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Abstract

Kernel-based regularization approaches for impulse response estimation of Linear Time-Invariant (LTT) systems have received
a lot of attention recently. The reason is that regularized least-squares estimators may achieve a favorable bias/variance trade-
off compared with classical Prediction Error Minimization (PEM) methods. To fully exploit this property, the kernel function
needs to capture relevant aspects of the data-generating system at hand. Hence, it is important to design automatic procedures
for kernel design based on data or prior knowledge. The kernel models, so far introduced, focus on encoding smoothness
and BIBO-stability of the expected impulse response while other properties, like oscillatory behaviour or the presence of fast
and slow poles, have not been successfully implemented in kernel design. Inspired by the representation theory of dynamical
systems, we show how to build stable kernels able to capture particular aspects of system dynamics via the use of Orthonormal
Basis Functions (OBFs). In particular, desired dynamic properties can be easily encoded via the generating poles of OBFs.
Such poles are seen as hyperparameters which are tuned via marginal likelihood optimization. Special cases of our kernel
construction include Laguerre, Kautz, Generalized OBFs (GOBFs)-based kernel structures. Monte-Carlo simulations show
that OBFs-based kernels perform well compared with stable spline/TC kernels, especially for slow systems with dominant
poles close to the unit circle. Moreover, the capability of Kautz basis to model resonating systems is also shown.

Key words: Bayesian identification; System identification; Reproducing kernel Hilbert space; Orthonormal basis functions;
Machine learning; Regularization.

1 Introduction dimensional parametric model structure is first postu-
lated and then parameter estimation is performed by
minimizing the f3-loss of the prediction error. A main
difficulty within these approaches is the choice of an
adequate model structure with sufficiently low order
and sufficiently high performance (most commonly the
achievable prediction accuracy). This is related to the
classical bias/variance trade-off of model estimation.
The classical approach to resolve this trade-off is to
resort to complexity criteria as Akaike Information
Criterion (AIC) [5], Bayesian Information Criterion
(BIC) [6] or Cross-Validation (CV) [1]. However, the
performance of the ML/PEM equipped, e.g., with AIC,
is not always satisfactory, especially for short and noisy
observations [7].

Data-driven modeling of Linear Time-Invariant (LTT)
systems is a well-established field [1-3]. After choos-
ing the form of the model for capturing the dynamics,
e.g., state-space, transfer function or impulse response
representation, the main stream model estimation
methods either fall into the category of Mazimum
Likelihood/Prediction Error Minimization (ML/PEM)
[1,2] or subspace [4] approaches. In ML/PEM, a finite-
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A different approach to deal with the bias/variance
dilemma is to resort to regularization. Popular ap-
proaches are, e.g., £1/LASSO [8], nuclear norm [9] and
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Non-Negative Garotte (NNG) [10]. However, tuning of
the regularization parameter of these methods in real
world applications is often found to be a difficult task.
In [11], an approach called SPARSEVA is proposed,
which provides an automatic tuning of the amount of
regularization to ensure consistency of the regularized
estimator. However, {1 regularization is employed to
perform parameter selection/order selection rather than
optimizing the bias/variance trade-off. This points to
the need for automatization of classical model order
selection into a single step approach.

Alternatively, a novel kernel-based regularization ap-
proach, that merges ideas from machine learning, statis-
tics and dynamical systems, has been introduced re-
cently [12] and further developed in [7,13,14]. By this
approach, an impulse response model structure is pos-
tulated and the model estimation is tackled by mini-
mizing a regularized functional defined over a Reproduc-
ing Kernel Hilbert Space (RKHS). This approach over-
comes ill-posedness and ill-conditioning by restricting
the high degree-of-freedom offered by the nonparamet-
ric estimator via the inclusion of smoothness and stabil-
ity information on the to-be-estimated impulse response
function. To do so, a suitable kernel structure K, which
uniquely defines the RKHS (estimation space) and de-
pends on an unknown hyperparameter vector 3, has to
be designed. The tuning of 3 replaces the classical model
order selection and can be efficiently accomplished by a
Bayesian interpretation of regularization, where the un-
known impulse response is a realization of a zero-mean
stochastic Gaussian process [15] with covariance given
by the kernel. In particular, one can employ an empiri-
cal Bayes approach where the marginal likelihood of [ is
maximized [16-18]. Some available kernel structures, in-
spired by machine learning literature, are, e.g., the Sta-
ble Spline (SS) kernels [12], Diagonal/Correlated (DC)
kernels [13] and first order stable spline kernels known
as Tuned/Correlated (TC) kernels [13], etc. Such kernel
models include smoothness and exponential decay infor-
mation on the impulse response, but do not embed ex-
plicitly other dynamical aspects.

By taking a look at system theory, Orthonormal Ba-
sis Functions (OBFs) have attractive properties in both
system identification and series expansion representa-
tion of LTT systems [19,20]. OBF's can be generated by a
cascaded network of stable inner transfer functions, i.e.,
all-pass filters, completely determined (modulo the sign)
by their poles. In the frequency-domain, OBF's provide a
complete orthonormal basis for the Hardy space /% (E).
This is the space of functions over C that are squared in-
tegrable on the unit circle and analytic outside of it. Fur-
thermore, in the time-domain, their correspondents, i.e.,
their impulse responses, constitute a complete orthonor-
mal basis for ¢5(N), i.e., the space of squared summable
sequences, making them attractive for construction of
kernels that can overcome the current challenges.

There have already been few attempts to introduce
OBF's-based kernels for impulse response estimation in
the Bayesian setting, e.g., [21]. However, the proposed
OBF's-based kernels do not perform well compared, e.g.,
with the TC kernel, as shown in [21, Section V]. Indeed,
in this paper, we will show that the formulation in [21]
generates a kernel which does not imply the stability
of the associated model set. Moreover, the number of
basis functions to be used to construct such kernels,
which is closely related to the used OBFs, is also an
open question [21] which hampers the utilization of this
idea in the Bayesian estimator. Indeed, when utilizing
OBF's model structure or constructing a kernel function
based on OBF's, we face two issues: i) the choice of an
appropriate set of OBFs that has a wide representation
capability; ii) the choice of an effective number of ex-
pansion coefficients to be estimated, i.e., the required
number of basis repetition. As we will see, these two is-
sues are related, i.e., with a “wrong” choice of the basis,
a long expansion is needed while, with a “well-chosen”
basis, a short expansion is sufficient to achieve the same
prediction capability. We are aiming at a data-driven
approach to decide on both issues.

In this paper, we tackle these problems by construct-
ing implicitly stable OBFs-based kernels directly in the
time-domain via the use of a decay term that weights the
OBFs. We show that appropriate construction of this
decay term not only ensures the stability of the impulse
responses in the associated RKHS, but also circumvents
the need for selecting the number of basis functions.

Preliminary work regarding this result can be found in
[22]. However, novel aspects of the current paper include

(1) Derivation of the OBFs-based kernel from both sys-
tem theoretic and machine learning perspectives;

(2) Derivation of the connection between regularized
impulse response estimation with OBFs-based ker-
nels and regularized OBFs expansion estimation
presented in [21, Section IV];

(3) Stability analysis of kernels induced by general
OBFs.

