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Abstract

In this note, novel linear matrix inequality (LMI) analysis conditions for the stability of linear parameter-varying (LPV) systems
in input-output (IO) representation form are proposed together with bilinear matrix inequality (BMI) conditions for fixed-
structure LPV-IO controller synthesis. Both the LPV-IO plant model and the controller are assumed to depend affinely and
statically on the scheduling variables. By using an implicit representation of the plant and the controller interaction, an exact
representation of the closed-loop behavior with affine dependence on the scheduling variables is achieved. This representation
allows to apply Finsler’s Lemma for deriving exact stability as well as exact quadratic performance conditions. A DK-iteration
based solution is carried out to synthesize the controller. The main results are illustrated by a numerical example.
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1 Introduction

Over the last decades, significant research efforts have
been spent on the development of the linear parameter-
varying (LPV) system framework, resulting in numer-
ous publications and case studies, see, e.g., [17], [3], [12],
[18], [10]. The LPV approach allows to address nonlin-
ear controller design in a systematic, linear framework
which can be seen as an extension of the linear time-
invariant (LTI) system theory enabling the generaliza-
tion of efficient LTI controller synthesis techniques to
the LPV setting.

While many techniques have been developed for LPV
state-space (SS) controller synthesis based on SS mod-
els, only a few results have been published regarding
synthesis of LPV controllers based on input-output (IO)
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form. However, obtaining reliable models in a SS format
by first-principles based LPV modeling techniques and
SS identification is hindered by both complexity issues
[23] and the so-called dynamic-dependence problem con-
nected to LPV realization theory [19]. Meanwhile, iden-
tifying LPV-IO models has become well-supported, due
the simplicity of the corresponding estimation setting.
Due to the dynamic-dependence problem, minimal SS
realization of these models introduces a significant com-
plexity increase that grows beyond the applicable range
of computational tools. Thus, a significant effort is often
spent to derive low-complexity LPV-SS models on which
the current synthesis approaches can be applied, while
the models identified in IO form remain unexploited.
This, in itself, creates a need to study controller synthe-
sis strategies that can use these IO models and avoid the
problems connected to their SS realization which often
prevents their utilization in real-world applications. Fur-
thermore, fixed-structure controller design techniques
in LPV-IO form also allow synthesis of structured low-
complexity controllers, e.g., LPV-PID controllers. Of-
ten, hardware limitations restrict the order of the de-
signed controllers. For such cases, fixed-structure syn-
thesis techniques are more favorable than full-order de-
sign strategies, see, e.g., [1] for similar motivation in the
LPV-SS setting. Furthermore, connecting easily identi-
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fiable model structures and control synthesis also opens
up a new avenue for LPV data-driven control design.

To the best of the authors’ knowledge, all LPV-IO con-
trol approaches reported in the literature do not provide
an exact formulation of the closed-loop behavior to ana-
lyze stability. Instead, the closed-loop dynamics are sub-
stituted with an approximation to ensure feasibility. In
[8], based on [9], sufficient linear matrix inequality (LMI)
conditions for quadratic stability and L2-performance
of the approximated LPV closed-loop behavior are de-
rived. An exact formulation of the closed-loop dynam-
ics is avoided since the resulting IO form of the closed-
loop system does not depend statically on the schedul-
ing, i.e., dynamic dependence is introduced [19, pp. 53].
Approximation of this closed-loop form with only static
dependency (see [9, Eq. 8]) allows to introduce a so-
called central polynomial, which is chosen heuristically
by the designer to arrive to analysis and synthesis LMIs.
To overcome this problem, an implicit system represen-
tation is proposed to describe the closed-loop system for
MIMO controller design. In contrast to the approaches
presented in [8], [2], [5], dynamic scheduling dependence
of the closed-loop behavior is not neglected. To benefit
from the implicit form, Finsler’s Lemma is used [7]. This
lemma has been also used to analyze stability of other
implicit polynomial forms, e.g., nonlinear, SS models
with polynomial Lyapunov functions [6]. Here, Finsler’s
Lemma is applied to formulate stability and quadratic
performance conditions for LPV-IO models. The main
contributions are exact LMI based stability and perfor-
mance analysis conditions as well as exact bilinear ma-
trix inequality (BMI) LPV-IO controller synthesis con-
ditions. Bi-linearity for synthesis is expected since fixed-
structure design is addressed. To compute feasible solu-
tions for synthesis, a DK-iteration is used.

