
identification of multivariable LPV and bilinear systems. Automatica,
41(9):1557–1565, 2005.

10