Since OBF's are determined in terms of the poles of the
inner function that generates them, these poles can be
interpreted as hyperparameters of the associated ker-
nels. Hence, estimation of these poles can be performed
in a Bayesian setting by maximizing the marginal like-
lihood with respect to the observed data. So, by tun-
ing the generating poles together with the decay term
through a marginal likelihood maximization, the above-
mentioned issues, i.e., i), ii), can be circumvented in a
completely data-driven manner. As an illustration of the
construction mechanism, three special cases of OBFs-
based kernel structures, i.e., Laguerre, Kautz and Gener-
alized OBF's basis [23,24], are introduced and compared
to other structures such as the TC kernel. The paper is
organized as follows. The problem statement is provided



in Section 2. Then, in Section 3, important definitions
related to the considered RKHSs are given. In Section
4, the concept of OBF's and their associated RKHS are
introduced. Regularized impulse response estimation is
explained in Section 5. In Section 6, regularized estima-
tion with OBF's-based kernels is revealed. The proposed
method is assessed by an extensive Monte Carlo simula-
tion in Section 7, followed by the conclusions in Section
8.

Notation

The following notation will be used throughout the pa-
per: C denotes the complex plane, D is the interior of the
unit disc, i.e., {z € C| |z| < 1}, T is the unit circle, i.e.,
{#z € C | |z| = 1} and E is the exterior of the unit disc,
ie.,E=C\(DUT). z* denotes the complex conjugate of
the complex number z € C, R stands for real numbers,
while Z denotes the set of integer numbers and N is all
positive integers. ||al|2 represents the Euclidean norm of
a vector a and | A| is the determinant of a square matrix
A. I, denotes the n-dimensional identity matrix and d;;
denotes the Kronecker delta, i.e., §;; = 1if ¢ = j and
0 otherwise. Finally, G(z) : C — C denotes the trans-
fer function of a discrete-time, LTT, causal, Single-Input
Single-Output (SISO) system, ¢ is the forward time-shift
operator, i.e., qz(t) = x(t+1), t € Z is the discrete time
and with G(¢q) we denote the time-domain transfer op-
erator corresponding to G(z).

2 Problem Statement

Consider a SISO, finite order, asymptotically stable and
LTT discrete-time data-generating system described by

y(t) = Go(q)u(t) + v(t), (1)

where y : Z — R is the output, u : Z — R is the input
of the system and v is a white Gaussian noise process
with variance o2, i.e., v(t) ~ 4(0,0?), independent of
the input u. Here v is considered to be white for the sake
of simplicity. The case when v is colored can be handled
in a straightforward way as shown in [25, Section 5.3].
Furthermore,

Go(q) = ngq_k, (2)
k=1

is the transfer operator of the deterministic part of the
system (1), where g = {g;, } 1=, is the unknown impulse
response associated with Go(g). In (2), it is assumed
that Gy does not have a feedthrough term, i.e., g, = 0.
Hence, the data-generating system (1) can be written as

y(t) = gpult —k) +o(t) = (g®u) (t) +o(t), (3)
k=1

where (g ® u)(t) denotes the convolution between the
impulse response g and the input w at time t. Given NV
data points Dy = {u(t),y(t)}; generated by (3), our
goal is to estimate g, as well as possible. The correspond-
ing identification criterion to achieve this goal will be
defined later.

3 Basis functions and Hilbert spaces

This section is included to make the paper self-contained
and readers who are familiar with Hilbert spaces and
kernel functions can skip it without losing the line of
reasoning in the sequel of the discussion. Note that, in
the next sections, we will discuss both real- and complex-
valued spaces. Therefore, in this section, we will treat the
general case of complex spaces from which the special
case of real-valued spaces follows immediately.

3.1 Kernel functions and their RKHS

Let us first recall the definition of a positive definite
kernel.

Definition 1 [Positive definite kernel]. Let 2" be a met-
ric space. A complex-valued function K : & x Z — C
is called a positive definite kernel if it is continuous, sym-
metric and satisfies > ;" a;a; K(z;,x;) > 0 for any fi-

i,j=1
nite set of points {x1, ..., xm}t C 2 and{a1,...,an} C

Definition 2 [Reproducing kernel|. Let 5 be a Hilbert
space of complezx-valued functions on 2~ with inner prod-
uct (-, ) . A complez-valued function K : Z x £ — C
is a reproducing kernel for € if and only if

(1) Ve € 2K, = K(z, ) € H, where K, is the so-
called kernel section centered at x;

(2) The reproducing property holds, such that
f(fE):<f(),K(SC,)>%, VIE%,VJCE%. O

A Hilbert space of complex-valued functions which pos-
sesses areproducing kernel is called an RKHS [26]. More-
over, due to the Moore-Aronszajn theorem [27], there is
a one-to-one correspondence between an RKHS 27 and
its reproducing kernel K i.e., to every positive definite
kernel K, there is a unique RKHS 7 with K as its re-
producing kernel and vice versa.

Definition 3 [RKHS]. Let K be a positive definite ker-
nel function and € is the associated RKHS. Then, 7 is
defined to be the closure of Span{ K, := K(z,-) : x € Z'},

i.e., the functions in J can be written as

2, €2, a; €C, ||flloe < +o0},



where || f|l2 = \/{f, [) e is the norm in S induced by
the inner product defined in J€, which in terms of K
satisfies that

= ZZ &ib;K(IEZ‘,ZEj),

i=1 j=1

h=Y bK,,. O
j=1

o0
g = Z aiKZI?iﬂ
i=1

Since the reproducing kernel K completely characterizes
the associated RKHS 47, therefore, in the sequel, we
shall denote that RKHS as J#% and its inner product as
(-, -y x with the associated norm || - || k.

3.2 An orthonormal basis viewpoint on kernels

Let us start by presenting the definition of the orthonor-
mal basis of a Hilbert space.

Definition 4 [Orthonormal basis of a Hilbert space]. A
sequence {1}, in a Hilbert space A is said to be a
complete orthonormal basis if the following conditions
are satisfied:

05,75 ,

* ! ) 1, foralli=j>1.

o Foranyf € , f =3 1o, ci¥k, wherecy, = (f,95)
are the expansion coefficients of f under the basis
{Vk} oz - (I

{O fori#j

Let Ly(Z") be the Hilbert space of squared integrable
functions on 2. Furthermore, suppose that the kernel
K is squared integrable, i.e.,

/ / K?(z,2) dx dz’ < +oo.
XS

Then, there exists an orthonormal sequence of contin-
uous elgenfunctlons {0:};2, € Ly(Z) and eigenvalues
)\1 Z )\2 = Z 0 with

At (z /me)ﬁk( "Nda', x e X,

where )y, is the eigenvalue associated with ¥y [26, Page
3]. Under these conditions, Mercer’s theorem [28] allows
us, to represent the kernel function K in terms of the
eigenvalues {\;};=; and the eigenfunctions {¥;};~, as
follows [15]:

)= 3 At (a),
k=1

where z, 2’ € 2. Furthermore, {\/Eﬁk}:;l forms an
orthonormal basis for /%, the associated RKHS of K.
This means that any function f € % can be repre-
sented as a linear combination of the orthonormal basis
of the kernel K as follows

