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Abstract

This paper presents a stabilizing tube-based MPC synthesis for LPV systems. In contrast to existing tube MPC approaches, to
guarantee recursive feasibility we employ terminal constraint sets which are required to be controlled periodically contractive.
Periodically (or finite-step) contractive sets are somewhat easier to compute and can be of lower complexity than “true”
contractive ones, lowering the required computational effort both off-line and on-line. Under certain assumptions on the tube
parameterization, recursive feasibility of the scheme is proven. Subsequently, stability is guaranteed through the construction
of a suitable terminal cost based on a novel Lyapunov-like metric for compact convex sets containing the origin. A periodic
variant on the well-known homothetic tube parameterization is given and is shown to satisfy the necessary assumptions,
yielding a tractable LPV MPC algorithm. It requires the on-line solution of a single linear program with linear complexity in
the prediction horizon. The properties of the approach are demonstrated by a numerical example.
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1 Introduction

Model predictive control (MPC) of linear parameter-
varying (LPV) systems is complicated by the fact that
at any given time instant the future behavior of the
scheduling variable is not known exactly. If recursive
feasibility and closed-loop stability are to be guaran-
teed, this necessitates the use of an MPC approach
which is “robust” against all possible future scheduling
variations. Predictive control under uncertainty gen-
erally gives rise to a so-called min-max optimization
problem [1]. Since solving the min-max problem exactly
is generally intractable, efficient approximations have
to be sought. Early approaches in this direction are,
e.g., [2–4].

More recently, tube MPC (TMPC) has attracted in-
terest as an efficient approach to the predictive con-
trol of uncertain and parameter-varying systems. TMPC
was developed originally for the robust constrained con-
trol of linear systems subject to additive disturbances
[5–7]. Later, the concept has been successfully applied
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for robust- and parameter-varying MPC of LPV sys-
tems [8,9]. An overview of some recent developments in
the area is found in the book [10]. A principal advan-
tage of tube-based methods is that their computational
complexity scales well (often, linearly) in the length of
prediction horizon.

Stability and recursive feasibility in MPC are usually
guaranteed through the inclusion of a terminal set con-
straint [11]. Normally this set is required to be controlled
invariant or contractive with respect to the system dy-
namics. In the general analysis of [12], it was shown that
in TMPC stability can be guaranteed if the system ad-
mits a controlled λ-contractive set for some λ ∈ [0, 1).
Such contractive sets may be of small volume and, im-
portantly, in the polyhedral case their complexity grows
rapidly with the state dimension making computations
prohibitively difficult. These issues complicate the suc-
cessful application of TMPC with formal stability guar-
antees.

Finite-step periodic controlled invariance was proposed
as a relaxation of the usual notion of positive invariance
[13–15]. In a periodically invariant (or contractive) set,
the state of the system is allowed to momentarily leave
the set before returning after a finite number of time
instances. Such sets are often easier to compute than
“true” invariant ones [16].
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The notion of finite-step periodic invariance has been
applied in MPC. In [14] it was shown how to compute
periodically invariant ellipsoids for LPV systems and it
was demonstrated that such sets could be used in an
LPV MPC strategy. A practical LMI-based algorithm
based on these results was presented in [17]. The algo-
rithm uses a prediction horizon of one, but a larger do-
main of attraction could be attained with respect to us-
ing only a single invariant ellipsoid. Finite-step terminal
components for nonlinear MPC were developed in [18].
Therein, the developed theory was applied to design a
stabilizing LTI MPC algorithm using polyhedral period-
ically invariant sets, thus avoiding the difficulties associ-
ated with computing invariant sets for systems of more
than a few dimensions Furthermore, periodic invariance
has been applied in the MPC of linear periodic systems,
see, e.g., the framework of [19].

The current paper investigates the usage of finite-step
terminal conditions in tube MPC. Our main contribu-
tion is to show that the known concepts of finite-step con-
traction can be used to derive a stabilizing tube-based
MPC formulation for LPV systems. By generalizing pre-
vious work [9,12] to the case of finite-step terminal con-
ditions we prove recursive feasibility of the scheme under
appropriate assumptions on the tube parameterization.
Then, we present the construction of a new Lyapunov-
type function for finite-step contractive proper C-sets.
This result, which is a contribution in itself, is subse-
quently used to design a stabilizing terminal cost for our
MPC algorithm. A suitable tube parameterization satis-
fying the necessary assumptions is given. The developed
approach requires the on-line solution of a single linear
program with a size linear in the prediction horizon.

The paper is organized as follows. In Section 2, we dis-
cuss notation, the problem setup, and present the main
concepts of finite-step contractive sets. The general for-
mulation of TMPC with finite-step terminal conditions
is given in Section 3. Suitable parameterizations to en-
able efficient implementation in the LPV case are pre-
sented in Section 4. Finally, in Section 5, the method is
demonstrated on a numerical example.