{f%—><C|f z::dﬁ i }
(4)

where {d; }?°, is an absolute convergent sequence. Based
on the inner product, || f||% = (f, f)x = Yooy dil*/ M.
Hence, the inner product (f,g)x for any f,g € %
with f = Y72, a0, and g = Y2, b;); can be also
represented as

(fr9)Kx = Zaibf/)\i.
i=1

3.3 The spaces of stable discrete-time systems

Let us first introduce the space ¢5(N) as the space of
squared summable sequences, i.e., Y, |h(k)* < oo,
equipped with the well-defined inner product be-
tween any two elements f,g € (3(N) as (f,g)e, =
Soney f(k)g* (k). An interesting subspace of (5(N) is
the subspace R{2(N) which contains only squared
summable real sequences. Moreover, R¢;(N) is the
subspace of absolutely summable real sequences,

Yoreqlh(k)] < oo, equipped with the norm
Blle, = > pey |(K)|. Note that R¢; (N) C Reé(N). The
importance of the space R¢;(N) comes from the fact
that impulse responses h(k) of all finite-dimensional,
discrete-time, stable and causal systems satisfy the nec-
essary and sufficient condition Y 7=, |h(k)] < oo [29],
hence they belong to R¢;(N).

Definition 5 [The Hardy space over E [19]]. Denote by
H5(E) the Hardy space of complex functions F : C —
C, which are analytic in E and squared integrable on T.
() is equipped with an inner product that is defined as

dz

(F1, FY) 7fF1 2)F5(1/2 ) (5)

where j = /=1 and Fy, F; € /45(E). O

Due to the isomorphism between ¢2(N) and J%4(E), any
sequence f € {l9(N) corresponds to one and only one
function F' € J4(E) and vice versa. The following z-
transform defines this isomorphism

= flk)z7F, (6)
k=1

which holds for all z € C in the corresponding region of
convergence. Z.7¢5(E) is the subspace of /% (E) which



contains all functions that have real-valued impulse re-
sponses. Note that Rls(N) and Z.55(E) are also iso-
morphic.

It is worth to mention that functions in Z.5(E) are
not necessarily rational. The subspace Z.7#5_(E) of
R (E) is defined to contain all strictly proper, finite-
dimensional and real rational transfer functions which
are analytic in E and are 0 for z = oco.

Regarding these spaces the following canonical orthonor-
mal basis can be given:

o RUy(N): 04(k) = o, i€N,
o B9 (E): 9;(2)=2"" ieN

4 Rational Orthonormal Basis Functions

In this section, to develop our kernel construction, we
introduce a general class of OBFs for Z.75(E), namely,
the so-called Takenaka-Malmquist functions, and their
special case, the Generalized OBFs (GOBFs).

4.1 Series expansion representation in terms of OBFs

In the sequel, we introduce OBFs which constitute a
complete basis for Z.3(E). Let Gy = 0 and {G;}52,
be a sequence of stable inner functions, also known as
all-pass filters, which satisfy G;(2)G;(1/z) = 1. Let
{&1,€2,...} C D denote the collection of all poles of
the inner functions Gy, Ga, ... satisfying the complete-
ness condition Y 7o (1 — |&]) = oo. Based on {G;}2,
the so-called Takenaka-Malmquist basis functions are
defined as [19]

VICGPE S 1-¢
i) = =L H —

Note that, in the general case, in the sense that there
are no further restrictions on the generating poles, such
basis have complex-valued impulse responses, i.e., they
span J%(E). In order to guarantee that the associated
impulse responses with the considered basis are real-
valued, i.e., that they are restricted to span Z.55(E),
the complex poles should appear in complex conjugate
pairs.

The special case when all G; are equal, i.e., Gi(z) =
Gy, Vi > 0, where Gy, has McMillan degree ngs > 0,
are know as GOBFs or Hambo functions for arbitrary
ng > 0, Laguerre functions for ng = 1 and 2-parameters
Kautz functions for ng = 2. Note that for these spe-
cial cases, i.e., GOBFs, Laguerre and Kautz functions,
the completeness condition is always fulfilled. In the se-
quel, we discuss GOBF's functions in more detail. Let

Gy, € #5_(E) be an inner function with McMillan de-
gree ng > 0. Such a function is completely determined,

modulo the sign, by its poles A, = [£1---&,,] € D™= :
R
Gb(z):iil;[lf&7 (8)

with A,, containing real poles and/or complex conju-
gate pole pairs. Let (A, B, C, D) be a minimal balanced
state-space realization of G(z). The class of GOBF's is
obtained by cascading copies of Gy, i.e., identical nfgh or-
der all-pass filters, and can be written in a vector form
as:

Vi(2) = Vi(2)GE1(2), fork > 1, 9)

where Vi (z) = (21—A) " B. Let ; = [V4]; denote the ith
element of V1. Then, the GOBF's consists of the functions

, with k = j - ng + 1.
(10)
These functions, i.e., (10), constitute a complete

orthonormal basis for Z#3(E). As a result, any
G € #7¢5(E) can be decomposed as

U= {Yr}p_, = {‘PiG%}j;oo

J=0

2) =Y ext(2), (11)
k=1

with ¢; € R. Expansion (11) can be seen as the gen-
eralization of expanswn with pulse basis functions, i.e.,
{z_k } x—1+ used in the impulse response model th‘UC—
ture (2). It can be shown that the rate of convergence of
this series expansion is bounded by p = maxy, |Gy, (1, )|,
called the decay rate, where {ny} are the poles of G(z)
[30]. In practice, only a finite number of terms {1y },~,
is used, like in Finite Impulse Response (FIR) models,
where {z7*}"'_ are used as basis functions. In contrast
with FIR structures, the OBFs parameterization uses
a broad class of basis functions with Infinite Impulse
Representation (IIR). Therefore, OBFs parameteriza-
tion can achieve an arbitrary low modeling error with a
relatively small number of parameters due to the faster
convergence of the series representation than in the FIR
case, which in system identification results in decreased
variance of the final model estimate [20,31].

Since we are interested in impulse response estimation
based on time-domain data, it is more convenient to de-
fine the corresponding OBF's in the time-domain. Denote
by ¢x(t) = Z71{11(2)} the correspondent of 1/ in the
time domain, where Z~!{.} is the inverse z-transform
on the appropriate region of convergence. Hence,

= {x}iy, (12)

is a complete basis of R¢a(N) [32]. As a result, any im-
pulse response g € R{2(N) associated with a G(z) €



R (E) can be written as
g(t) = chm(t)a (13)
k=1

where ¢, € R and {cx}32, is equal to the expansion
coefficients in (11). Next, we derive a magnitude bound
for the Takenaka-Malmquist basis [19], which will be
useful later.

Proposition 1 [Magnitude bound of OBFs|. Consider
the general Takenaka-Malmquist basis which is defined
asin (7) with {;};2; C D, which are assumed to appear
as real or complex conjugate pairs, being the generating
poles of {¢pi}re ) € BH2(E) and {dr}re, € RE(N). It
holds that

I6elle, < 2kn, (14)

where k € R depends on the generating poles.

Proof: See Appendix 9.1. O
4.2  RKHS associated with OBFs in the time-domain

A fundamental result on RKHS:

Proposition 2 [Unique kernel for an RKHS [27]]. Let
S be a separable' Hilbert space of functions over %
with orthonormal basis {U;};—,. Then,

A is an RKHS <— Z [0k (z)|* < 00, Vo € 2.
k=1

The unique kernel K that is associated with € is

K(z,y) =Y 0r(@) 0k (y). O
k=1

Consider R¥2(N) and its standard orthonormal basis, see
Section 3.3. Using the above result, it is immediate to
conclude that R¢5(N) is an RKHS with a kernel given by
the infinite-dimensional identity matrix, i.e. K(i,j) =
di;. Now, the simplest kernel that can be built using
GOBFs defined in (12) is

Ko(i,5) =Y ¢xl(i)or (), (15)
k=1

which represents the formulation of the OBFs-based ker-
nel in time-domain and is a reproducing kernel for the
RKHS space spanned by @, i.e., Rl:(N). The effective-
ness of such kernel construction to identify impulse re-
sponses of LTI systems will be assessed in the sequel.

1" A Hilbert space is said to be separable if it has a basis
with countable number of elements.

5 Regularized Estimation of IIRs

In this section, we consider the problem of estimating
the impulse response of the deterministic part of sys-
tem (1) defined in (3), i.e., g = {g}req, from a given
set of observed data, i.e., Dx = {u(t),y(t)} . Follow-
ing the classical approach, in the PEM setting and un-
der the considered noise model, the following quadratic
loss of the prediction error is minimized to get the model
estimate (see [1])

N
g=argmin}_(y(1) ~(g@u)(1)".  (16)

Since the reconstruction of the impulse response func-
tion from a finite number of observations is a deconvolu-
tion problem, which is always ill-posed, hence, estimates
with large variance are expected to be obtained, espe-
cially in case of short and noisy data set. An attractive
way to cope with this problem is to introduce regulariza-
tion into the estimation problem, which can be viewed
from two equivalent perspectives: the first is functional
approximation in RKHS and the second is a Bayesian
interpretation.

5.1 Regularization in RKHS

In kernel based regularization, the estimation of the im-
pulse response of a stable LTI system from noisy mea-
surements is tackled by minimizing a regularized func-
tional with respect to a “well-chosen” RKHS 7#% . The
proposed estimator for impulse response estimation in
[12] is based on solving the following Tikhonov-type vari-
ational problem [33]:

N

g=argmin > (y(t) — (g®w)®)” +pulleglk. (17)
gEAK 1

where g > 0 is the regularization parameter. It is worth
to mention that the cost function in (17) consists of two
terms. The first term is the quadratic loss of the predic-
tion error accounting for the data fit. The second term,
i.e., the regularizer || - ||%, controls the model complex-
ity. The latter term also renders the problem well-posed
by restricting the high degree of freedom offered by the
nonparametric estimation. The restriction is introduced
via expected properties of the impulse response function,
e.g., smoothness and/or stability, expressed through K.
The design of the structure of K involves choosing a pa-
rameterized form of K with some hyperparameters (8
which can express a wide variety of impulse responses,
but at the same time restrict the high degree of free-
dom by encoding the expected dynamical properties like
stability, oscillatory behaviour, etc. Moreover, S must
be low dimensional such that its optimization by using



an empirical Bayes approach in terms of marginal likeli-
hood maximization [16] can be efficiently accomplished
in the considered Bayesian setting. This provides au-
tomatic model structure selection whose efficiency de-
pends on the choice of the structure of K [18]. Such a
tuning approach has shown to better balance data fit
and model complexity compared with classical tuning
methods, e.g., CV.

It is worth to mention that, by considering an FIR trun-
cation of (3) of order n with 0 = [g;---g,]" € R", the
truncation of (3) can be written in the following matri-
cal form

Y=U0+V, (18)
where Y=[y(1) - y(N)]", Up=[U, (1) - -- U,, (N)]" with
Un(i)=[u(i — 1) ---u(i —n)] and V=[v(1)---v(N)]".

Hence, (17) becomes equivalent to the following Regu-
larized Least-Squares (ReLS) problem [25, Section 11.3]

0 = argmin |Y — U,0|2 + u0 " K=1(3)0, (19a)
6

=K(O)U, (UK, +ply) Y, (19b)

where K(3) is an n X n kernel matrix, which is defined
as [K];; = K(i,j) and parameterized in terms of 3 that
contains the hyperparameters requiring tuning.

5.2 Bayesian perspective on reqularization

Under the Gaussian regression framework [15], the es-
timator (17) admits a Bayesian interpretation. To show
that, consider the linear regression model (18), where
6 is modeled as a zero-mean Gaussian process [15], in-
dependent of the noise V, with a covariance (kernel)
matrix K(f8), i.e., 8 ~ A(0,K(3)). Accordingly, ¥ ~
A(0,%), where X is the covariance of Y given by X :=
U, K(B)U,” + 02Iy. As aresult, # and Y will be jointly
Gaussian distributed. Hence, in terms of this Bayesian
interpretation, the minimum variance estimator of 6 for
known Y, U, and B is E{6|Y,U,, 3} given by (19b),
where F is the expectation operator. This interpretation
provides an efficient way to estimate the unknown hy-
perparameters from data following an empirical Bayes
approach [16,17]. Denote p(Y|3) the likelihood function
of the observations Y given 8. Then, the maximum like-
lihood estimate of 3 is given by

B = argmax p(Y|B) = argmin Y 'E7'Y +log %]
B B
(20)
By replacing S in (19b) by its maximum marginal likeli-
hood estimate 3, we obtain the so-called empirical Bayes
estimate? 6.

2 Tt is known from [25] that the optimal value of y is the
noise variance o2 in the sense that it minimizes the Mean

5.3  Kernel structures for impulse response estimation

For impulse response estimation, the kernel function K
should reflect what is reasonable to assume about the im-
pulse response, e.g., if the system is exponentially stable,
the impulse response coefficients g;, should decay expo-
nentially, and if the impulse response is smooth, neigh-
boring values should have a positive correlation [25]. For
this purpose, it is useful to recall that the optimal kernel
[13, Theorem 1] for the estimation problem (17) is given
by:

where i,j € N and g = {g;},-, is the true impulse re-
sponse. Even if (21) is impossible to be used in practice
since the true impulse is unknown, it provides a guide-
line to design a suitable kernel function for regularized
impulse response estimation.

In the literature, many kernel structures have been in-
troduced, e.g., SS kernel [12], DI kernel, DC kernel [13],
TC kernel [13,14]:

K3(B) = {ﬂlﬂé7 =7 B=1[BBa]" (22a)

0, otherwise’

K2C(B) = k15,7, 6= 101 o pu] (22D)
KP(8) = By min(B3, 83), 8= 1[51 2] " (22¢)

Blﬁgi(ﬁj _ 5;)’ i>j
K35(8) = 2,023 . B= T
1 (0) {ﬁg% (8L — %2), otherwise B=16
(22d)

These kernels have a well-known spectral decomposition
[35, Theorem 3.1], [12, Section 5] and their orthonormal
basis decay to zero guaranteeing the stability of the im-
pulse responses in the associated RKHS. However, there
are other dynamical properties that could be included,
e.g., resonance behaviour, damping, etc. In the next sec-
tion, we propose an advanced kernel structure that is ca-
pable of expressing these dynamical aspects, which can
be seen as a refined form of the above kernels to step
closer to (21) with a flexible parameterization.