2 Preliminaries

2.1 Notation and basic definitions

The set of nonnegative real numbers is denoted by R+

and N denotes the set of nonnegative integers includ-
ing zero. Define the index set N[a,b] with 0 ≤ a ≤ b as
N[a,b] := {i ∈ N | a ≤ i ≤ b}. The predicted value of
a variable z at time instant k + i given the information
available at time k is denoted by zi|k. In this paper, the
notation ‖x‖ always refers to the ∞-norm of a vector
x ∈ Rn, i.e., ‖x‖ = ‖x‖∞ = maxi∈N[1,n]

|xi|. Let Cn de-
note the set of all compact convex subsets of Rn. A set

X ∈ Cn which contains the origin in its non-empty inte-
rior is called a proper C-set, or PC-set. A subset of Rn
is a polyhedron if it is an intersection of finitely many
half-spaces. A polytope is a compact polyhedron and can
equivalently be represented as the convex hull of finitely
many points in Rn. For sets Y, Z ⊂ Rn and a scalar
α ∈ R let αY = {αy | y ∈ Y }. Minkowski set addition
is defined as Y ⊕ Z = {y + z | y ∈ Y, z ∈ Z} and for
a vector v ∈ Rn let v ⊕ Y := {v} ⊕ Y . The Hausdorff
distance between a nonempty set X ⊂ Rn and the ori-
gin is d0

H(X) = dH (X, {0}) = supx∈X ‖x‖. For a vector
x ∈ Rn, let d0

H (x) = d0
H ({x}) = ‖x‖. A function f :

R+ → R+ is of class K∞ when it is continuous, strictly
increasing, f(0) = 0 holds, and limξ→∞ f(ξ) =∞.

The gauge- or Minkowski function ψS : Rn → R+ of a
given PC-set S ⊂ Rn is ψS(x) = inf {γ | x ∈ γS} [20].
We introduce a generalized “set”-gauge function as fol-
lows.

Definition 1 The set-gauge function ΨS : Cn → R+

corresponding to a PC-set S ⊂ Rn is

ΨS(X) := sup
x∈X

ψS(x) = inf {γ | X ⊆ γS} .

The functions ψS(·) and ΨS(·) are K∞-bounded:

Lemma 2 Let S ⊂ Rn be a PC-set. Then, the following
properties hold:

(i) ∃s1, s2 ∈ K∞ such that ∀x ∈ Rn : s1 (‖x‖) ≤
ψS(x) ≤ s2 (‖x‖),

(ii) ∃s3, s4 ∈ K∞ such that ∀X ∈ Cn : s3

(
d0
H(X)

)
≤

ΨS(X) ≤ s4

(
d0
H(X)

)
.

PROOF. The statements follow from the equivalence
of norms in finite-dimensional vector spaces. �

2.2 Problem Setup

We consider a constrained LPV system, represented by
the following state-space equation

x(k + 1) = A(θ(k))x(k) +Bu(k) (1)

with x(0) = x0, and where u : N → U ⊆ Rnu is the
input, x : N → X ⊆ Rnx is the state variable, and
θ : N→ Θ ⊆ Rnθ is the scheduling signal. The setsU and
X are the input- and state constraint sets, respectively,
while Θ is called the scheduling set. The matrix A(θ) in
(1) is considered to be a real affine function of θ, i.e.,

A(θ) = A0 +

nθ∑
i=1

θiAi. (2)
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We consider systems with a constant B-matrix mainly
for implementation reasons, because then all result-
ing optimization problems will turn out convex. Note
that it is possible to transform any system with a
parameter-varying B into the form of (1) by including a
pre-integrator or any other stable input filter [21]. The
system (1) satisfies the following assumptions.

Assumption 3 (i) The values x(k) and θ(k) can be
measured at every time k ∈ N. (ii) The system repre-
sented by (1) is stabilizable under the constraints (X,U).
(iii) The sets X and U are polytopic PC-sets. (iv) The
set Θ is a polytope with q vertices, i.e., Θ = Co{θ̄j | j ∈
N[1,q]}.

Our principal goal is to design a tube-based MPC al-
gorithm to achieve constrained regulation of (1) to the
origin. To this end, we propose a tube-based approach
using stabilizing terminal conditions based on finite-step
contractive sets.

2.3 Finite-step contraction

In this subsection, the notion of a finite-step controlled
(M,λ)-contractive set for a system represented in the
form (1) is introduced. Such sets will be used later to for-
mulate stabilizing terminal conditions for the proposed
MPC algorithm.