6 OBFs kernels based IIR estimation

In this section, we give a systematic way to construct
kernel functions for impulse response estimation based

Squared Error (MSE) of the estimator 0, which is typically

not known a priori. One possible way is to treat o? as an
additional hyperparameter. Alternatively, a low-bias high-
order ARX [12] or FIR model [13] can be estimated with least
squares and then use the sample variance of the residuals
as an estimate of o2 [1], [34]. In this paper, we follow the
approach of estimating a low-bias high-order FIR model as
in [13].



on OBFs that are capable of describing a wide range
of dynamical properties. This results in a tailored made
RKHS improving the accuracy of the model estimates
by exploiting a better bias/variance trade-off compared
to existing kernels.

6.1 System theory perspective

Starting from (13) and remembering (21), it follows that
the optimal kernel in terms of the OBFs sequence ® =

{¢r}2, is given by:

K(i,j) = ch¢k ch¢l(j)
=1

ZZ ckcrdr(i)u(d)-
k=1 1=1

In the Bayesian setting, g is assumed to be a particu-
lar realization of a Gaussian random process. This cor-
responds to the assumption that the expansion coeffi-
cients, i.e., {¢x}r—; is a sequence of independent ran-
dom varlables with zero-mean and variance gk, ie., cp ~
(0, gk) then, by taking the expectation, we have

D=5 {55 a0 =3 dontiont

k=11=1

It is well-known that the expansion coefficients {cy }72
satisfy > 0o |ek|? < oo, ie., {cr}72, € Rla(N). Rly(N )
is a rich space that contalns the impulse responses of
possibly infinite-dimensional and time-varying systems.
However, we are interested only in finite-dimensional
LTI systems with impulse responses that belong to
RY¢;(N), hence the expansion coefficients must satisfy a
more restrictive condition Y-, |cx| < co. One possible
way to impose such behavior in the kernel definition is
to enforce {s?} to decay exponentially to zero. This will
become more clear in the sequel.

6.2 Machine learning perspective

Given a sequence of OBFs @ = {¢y } - ;, it is shown that
these basis span an RKHS with the reproducing kernel
given in (15). Since ® is an orthonormal basis in R¢3(N),
from Proposition 2, it comes that K¢ (i,7) = d;;. If the
system to be identified is stable, this kernel will perform
poorly (this coincides with the conclusion in [21, Section
V]): in fact, the optimal structure (21) suggests that the
diagonal elements of the kernel should decay to zero, in-
stead of being constant. In addition, the off-diagonal el-
ements should be different from zero. Also the Bayesian
interpretation of regularization, as described, e.g., in [25,
subsection 4.3], supports the same conclusions from a
Bayesian perspective. The estimator (17) can in fact be
seen as the minimum variance estimator of the impulse

response when the latter is a zero-mean Gaussian pro-
cess, independent of the noise, with covariance propor-
tional to K. When (15) is adopted, g becomes propor-
tional to a stationary white noise. But the variability of
a stable impulse response is expected to decay to zero
as time progresses. Hence, (15) defines a kernel which is
not stable according to the following definition (which
extends to the discrete-time case the one contained in
[25, Section 13)):

Definition 6 [Stable RKHS]. Let % be the RKHS of
real-valued functions with domain N induced by a kernel
K. Then, 7 is said to be a stable RKHS, and the as-
sociated K is called stable, if #x C RE1(N). O

Based on the isomorphism explained in Section 4, the
kernel defined by the OBFs, i.e., @, leads to an RKHS as
a hypothesis space given by R¢5(N). However, Rl (N) ¢
R{1(N), hence the kernel is not stable. The following
proposition provides a sufficient condition for a kernel to
be stable. The proof is omitted since it is derived from the
results contained in [36] following the same arguments
as in [25, Section 13]. In particular, one can first think
of the function domain as N equipped with a counting
measure. Then, the rationale in [25, Section 13] holds by
replacing integrals with infinite sums.

Proposition 3 [Sufficient condition for kernel stabil-
ity]. Let 75 be the RKHS on N induced by a real repro-
ducing kernel K. Then,

SN UK ()| < 00 = M C RE(N). O

i=1 j=1

In view of the above results from both machine learning
and system theory perspectives, to include the stability
constraint, the approach proposed in this paper is to
consider the following kernel construction

Ks(i,5) &Zm (Ba) o (1) r(5), (23)

where r(84) > 0 converges to zero as k — oo, Bq is
considered to be a hyperparameter that determines the
decay rate of the expansion (23). The decay term, i.e.,
rk(B4), with B4 tuned by marginal likelihood optimiza-
tion acts as an automatic way to select the number of sig-
nificant basis functions that are needed to construct the
kernel. In absence of more sophisticated prior informa-
tion, in many cases, monotonically decreasing weights,
e.g.,

ri(Ba) = k771, Ba >0, (24)

or

re(Ba) = B3 ", Ba> 1, (25)



are effective choices. This is also supported by system
theory, where it is known that the decay rate of the ex-
pansion coefficients can be always upper bounded by an
exponential term [19], [37, Equation 5.17]. However, de-
pending on the available knowledge, other parameters
can be introduced in the decay term that describe more
complicated shapes for the weights. Similarly, when prior
information is available, the choice of the basis functions
can be further restricted. This fits in the framework de-
veloped in this paper, e.g., if the number of resonance
peaks is known, we can use such information to decide
the number of complex pairs/real poles that should be
considered for the GOBF's.

The following proposition provides information on
the stability of the kernel constructed using general
Takenaka-Malmquist 3 OBFs.

Proposition 4 [Stability of the OBFs based kernels].
Consider the kernel (23) built using the general OBF's
basis. Then, such a kernel is stable if ri(Bq) = k5 and

Ba >3 orry(Ba) = ,6’;’“ and g > 1.
Proof: See Appendix 9.2. O

Next to B4, the other hyperparameters that character-
izes an OBF's kernel are: the scale factor 5 and the poles
used to generate the sequence ¢y(-), i.e., the poles A,
of the associated inner function Gy, collected in a vector
Bp- All the hyperparameters 8, 4, B, are collected into
(5. This allows to introduce an identification scheme for
regularized impulse response estimation with the OBF's-
based kernel (23) as summarized in Algorithm 1. For a
frequency domain formulation of this kernel and the as-
sociated results see [38].

Algorithm 1 Regularized impulse response estimation
with OBFs-based kernel (23)

Require: A data record Dy = {u(k), y(k‘)}g:1
1: Estimate the noise variance o2 with 62 using a low-
bias high-order ARX or FIR model estimated with
the least-squares approach.
2: Hyperparameters estimation: Solve (20) to get the
empirical Bayes estimate B for B = [ﬁs B4 ﬂ;] i

3: Impulse response estimation: With § = g and pu =
&2, the estimate of the impulse response is computed
via (19b).

4: return Estimated impulse response 6.

3 We prove the stability under a general class of OBFs and
hence the results hold for the special cases, e.g., GOBFs,
Laguerre and Kautz basis.

6.3 Regularized OBF's expansion estimation

In [21], a regularization-based estimation of OBFs ex-
pansions (ROBFs) has been investigated. More specifi-
cally, an ny,—truncated version of the OBFs model struc-
ture (13) has been considered:

s =S e ow® +olt).  (26)
k=1

As an extension of the Bayesian impulse response iden-

tification, the expansion coefficients ¢ = [c1 - - ¢,,] | are
estimated by minimizing the following modification of
the ReLS criterion (19a)

¢ =argmin|Y — F(Bp)cHg + O'QCTKc_l(ﬁC)C,

CeR"Lb
N ny 2
=argmin ) (y(t) > cx(ox ® u)(t)| + 0’ K (Be)e,
c€R™ 47 k=1

(27)

where 3, is the vector that contains the generating poles
for the OBFs, K.(f.) is the regularization matrix on
the expansion coefficients {cy},~,, ¢ is the vector that
contains the hyperparameters associated with K. that
describe the behaviour of the expansion coefficients, and

T(Bp) = [T (1) - 4T (\V)]

is the regression matrix with
v(k) = [(pr @ u)(k) - (dn, ®u)(k)].

The expansion coefficients are assumed to be absolutely
summable, according to the stability assumption on the
data-generating system, hence kernels such as the TC,
DC and SS can be used to regularize the estimation of
these coefficients, i.e., to construct K.. Moreover, the
generating poles 3, of the OBFs are considered as addi-
tional hyperparameters and can be estimated by the em-
pirical Bayes method besides of other hyperparameters,
like 8., that parameterize the kernel, used to describe
the distribution of the expansion coefficients.

Furthermore, it has been shown in [21, Section V] that
regularized impulse response estimation with the OBF's-
based kernel K¢ (15), i.e., the unstable formulation, is
a special ill-defined case of the ROBF's estimation prob-
lem (27) pointing out that using OBF's in defining kernel
functions in the time-domain in a naive way is not ad-
visable. More specifically, when adopting (15), the reg-
ularized impulse response estimation with (15) becomes
equivalent to the Ridge regression of ¢, i.e., K. = I,
in (27), which cannot guarantee the absolute conver-
gence of c¢. As a further extension of this result, in the



sequel, the connection of the impulse response estima-
tion with the stable OBFs-based kernel K§ defined in
(23) and the ROBFs approach is shown. By consid-
ering an np—truncated kernel representation? of K3,

Le, K3(i,j) = Bsdptqmk(Ba)ow(i)or(j), the associ-
ated RKHS %K; can be written as

%K; = Span{¢17 ¢27 ey ¢nb}

= {g [ 8(t) =D crdn(t), ek € R} . (28)
k=1
with

ek = (8 Pk) K3, »

and
nb
lelFes = > ct/rr(Ba) = "K' (Be)e,
k=1

where ¢ = [c1 ... ¢, " and Kelij = 7j(8a)dsj-

As g(+) = 2242 cudn () and |lg|l%; = cTK' (Be)e, (17)
can be written as
N Ny 2
¢=argmin Z@(t)z ck(dr ® u) (t)) +0o2c"K 1 (Be)e.
c€R™ 47 k=1

(29)
This gives that (29) is identical with (27). Although they
are identical from the optimization point of view with
different parameterization of the solution, conceptually
they are significantly different. The approach in [21] uti-
lizes the Bayesian approach to regularize the estimation
of the expansion coefficients. On the other hand, the ap-
proach presented in this paper uses the OBFs to con-
struct a kernel function that results in a stable RKHS di-
rectly in the time-domain, which can be used for impulse
response estimation and provides a better understanding
of that space. Both approaches consider the generating
poles as hyperparameters and tune them with marginal
likelihood maximization. To clarify the connection be-
tween RFIR with OBF's based kernels (RFIR-OBF's) and
ROBFs, see Table 1.

6.4 OBFs-based kernels with Laguerre and Kautz basis

As an illustration of the kernel construction mechanism,
two special cases of GOBF's defined in (9) are considered,
namely, 2-parameter Kautz functions with ng = 2, and

4 If we consider that § to be the estimate with the infinite
kernel representation, i.e., n, = oo and g, is the estimate
with the np—truncated representation of the kernel, then,
the following result holds limy, 0 [|§— 8§, | x5 = 0, see [39,
Theorem 7].
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Laguerre functions with ng = 1 [19]. Laguerre basis are
defined as

—5 /1 e\ k-1
In(2) = \/Zl_ ; (IZ _fgz)7 ce(-11),

(30)

where the parameter £ is known as the Laguerre parame-
ter or generating pole. The impulse response of Laguerre
basis functions exhibit an exponential decay as shown
in Fig. 1 for £ = 0.5. However, Laguerre functions con-
struction do not allow the use of complex poles, hence,
they are less suitable to capture oscillatory response. In
that case, two-parameter Kautz basis functions result in
a more appropriate structure. The two-parameter Kautz
basis are the set of orthonormal functions

VI =3(z—6) (=P +bc—1)z+1\""
Yok-1 = 224 b6(c—1Dz—c\ 2246(c—1z—c¢ (31)

o = VA=A = 52)(—c22+5(c—1)2+1)k1
T 2 he—1Dz—c\ 2+6(c—1z—c ’

where 6,c € (—1,1). Note that (31) corresponds to a
repeated complex pair £, &* € D, where 6 = (£+£*)/(1+
ge*) and ¢ = —€€*.

Amplitude

Time [sec]

Fig. 1. Laguerre basis functions, 11, 15, 110, Y20 for £ = 0.5.

6.5 Hyperparameter estimation and computational
complexity

In case of the OBFs-based kernel defined in (23), the hy-
perparameters that are need to be estimated from data
are the scaling parameter (5, decay parameter 84 and
the generating poles collected in 3. Note that in case of
a Laguerre-based kernel, only one real pole, i.e., ¢ in (30),
is needed to generate the full sequence of basis and for



Table 1
RFIR-OBFs vs. ROBFs estimation approaches.

RFIR-OBFs ROBFs
Model structure Golq) =72 8eq * gt) = > pe, ckdr(t)
Expansion basis {a7F¥2, {br}iz1
Model parameters {8} i1 {er iz
Optimization problem | (19a) (27)

Utilized kernel

g is regularized using K§ defined in (23)

c is regularized by K., which can be any of the kernels
used for impulse response estimation, e.g., (22)

Hyperparameters Ba: decay rate parameter

Bs: scaling parameter of the kernel

Bp: generating poles of the OBF's

Be: hyperparameters of K.
Bp: generating poles of the OBFs

Role of OBFs Construct the kernel

Filter the input to construct the regression matrix I'

a Kautz-based kernel only two conjugate complex poles,
defined by 6 and ¢ in (31), are needed to generate that
sequence. Estimation of these hyperparameters follow-
ing the empirical Bayes approach can be accomplished
by solving the optimization (20).

The algorithm of regularized impulse response estima-
tion consists of two main steps [40]:

(1) Hyperparameters estimation: This step involves the
minimization of the cost function in (20), which is a
nonlinear optimization problem for which a single
evaluation of the cost function is O(N?).