Definition 4 Let M ≥ 1 be an integer, let λ ∈ [0, 1),
let SM = {S0, . . . , SM−1} be a sequence of PC-sets, and
define σ(k) := k mod M . The PC-set S0 ⊆ X is called
controlled (M,λ)-contractive, if there exists a periodic
control law κσ(k)(·, ·) with κi : Si×Θ→ U, i ∈ N[0,M−1]

such that the following conditions are satisfied:

• ∀i ∈ N[0,M−2],∀x ∈ Si,∀θ ∈ Θ : (3a)
A(θ)x+Bκi(x, θ) ∈ Si+1

• ∀x ∈ SM−1,∀θ ∈ Θ : (3b)
A(θ)x+BκM−1(x, θ) ∈ λS0,

• ∀i ∈ N[0,M−1] : (3c)
{0} ⊂ Si ⊆ X.

Furthermore we assume that the periodic controller
κσ(k)(·, ·) is (i) continuous and (ii) positively homo-
geneous, i.e., ∀(k, x, θ, α) ∈ N × Rnx × Θ × R+ :
κσ(k)(αx, θ) = ακσ(k)(x, θ).

Observe that (3b) means that contraction of S0 is
achieved after M time instances. If S0 is a polytope
the periodic control laws in Definition 4 can always be
selected as gain-scheduled vertex controllers, because –
by convexity – existence of suitable controls on the ver-
tices of Si×Θ implies existence of suitable controls over
the full sets Si × Θ, i ∈ N[0,M−1] (see, e.g., [22, Corol-
laries 4.43 and 7.7]). Finally, the closed-loop set-valued

dynamics of (1) under the local periodic controller
κσ(k)(·, ·) are given as

X(k + 1) = G (k,X(k)|κ)

=
{
A(θ)x+Bκσ(k)(x, θ) | x ∈ X(k), θ ∈ Θ

}
. (4)

3 TMPC with finite-step stabilizing conditions

The general formulation of LPV tube MPC with a finite-
step terminal condition is now given. Our algorithm con-
structs, at each time instant k ∈ N, a so-called constraint
invariant tube. The definition of such tubes, first given
in [12], is here extended for systems of the form (1).

Definition 5 A constraint invariant tube for the con-
straint set (X,U) ⊆ Rnx × Rnu is defined as

Tk :=
({
X0|k, . . . , XN |k

}
,
{

Π0|k, . . . ,ΠN−1|k
})

where Xi|k ⊆ Rnx , i ∈ N[0,N ] are sets and Πi|k : Xi|k ×
Θi|k → U, i ∈ N[0,N−1] are control laws satisfying the
condition ∀(x, θ) ∈ Xi|k × Θi|k : A(θ)x + BΠi|k(x, θ) ∈
Xi+1|k ∩ X. The sequence of sets Xk is called the state
tube, and each set Xi|k is called a cross section.

In the above definition, the sets Θi|k in which the
scheduling variable is allowed to vary can change from
one prediction time instant to the next. This setup pro-
vides a high degree of flexibility for including any avail-
able knowledge on the future evolution of the scheduling
variable. Since θ(k) is measurable according to As-
sumption 3, normally we have ∀k ∈ N : Θ0|k = {θ(k)}.
The rest of the sequence Θk :=

{
Θ0|k, . . . ,ΘN−1|k

}
could then, e.g., be constructed to capture a known
and bounded rate-of-variation on θ or it could de-
scribe an “anticipated” future scheduling trajectory
which is subject to some uncertainty. If no further in-
formation about the future trajectories exists, we have
∀k ∈ N,∀i ∈ N[1,N−1] : Θi|k = Θ. At each time in-
stant, the sequence Θk must be constructed such that
it satisfies the following assumptions.

Assumption 6 (i) At any two successive time instants,
the sequences Θk+1 and Θk are related such that ∀i ∈
N[0,N−2] : Θi|k+1 ⊆ Θi+1|k (continuity). (ii) It holds
∀(k, i) ∈ N×N[0,N−1] : Θi|k ⊆ Θ (well-posedness). (iii)
All sets Θi|k are polytopes with q vertices, i.e., Θi|k =

convh{θ̄ji|k | j ∈ N[1,q]}.

The above Assumptions 6.(i) and 6.(ii) are critical in
obtaining recursive feasibility of the MPC scheme. As-
sumption 6.(iii) is invoked merely to simplify notation.

To synthesize tubes satisfying Definition 5 on-line, the
cross sections and associated control laws must be
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finitely parameterized. We introduce tube parameters

pi|k =
(
pXi|k, p

Π
i|k

)
∈ P = PX × PΠ ⊆ Rq

X
p × Rq

Π
p

where
(
qXp , q

Π
p

)
∈ N2. Each parameter pXi|k uniquely

characterizes a cross section Xi|k and each pΠ
i|k uniquely

defines the corresponding controller Πi|k. The set
P = PX × PΠ is called the parameterization class. In
the following it has to be understood that any pair(
Xi|k,Πi|k

)
is parameterized by a corresponding tube

parameter pi|k ∈ P. That is, we can always construct a
time-dependent function P̄ (·, ·) mapping tube param-
eters into corresponding sets and controllers such that(
Xi|k,Πi|k

)
= P̄ (k + i, pi|k).

A suitable parameterization, which will be covered in
more detail in Section 4, is a periodically time-varying
homothetic tube where Xi|k = zi|k ⊕ αi|kSσ(k+i). Then,
pXi|k = (αi|k, zi|k) and Si, i ∈ N[0,M−1] are sets chosen
off-line. The associated controllers Πi|k are then param-
eterized as the vertex controllers induced by the sets
Xi|k, so that each pΠ

i|k corresponds to a finite number of
control actions.

The tube construction can be formulated as the following
optimization problem, to be solved on-line in a receding-
horizon manner:

V (x0|k) =

min
dk∈D

N−1∑
i=0

`(Xi|k,Πi|k) + Fk
(
XN |k

)
s.t. ∀i ∈ N[0,N−1] : ∀x ∈ Xi|k, ∀θ ∈ Θi|k :

A(θ)x+BΠi|k(x, θ) ∈ Xi+1|k ∩ X,
X0|k = {x0|k}, XN |k ⊆ Xf |k ⊆ X,

(5)

where `(·, ·) is the stage cost chosen to meet some desired
objective, and where the terminal set Xf |k and terminal
cost Fk(·) are selected to guarantee feasibility and sta-
bility. Note that the state measurement at time k is cap-
tured in the constraintX0|k = {x0|k}. The decision vari-
able consists of the sequence of tube parameters and is
therefore dk =

(
pX0|k, p

Π
0|k, . . . , p

X
N−1|k, p

Π
N−1|k, p

X
N |k

)
∈

D = PN+1
X × PNΠ . Because the value θ(k) is measured

exactly, the first control law always reduces to a single
control action, i.e., Π0|k(x, θ) = u0|k. After solving (5),
we set u(k) = u0|k and repeat the optimization at the
next sample. In the sequel, we choose to use a worst-case
linear stage cost

`(Xi|k,Πi|k)

= max
(x,θ)∈Xi|k×Θi|k

(
‖Qx‖+ ‖RΠi|k(x, θ)‖

) (6)

where Q ∈ Rnx×nx and R ∈ Rnu×nu are tuning param-
eters. Thus, solving (5) amounts to solving an approxi-
mation of the true underlying min-max problem, where
suboptimality results from the choice of a finite param-
eterization P. Suppose that a sequence SM of polytopic
controlled (M,λ)-contractive sets satisfying Definition 4
is given. Then, we can choose a periodically time-varying
terminal set as

Xf |k = Sσ(k+N). (7)
To guarantee recursive feasibility the following assump-
tion, an extended variant of [12, Assumption 7], on the
tube parameterization is necessary.

Assumption 7 The terminal set and associated local
controller are “homogeneously parameterizable” in P, i.e.,
∀k ∈ N,∀γ ∈ R+ : ∃pf |k ∈ P such that P̄

(
k, pf |k

)
=

γ
(
Sσ(k), κσ(k)

)
.

Later, in Section 4, a concrete parameterization is given
which satisfies Assumption 7. Now, recursive feasibility
of (5) can be shown.

Proposition 8 Let SM be a sequence of controlled
(M,λ)-contractive sets for (1) according to Definition 4,
and let the associated closed-loop dynamics G(·, ·|κ) be
as in (4). Define the terminal setXf |k as in (7). Suppose
that Assumptions 6 and 7 are satisfied. Then the TMPC
defined by (5) is recursively feasible.

PROOF. The proof is found in the Appendix. �

To guarantee stability of the MPC scheme, an appropri-
ate terminal cost needs to be constructed. The first step
is to find a Lyapunov-type function which is monotoni-
cally decreasing along the set-valued trajectories of (4):
for this, we need the following finite-step decrease prop-
erty of the function ΨSi(·). The abbreviated notations
ψi(·) := ψSi and Ψi(·) := ΨSi(·) are used from now on.

Lemma 9 Let SM be a sequence of controlled (M,λ)-
contractive sets for (1) in the sense of Definition 4. De-
fine the resulting closed-loop dynamicsG(·, ·|κ) as in (4).
Then Ψσ(k) (·) satisfies ∀k ∈ N : ∀X ⊆ Sσ(k):

Ψσ(k+1) (G(k,X|κ)) ≤
{

Ψσ(k) (X) , σ(k) ∈ N[0,M−2],

λΨσ(k) (X) , σ(k) = M − 1.