(2) Impulse response estimation: The computational
complexity of this step is O(N?3).

In [41], a new computational strategy has been proposed
which may reduce significantly the computational load
and extend the practical applicability of this method-
ology to large-scale scenarios. The proposed algorithm
[41, Algorithm 2] is developed for SS kernels and exploits
the spectral decomposition of these kernels [12]. With
this approach, the computational complexity now scales
as O(I3), where [ is the number of the used eigenfunc-
tions. Moreover, it can effectively compute the marginal
likelihood with O(N?[) for a single evaluation of the
cost, see [41, Table 1]. This algorithm is directly appli-
cable for kernels that exhibit a spectral decomposition,
like our OBFs-based kernel. Moreover, the effectiveness
of this algorithm depends on if the to-be-estimated im-
pulse response can be approximated with a few number
of eigenfunctions [41, Page 5]. This motivates also the
use of OBF's as eigenfunctions, offering a wide range of
basis, which if properly chosen, can achieve a high ap-
proximation accuracy with only a few active basis in the
expansion.

7 Numerical Simulation

In this section, the performance of the proposed OBFs
based kernels in the considered Bayesian identification
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setting is assessed via Monte Carlo based simulation
studies using randomly generated discrete-time LTT sys-
tems.

7.1  Simulation studies

By using the setting of (1) as the data-generating sys-
tem, five simulation studies have been accomplished for
the following scenarios:

) S1D1: fast systems, Dy with N = 500, Signal-to-
Noise Ratio (SNR) = 10dB.
) S1D2: fast systems, Dy with N = 375, SNR = 1dB.
) 82D1: slow systems, Dy with N = 500, SNR =
10dB.

) S2D2: slow systems, Dy with N = 375, SNR = 1dB.
) 83: oscillatory systems, Dy with N = 400, SNR =
10dB.

Each Scenario 1) to 4) corresponds to 100 randomly gen-
erated (by the drss Matlab function) 30*® order discrete-
time SISO LTT systems as G. The fast systems have all
poles inside 0.95D and the slow systems have at least
one pole in the ring D —0.95D;, i.e., slow dominant poles.
These systems are used to generate data sets for a white
u, with u(t) ~ N(0,1) and v being additive independent
white Gaussian noise. The variance of v is set such that
the SNR, i.e.,

 0loe [ Zhea 7 (R)
SNR = 10log; (fo_l vQ(k)>

where g(k) denotes the noise-free system output, i.e.,
g(k) = Go(q)u(k), is SNR = 1dB or 10dB for vari-
ous Monte Carlo experiments. Whereas, Scenario 5) has
been generated as reported in [42], but with only one
dominant complex conjugate pole pair.



7.2 Identification setting

In all of the five scenarios, we estimate FIR models, i.e.,
the n—truncated impulse responses of (3) or equivalently
6 in (18), with n = 125 using the following approaches:

(1) RFIR-TC: regularized impulse response estimation
where the impulse response coefficients are esti-
mated by solving (17) and regularized with the TC
kernel (22c).

RFIR-OBF-L, -K or -G: regularized impulse re-
sponse estimation where the impulse response co-
efficients are estimated by solving (17) and regu-
larized with the OBFs based kernel (23) with three
different basis functions, i.e., Laguerre with one real
pole, Kautz with one complex conjugate pair or
GOBF's with two real poles where the generating
inner function (8) is a 2°¢ order one.

ROBF-L, -K or -G: regularized OBF's expansion es-
timation, where the expansion coeflicients are esti-
mated by solving (27) and regularized with the di-
agonal kernel (22a), i.e., DI kernel, with three dif-
ferent basis functions, i.e., Laguerre with one real
pole, Kautz with one complex conjugate pair or
GOBF's with two real poles.

(2)

Note that, two different scenarios are considered for the
number of basis functions to construct the OBF's based
kernel and the OBF's model structure, i.e., ny, = 40 and
ny, = 100. This is provided to show the effectiveness of
the presented approach to control the flexibility offered
by even a large number of basis. The performance in-
dex that is used to measure the quality of the impulse
response estimation is the Best Fit Rate (BFR) of the
estimated impulse response g,

Siy | — &l S
BFR=100%. 1 — /&=ksL®=k 2k o= N "o,
2 e — 82 125 7~

where g, are the true coefficient values. The hyperpa-
rameters have been estimated by the discussed marginal
likelihood maximization, i.e., (20). Note that, in this
work the approach proposed in [40], i.e., QR factoriza-
tion, is employed to solve the optimization problem to
tune the unknown hyperparameters and to estimate the
unknown impulse response.

7.8 Identification results

The average model fits over the considered five data
sets estimated with TC kernel are reported in Table
2, whereas the average model fits in case of (RFIR-
OBF)/ROBF-L, (RFIR-OBF)/ROBF-K and (RFIR-
OBF)/ROBF-G are reported in Table 3, 4 and 5, respec-
tively. Moreover, in each case, the considered scenarios
of different number of basis functions, i.e., 40 basis and
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100 basis, are given®. The highest average model fit
over the RFIR-OBF alternatives or the ROBF alterna-
tives is highlighted in bold. While both weightings, (24)
and (25), are implemented for RFIR-OBF estimators,
their performance was roughly the same . Hence, they
are not distinguished in the provided results.

Table 2
Average of the BFR of the estimated FIR models with TC
kernel.

RFIR-TC \ S1D1 \ S1D2 \ S2D1 \ S2D2 \ s3

| 90.82 | 77.25 | 84.08 | 63.61 | 86.01

Table 3
Average of the BFR of the estimated FIR models with La-
guerre basis.

RFIR-OBF-L | SID1 | 81D2 | s2D1 | s2D2 | s3

40 basis 91.85 | 78.97 | 85.71 | 67.88 | 85.31

100 basis 91.90 | 79.20 | 87.86 | 68.88 | 87.67

ROBF-L | s1p1 | s1p2 | s2p1 | s2p2 | s3

40 basis 91.90 | 78.92 | 85.70 | 69.28 | 83.41

100 basis 91.90 | 79.18 | 88.13 | 60.73 | 88.93
Table 4

Average of the BFR of the estimated FIR models with Kautz
basis.

RFIR-OBF-K | SID1 | 81D2 | s2p1 | s2p2 | s3
40 basis 91.91 | 79.08 | 87.20 | 70.35 | 93.40
100 basis 91.92 | 78.99 | 88.44 | 70.83 | 93.70
ROBF-K | s1p1 | s1p2 | s2p1 | s2p2 | s3
40 basis 91.89 | 78.64 | 87.50 | 70.52 | 93.72
100 basis 91.98 | 78.93 | 88.74 | 71.33 | 93.64

For illustration, the distributions of the model fits over
the five data sets, with TC and the estimates with RFIR-
OBF, ROBF, which are highlighted in bold, are shown
by boxplots in Fig. 2 to 4.

Discussion
Next, we give some insights to the obtained results.