PROOF. The statement follows from Definition 4 and
from the homogeneity of the system dynamics, periodic
local controller, and gauge functions. �

This result can now be exploited to construct a suitable
Lyapunov-type function enabling the computation of a
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stabilizing terminal cost for (5). The following proposi-
tion generalizes the construction of [23, Theorem 20] to
sequences of sets, yielding the desired function.

Proposition 10 Suppose that the conditions from
Lemma 9 are satisfied. Then, the function

W (k,X) := (M + (λ− 1)σ(k)) Ψσ(k) (X)

is a Lyapunov-type function for the dynamics (4), i.e., it
satisfies the following properties:

(i) ∃s6, s7 ∈ K∞ such that ∀k ∈ N : ∀X ∈ Cn :
s6

(
d0
H (X)

)
≤W (k,X) ≤ s7

(
d0
H (X)

)
holds,

(ii) ∃%(k) : N→ [0, 1) such that ∀k ∈ N : ∀X ⊆ Sσ(k) :
W (k + 1, G (k,X|κ)) ≤ %(k)W (k,X),

(iii) ∃% ∈ [0, 1) such that ∀k ∈ N : ∀X ⊆ Sσ(k) :
W (k + 1, G (k,X|κ)) ≤ %W (k,X).

PROOF. The proof is found in the Appendix. �

The next step towards a stability proof is to construct
a scaling ofW (·, ·) to obtain a terminal cost for (5). For
all i ∈ N[0,M−1], let

¯̀
i = max

(x,u)∈Si×U
‖Qx‖+ ‖Ru‖ s.t. ∀θ ∈ Θ :{

A(θ)x+Bu ∈ Si+1, i ∈ N[0,M−2],

A(θ)x+Bu ∈ λS0, i = M − 1.

(8)

Then the following result is obtained directly from
Proposition 10.

Corollary 11 Let ¯̀
i be as in (8) and define ¯̀ =

maxi∈N[0,M−1]
¯̀
i. Define W (k,X) and % as in Proposi-

tion 10 and Xf |k as in (7). Then the function

W̄ (k,X) :=
¯̀

1− %
W (k,X) (9)

satisfies ∀k ∈ N : ∀X ⊆ Sσ(k):

W̄ (k + 1, G (k,X|κ))− W̄ (k,X) ≤ −¯̀W (k,X) .

Furthermore, ∀k ∈ N : 1 ≤W
(
k +N,Xf |k

)
≤M .

Before proving asymptotic stability of the TMPC
scheme, the following assumptions on the stage cost and
value function are required.

Assumption 12 (i) Let (k, p) ∈ N × P such that
P̄ (k, p) = (Xk,Πk) with Πk : X × Θ → U. Then there
exist K∞-functions s8, s9 and a constant β ∈ R+ such
that s8

(
d0
H (Xk)

)
≤ `(Xk,Πk) ≤ s9

(
d0
H (Xk)

)
+ β.

(ii) There exist K∞-functions s10, s11 such that for
all x0|k ∈ Rnx for which (5) is feasible it holds
s10

(
‖x0|k‖

)
≤ V

(
x0|k

)
≤ s11

(
‖x0|k‖

)
.

In Section 4 it is proven that, for a certain choice of
tube parameterization, the stage cost (6) and the value
function of (5) indeed satisfy the above assumptions.
Now we are ready to state the main result.

Theorem 13 Suppose that the conditions of Proposi-
tion 8 and Assumption 12 are satisfied. Let Fk(·) :=
W̄ (k +N, ·) according to (9). Then the TMPC defined
by (5) is asymptotically stabilizing.

PROOF. The preceding results, in particular the con-
struction of Proposition 10 and its Corollary 11, allow us
to use standard arguments to prove that the value func-
tion in (5) is decreasing along closed-loop trajectories.
The detailed proof is found in the Appendix. �

4 Implementation details

In this section, it is shown how the general results pre-
sented previously can be applied by giving a specific
parameterization such that Assumptions 7 and 12 are
satisfied. To satisfy Assumption 7 we consider a “peri-
odic” variant on the well-known homothetic parameteri-
zation [5,7,12] by parameterizing the tube cross sections
as

Xi|k = zi|k ⊕ αi|kSσ(k+i) (10)
where zi|k ∈ Rnx and αi|k ∈ R+ are optimized on-line.
Thus, each cross section Xi|k is considered homothetic
to Sσ(k+i) with center zi|k and scaling αi|k. The sets
Si, i ∈ N[0,M−1] are the same as in (7) and they are
polytopes represented by the convex hull of ti vertices as

∀i ∈ N[0,M−1] : Si = convh
{
s̄1
i , . . . , s̄

ti
i

}
. (11)

The associated control laws are parameterized as gain-
scheduled vertex controllers, i.e.,