5 Note that, when K35 is constructed based on ni, basis
functions, it can be easily seen that rank(K) < ni,, where K
is the resulting kernel matrix. This means that with n, = 40
or 100, K will be positive semidefinite. However, full rankness
of K is not necessary regarding the solution 6 in terms of
(19b) or the Bayesian interpretation of the problem, but
it makes the analogy with regularization more complicated
than (19a).



Table 5
Average of the BFR of the estimated FIR models with
GOBFs basis.

RFIR-OBF-G | SID1 | s1D2 [ s2p1 | s2p2 | s3
40 basis 92.07 | 79.54 | 87.74 | 69.82 | 83.53
100 basis 92.21 | 79.52 | 89.26 | 71.10 | 88.76
ROBF-C | sip1 [ sip2 | s2p1 | s2p2 | s3
40 basis 92.18 | 79.27 | 87.37 | 71.12 | 83.40
100 basis 92.31 | 79.18 | 89.42 | 72.38 | 89.20

95— —
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TC RFIR-G ROBF-G TC RFIR-G ROBF-G
Estimator Estimator
(a) S1D1 (b) S1D2

Fig. 2. Boxplot for model fits over S1D1, S1D2. The shown
estimators are those highlighted in bold in the tables. Note
that RFIR-TC and RFIR-OBF-G are denoted as TC and
RFIR-G, respectively.
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TC RFIR-G ROBF-G TC RFIR-G ROBF-G
Estimator Estimator
(a) S2D1 (b) S2D2

Fig. 3. Boxplot for model fits over S2D1, S2D2. The shown
estimators are those highlighted in bold in the tables. Note
that RFIR-TC and RFIR-OBF-G are denoted as TC and
RFIR-G, respectively.

(1) In general, RFIR-OBF with all its alternatives
performs better than RFIR-TC, because RFIR-
OBF estimators employ kernels that are capable
to capture dynamical properties, e.g., resonance
behaviour, damping, etc., via the generating poles
of the OBF's, rather than only focusing on smooth-
ness and stability.

For resonating systems, i.e., S3: RFIR-OBF-
L/ROBF-L have difficulties. It is well-known that
for a system with resonance behaviour, a long La-
guerre expansion is needed to get good accuracy.
This can be easily seen from the poor performance
in case of 40 basis compared to the TC kernel.
However, when increasing the number of basis to
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BFR%
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|
ROBF-K

Estimator

Fig. 4. Boxplot for model fits over S3. The shown esti-
mators are those highlighted in bold in the tables. Note
that RFIR-TC and RFIR-OBF- K are denoted as TC and
RFIR-K, respectively

100, the results improve a lot due to the employed
long expansion and the regularization that keeps
the variance low.

In case of S3, Kautz basis perform significantly bet-
ter compared to other estimators. This is due to the
fact that Kautz basis is generated by two repeated
conjugate complex poles that are tuned by marginal
likelihood optimization and hence can capture the
true dominant poles.

Due to the regularization acting on the estimation
problem, in most of the cases we gain from increas-
ing the number of basis functions, which is not the
case in classical identification due to the increased
variance resulting from increasing the number of
the expansion coefficients.

For slow systems, i.e., S2D1 and S2D2: RFIR-OBF
estimators show a significant improvement over the
TC kernel, especially RFIR-OBF-G, which gives
the best performance for the first four data sets, i.e.,
S1D1,...,S2D2. Since, it is known that for slow sys-
tems, if the basis functions are properly chosen, the
OBFs offer a more compact model structure which
results in a better RKHS as a hypothesis space.
The results of RFIR-OBF and ROBF are very close
to each other due to the equivalence provided in
Section 6.3. Note that the difference in results is
due to numerical issues, i.e., in case of RFIR-OBF
we directly estimate 125 length impulse response,
whereas in case of ROBF we only estimate as many
expansion coefficients as the number of basis func-
tions and then compute a 125 length impulse re-
sponse of the estimated OBFs model.

8 Conclusion

In this paper, a systematic construction mechanism of
stable time-domain kernels based on OBFs for impulse
response estimation of LTI systems has been proposed.
Two proposed weightings of the OBF's are introduced as
decay terms, guaranteeing stability of impulse responses
in the associated hypothesis space. The resulting OBFs
based kernel is parameterized in terms of hyperparam-
eters as the scale factor, the decay parameter, and the



poles used to generate the OBF's sequence. Tuning of
these hyperparameters is performed by empirical Bayes,
maximizing the marginal likelihood. The flexible param-
eterization and marginal likelihood maximization of the
estimated IIR enable to overcome both the difficulty of
selecting the number of basis functions to be introduced
in the kernel and the difficult task of choosing the poles
of the OBFs. Three special cases have been illustrated,
namely, Laguerre, Kautz and GOBF's based kernel struc-
tures. Their performance has been evaluated and com-
pared with the TC kernel by Monte-Carlo simulations.
Results show that the novel kernels perform well com-
pared with the TC kernel especially for slow systems.
Moreover, OBF's based kernels with Kautz basis perform
significantly better on resonating systems, pointing out
the capability of the proposed approach to describe a
wide variety of dynamical systems properties, progress-
ing the achievable quality of the model estimates via
the empirical Bayes methods. Interesting topics to be
investigated in the future work is to extend the appli-
cability of the presented kernel formulation for model
classes capable to represent varying dynamical phenom-
ena, i.e., Linear Parameter-Varying (LPV) and Linear
Time-Varying (LTV) systems.

9 Appendix
9.1 Appendiz A: Proof of Proposition 1

By following the same line of reasoning as in [23]: the
%o (T)—norm of the k" Takenaka-Malmquist basis
is uniformly bounded

VTP e
i=1

v =& |~

- VTP

1 — ||
Based on the fact that the ¢1(N)-norm of the impulse
response of a kt'-order stable system is less than twice
the nuclear norm of the associated Hankel operator [43,

Section 2], and that nuclear norm is less than k times
the Z(T)-norm [43, Theorem 2.1]:

— |62
||¢k||@1 < k-2 1— |§k| .
Let
K= sup 7”1_@2
cetente, L[]
Accordingly,
[@klle, < k- 25.

9.2  Appendiz B: Proof of Proposition 4

The proof can be accomplished by the application of
Proposition 3 and Proposition 1. From Proposition 3,

one have to check that:

ZZ|K<1> iJ) |*ii|i7"k (Ba)pr (4)

Pr(j)] < oo.

=1 j=1 =1 j=1 k=1
To this end:
ZZ | Zrk(ﬂd)éﬁk(i)%(m
i=1j=1 k=1
<Y re(Ba)ler()k ()]

i=1 j=1 k=1
=D rlBa) D> 1on(@)ln ()]

k=1 i=1 j=1
:Z & (Ba Z‘d)k |Z|¢)k )|<(2k) Zkrkﬂd

P lleq [ pxleq

where the last equation is obtained by the bound pro-
vided in Proposition 1. Hence, > po; k?rg(B4) < oo
should be satisfied to guarantee the stability of the ker-
nel. In case of (24): Y00 k%r(Ba) = o, k(2Fa),
and with 84 > 3, the series will have a convergent sum,
which guarantees the stability of the kernel. In case of
(25): D oo K2 ri(Ba) = D pey kzﬁd_k, and with B4 > 1,
the series will have a convergent sum, which guarantees
the stability of the kernel.
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