Πi|k(x, θ) =

tσ(k+i)∑
j=1

ζj

q∑
l=1

ηlu
(j,l)
i|k (12)

where u(j,l)
i|k ∈ U are control actions and ζ ∈ Rtσ(k+i)

and η ∈ Rq are convex multipliers in the state- and
scheduling spaces, respectively. At each prediction time
instant k + i, the control u(j,l)

i|k is associated with the j-
th vertex of the cross section Xi|k and the l-th vertex
of the relevant scheduling set (see Assumption 6). The
tube parameters pi|k =

(
pXi|k, p

Π
i|k

)
corresponding to the
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given parameterization are

pXi|k =
(
αi|k, zi|k

)
, pΠ

i|k =
(
u

(1,1)
i|k , . . . , u

(tσ(k+i),q)

i|k

)
.

Because the representation (1) has a constant B-matrix,
it is sufficient to verify the existence of the individual
control actions u(j,l)

i|k to establish the existence of a tube
satisfying Definition 5. The multipliers (ζ, η) are thus
never actually computed.

With the finite parameterization given above, the stage
cost (6) becomes

`(Xi|k,Πi|k)

= max
j∈N[1,tσ(k+i)],l∈N[1,q]

(
‖Qx̄ji|k‖+ ‖Ru(j,l)

i|k ‖
)

(13)

where x̄ji|k = zi|k +αi|ks̄
j
σ(k+i) and the equality holds by

convexity of the infinity norm. The scaling ¯̀ in Corol-
lary 11 can be efficiently computed as follows. For all
(i, l) ∈ N[0,M−1]×N[1,q] and all corresponding j ∈ N[1,ti]

compute the control actions

u
(i,j,l)
f = arg min

u∈U
‖Qs̄ji‖+ ‖Ru‖

s.t.

{
A(θ̄l)s̄ji +Bu ∈ Si+1, i ∈ N[0,M−2],

A(θ̄l)s̄ji +Bu ∈ λS0, i = M − 1,

such that we obtain a local periodic vertex control law
which is feasible and asymptotically stabilizing on SM .
Then the constants ¯̀

i are directly found by computing

∀i ∈ N[0,M−1] :

¯̀
i = max

j∈N[1,ti]
,l∈N[1,q]

‖Qs̄ji‖+ ‖Ru(i,j,l)
f ‖. (14)

The only thing left to prove is that the stage cost and
value function under the given parameterization indeed
satisfy Assumption 12:

Lemma 14 Suppose that the tuning parameter Q ∈
Rnx×nx is strictly positive definite and therefore of rank
nx. Then, the stage cost (13) and value function of (5)
satisfy Assumption 12.

PROOF. The proof follows closely the proofs of [12,
Lemmas 2-3], with the necessary adaptations made to
fit the present setting of LPV dynamics and periodic set
sequences. �

It has now been shown that the parameterization defined
in this section satisfies all the necessary assumptions
from Section 3. The next conclusion follows directly.

Corollary 15 The LPV TMPC algorithm with tube
parameterization (10)-(12) is recursively feasible and
asymptotically stabilizing.

With the choice of stage cost (6) and under the assump-
tion that all involved sets are polytopes, the optimiza-
tion problem (5) is a linear program. Its complexity,
in terms of the number of decision variables and con-
straints, scales linearly in the prediction horizon N .

The construction of the sequence of finite-step contrac-
tive sets SM for an LPV system can be done in sev-
eral ways. One can pick an arbitrary PC-set S0 and find
the smallest M for which a sequence SM exists using a
straightforward extension of the (LTI) algorithm from
[16]. Due to exponential complexity in M , this method
is only practical when contraction can be achieved for
small M . Alternatively, it is possible to first determine
any stabilizing controller for (1). Then again we can
choose an arbitrary PC-set S0 and propagate this set
forwards under the resulting closed-loop dynamics until
finite-step contraction is achieved, as proposed in [18].
Although the number of vertices of the sets in the result-
ing sequence SM grows exponentially in principle, often
many vertices are redundant and can be eliminated using
standard algorithms: a similar technique was employed
in [24] for the stability analysis of switched systems.

5 Numerical example

The approach is now demonstrated on an example. We
consider a second-order system of the form (1) with two
scheduling variables where

A0 =

[
1 1

0 1

]
, A1 =

[
0.08 −0.6

0.4 0.1

]
,

A2 =

[
0.23 0

0 −0.32

]
, B =

[
0

1

]

and furthermore

Θ =
{
θ ∈ R2 | ‖θ‖ ≤ 1

}
, U = {u ∈ R | |u| ≤ 6} ,

X =
{
x ∈ R2 | |x1| ≤ 4, |x2| ≤ 10

}
.

The MPC tuning parameters are N = 8, Q = I, and
R = 0.25. For simplicity, we set Θi|k = Θ for all (k, i).

Starting from an arbitrarily selected set S0, sequences
of controlled (M,λ)-contractive sets could be generated.
The choice made for S0 in this simulation example leads
to a sequence SM of (5, 0.95)-contractive sets, as de-
picted in Figure 1. Note that S0 was designed with 4
vertices. All subsequent sets also have 4 vertices except
for S1, which has 6. For comparison, the maximal con-
trolled 0.95-contractive set was also calculated and it has
8 vertices.
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(M,λ) D.vars. Constr. Avg. (max.) time

(1, 0.95) 300 4419 14 (20) [ms]

(5, 0.95) 236 2907-2919 6 (8) [ms]
Table 1
Illustration of computational complexity: number of deci-
sion variables, number of constraints (linear inequality and
equality), and solver time per sample.

S0 S1

S2 S3

S4

Fig. 1. Constructed sequence of (5, 0.95)-contractive sets
(solid) compared with the maximal 0.95-contractive set
(dashed).

The relative difference in computational load of the re-
sulting TMPC algorithm, based on an LP implementa-
tion where both the vertex- and hyperplane representa-
tions of the sets were used, is displayed in Table 1. The
simulations were carried out on a 3.6 GHz Intel Core i7-
4790 with 8 GB RAM, running Arch Linux, and using
the latest Gurobi LP solver. Because the complexity of
the terminal set in the (5, 0.95)-contractive case is time-
dependent, the number of constraints varies periodically
between the numbers shown.

An example closed-loop output trajectory of the con-
troller with finite-step terminal condition is shown in
Figure 2. The scheduling trajectory was generated ran-
domly and the initial state was x(0) = [ 4 −6 ], i.e., taken
at the boundary of the state constraint set. As expected,
the system’s state variables are steered to the origin and
input- and state constraints are satisfied. For complete-
ness, we also compare the achieved domains of attrac-
tion of the controller with the finite-step terminal condi-
tion to that of a controller which uses the maximal 0.95-
contractive terminal set (Figure 3). The feasible set was
calculated for a fixed initial value θ(0) = [ 1 −1 ]

>. In the
present case, the reduction in computational load due to
the lesser complexity of the sets in SM is paid for by a
marginally smaller feasible set.

0 1 2 3 4 5 6 7

x
1

0

2

4

0 1 2 3 4 5 6 7

x
2

-6
-4
-2
0

t [samples]
0 1 2 3 4 5 6 7

u

0
2
4
6

Fig. 2. Closed-loop state- and input trajectories with
finite-step terminal condition.

x1

-4 -2 0 2 4

x
2

-10

-5

0

5

10

Fig. 3. Domains of attraction with finite-step terminal con-
dition (solid) and with maximal contractive terminal set
(dashed).

Appendix. Proofs

Proof of Proposition 8. Suppose that (5) is feasible
at time k and let

T?
k =

({
X0|k, . . . , XN |k

}
,
{

Π0|k, . . . ,ΠN−1|k
})

be the tube resulting from the optimal solution of (5) at
time k. By construction, X0|k = {x0|k} and ∃γ ∈ [0, 1] :
XN |k ⊆ γXf |k. Note that γ = 1 would be sufficient here,
but keeping it variable simplifies the subsequent stability
proof of Theorem 13. After applying Π0|k to the system,
by definition of the terminal set and under Assumption 6
a feasible tube at time k + 1 can be explicitly given as

T◦k+1 =
({
X0|k+1, X2|k, . . . , XN−1|k, γXf |k,

γG
(
k +N,Xf |k|κ

)}
,
{

Π1|k, . . . ,ΠN−1|k, γκN)

})
.

where X0|k+1 = {x0|k+1} ⊂ X1|k which implies feasi-
bility of Π0|k+1 = Π1|k. Since (5) only optimizes over
finitely parameterized sets and controllers, there must
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additionally exist tube parameters
(
pf |k, pf |k+1

)
∈

P2 such that P̄
(
k +N, pf |k

)
= γ

(
Xf |k, κN)

)
and

P̄
(
k +N + 1, pf |k+1

)
= γ

(
G
(
k +N,Xf |k|κ

)
, ∗
)

where ∗ signifies an irrelevant quantity. This is guaran-
teed by Assumption 7, and therefore it follows that (5)
is feasible at time k + 1. �

Proof of Proposition 10. Since (M + (λ− 1)σ(k)) is
a positive number for all k ∈ N, it follows from Lemma 2
that ∃si6, si7 ∈ K∞ for each i ∈ N[0,M−1] such that
∀X ∈ Cn : s

σ(k)
6

(
d0
H(X)

)
≤ W (k,X) ≤ s

σ(k)
7

(
d0
H(X)

)
.

As the minimum- and maximum over a finite set of K∞-
functions is again K∞, statement (i) holds with s6(ξ) =
mini∈N[0,M−1]

si6(ξ) and s7(ξ) = maxi∈N[0,M−1]
si7(ξ). For

the proof of (ii), consider first that k is such that σ(k) ∈
N[0,M−2]. Then by Lemma 9, Ψσ(k+1) (G (k,X|κ)) ≤
Ψσ(k) (X) so

W (k + 1, G (k,X|κ))

= (M + (λ− 1)σ(k + 1)) Ψσ(k+1) (G (k,X|κ))

≤ (M + (λ− 1)σ(k + 1)) Ψσ(k) (X)

=
(M + (λ− 1)σ(k + 1))

(M + (λ− 1)σ(k))
W (k,X) .

Next, let k be such that σ(k) = M − 1. Again by
Lemma 9, Ψσ(k+1) (G (k,X|κ)) ≤ λΨσ(k) (X) and
therefore

W (k + 1, G (k,X|κ)) = MΨ0 (G (M − 1, X|κ))

≤ λMΨM−1 (X)

=
λM

λ (M − 1) + 1
W (k,X).

Hence, statement (ii) is satisfied with

%(k) =

{
(M+(λ−1)σ(k+1))

(M+(λ−1)σ(k)) , σ(k) ∈ N[0,M−2],
λM

λ(M−1)+1 , σ(k) = M − 1

and statement (iii) follows with % = maxk∈N %(k) = %(0),
completing the proof. �

Proof of Theorem 13. Let Gf |k(·) := G (k +N, ·|κ)
according to (4). Consider the optimal solution T?

k and
the feasible, but not necessarily optimal, solution T◦k+1
constructed in the proof of Proposition 8. By definition
of Fk(·), it follows that we can take γ = Ψσ(k+N)

(
XN |k

)
.

Substitute the solutions T?
k and T◦k+1 in the cost func-

tion of (5) and compute the difference between the value

functions at time k and time k + 1 to obtain

∆Vk = V
(
x0|k+1

)
− V

(
x0|k

)
≤ `

(
X0|k+1,Π1|k

)
+ γ`

(
Xf |k,Πf |k

)
+ γFk+1

(
Gf |k

(
Xf |k

))
− Fk

(
XN |k

)
+

N−1∑
i=2

`
(
Xi|k,Πi|k

)
−
N−1∑
i=0

`
(
Xi|k,Πi|k

)
.

Observe that X0|k+1 = {x0|k+1} ⊂ X1|k, so
`
(
X0|k+1,Π1|k

)
≤ `

(
X1|k,Π1|k

)
and therefore

∆Vk ≤
N−1∑
i=1

`
(
Xi|k,Πi|k

)
−
N−1∑
i=0

`
(
Xi|k,Πi|k

)
+ γ`

(
Xf |k,Πf |k

)
+ γFk+1

(
Gf |k

(
Xf |k

))
− Fk

(
XN |k

)
= −`

(
X0|k,Π0|k

)
+ γ`

(
Xf |k,Πf |k

)
+ γFk+1

(
Gf |k

(
Xf |k

))
− Fk

(
XN |k

)
≤ −`

(
X0|k,Π0|k

)
+ γ ¯̀+ γFk+1

(
Gf |k

(
Xf |k

))
− Fk

(
XN |k

)
where the last inequality follows by the definition of ¯̀ in
Corollary 11. Since XN |k ⊆ γXf |k, by definition of the
terminal cost

Fk
(
XN |k

)
=

¯̀

1− %
(M + (λ− 1)σ(k +N)) Ψσ(k)

(
XN |k

)
= γ

¯̀

1− %
(M + (λ− 1)σ(k +N)) Ψσ(k)

(
Xf |k

)
= γFk

(
Xf |k

)
.

Hence

∆Vk ≤ −`
(
X0|k,Π0|k

)
+ γ

(
¯̀+ Fk+1

(
Gf |k

(
Xf |k

))
− Fk

(
Xf |k

))
≤ −`

(
X0|k,Π0|k

)
+ γ

(
¯̀− ¯̀W

(
k +N,Xf |k

))
≤ −`

(
X0|k,Π0|k

)
≤ −s8

(
‖x0|k‖

)
where the second and third inequalities follow from
Corollary 11, and the last inequality from Assump-
tion 12.(i). The fact that V (x0|k) is monotonically de-
creasing with rate s8

(
‖x0|k‖

)
is, in conjunction with the

bounds of Assumption 12.(ii), sufficient to conclude that
V (·) is a (time-varying) Lyapunov function; asymptotic
stability of the controlled system follows [25, Theo-
rem 2]. �
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