The paper is organized as follows: Sec. 2 introduces LPV-
IO representations and points out the obstacles which
have prevented exact LPV-IO controller synthesis so far.
In Sec. 3, the main results in terms of exact LMI (analy-
sis) and BMI (synthesis) conditions are derived for sta-
bility and quadratic performance. To illustrate the pro-
posed methodologies, an example is given in Sec. 5 and
conclusions are drawn in Sec. 6.

2 Preliminaries

For simplicity of the exposition, the classical discrete-
time (DT) reference tracking problem, depicted in Fig. 1,
is used to illustrate the basic concepts and introduce the
main contributions; however, all results can be formu-
lated in the classical general plant setting.

2.1 LPV-IO Representation

The LPV plant, described by the transfer operator
G(θ(t), q), is represented by a parameter-varying (PV)
difference equation or so called IO representation:

K(θ(t), q) G(θ(t), q)
u(t)w(t) e(t) y(t)

−

Fig. 1. Closed-loop interconnection: reference tracking.

na∑

i=0

Ai(θ(t))q
i

︸ ︷︷ ︸

A(θ(t),q)

y(t) =

nb∑

j=0

Bj(θ(t))q
j

︸ ︷︷ ︸

B(θ(t),q)

u(t), (1)

where q is the forward time-shift operator, y(t) : Z →
Rny and u(t) : Z → Rnu denote the measured out-
put and the controlled input signal, respectively, t ∈ Z

denotes time, na ≥ nb ≥ 0 and the coefficient matri-
ces Ai(θ(t)) ∈ Rny×ny as well as Bi(θ(t)) ∈ Rny×nu are
bounded (static) functions of the time-varying schedul-
ing variable θ(t) = [θ1(t) · · · θnθ

(t)]⊤ ∈ Pθ with Pθ be-
ing the scheduling regime.

The vector θ corresponds to varying-operating condi-
tions, nonlinear/time-varying dynamical aspects and/or
external effects influencing the plant behavior, see [19,
pp. 46-49] for details. It is assumed that Pθ ⊂ Rnθ is con-
vex and given by Pθ := Co

(
{θ̄∗1 , . . . , θ̄

∗
nL
}
)
, where each

θ̄∗i ∈ Rnθ is a vertex of a polytope and Co(�) denotes
the convex hull of a finite set of points. Representation
(1) can be also seen as a scheduling dependent polyno-
mial form in terms of A(θ(t), q) and B(θ(t), q). An LPV
representation of the controller can be defined similarly,
resulting in the polynomial forms (AK,BK) satisfying
AK(θ(t), q)u(t) = BK(θ(t), q)e(t). Note that the results
in this paper are derived using polynomials in q. All re-
sults established in the sequel, analogously hold for filter
representations with polynomials in q−1 [26].

2.2 Dynamic Dependence

To demonstrate how dynamic dependence affects LPV
modeling and synthesis problems, consider a SISO LPV
system, with input u and output y, defined by the IO
form:

A(θ(t), q)x(t) = B(θ(t), q)u(t), (2a)

C(θ(t), q)y(t) = D(θ(t), q)x(t). (2b)

Note that the IO behavior of the series connection (2a)
and (2b) is not given by simple multiplication of the
polynomials

C(θ(t), q)A(θ(t), q)y(t) = D(θ(t), q)B(θ(t), q)u(t) (3)

as one might expect based on the LTI system theory. To
illustrate this, let u(t) = sin(ωot), θ(t) = 0.5 cos(3ωot),
ωo = 0.01 and A(θ(t), q) = a0(θ(t)) + q, C(θ(t), q) = q,
B(θ(t), q) = 1, D(θ(t), q) = d0(θ(t)), be given, where
a0(θ(t)) = −0.78+0.44θ(t) and d0(θ(t)) = 0.3+0.9θ(t).
Figure 2 depicts the response of the system (2a-2b) as
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Fig. 2. Output response of (2a-2b) ( ) and (3) ( ).

well as the response of (3). It can clearly be seen that
the dynamical output behaviors are different. In fact,
the interconnected system (2a-2b) obeys the following
dynamical relation: if θ(t) & θ(t+ 1) 6= − 1

3 , then

a0(θ(t))

d0(θ(t))
y(t+ 1) +

y(t+ 2)

d0(θ(t+ 1))
= u(t), (4)

else y(t) = 0 if θ(t − 1) = − 1
3 and y(t ± 1) is defined

recursively via (2a)-(2b). Regarding (3), the IO behavior
is described by

a0(θ(t))y(t + 1) + y(t+ 2) = d0(θ(t))u(t), (5)

as a direct multiplication of the polynomials showing
that the dynamic dependence of (4) is responsible for
the different behaviors. This fact has consequences
for conversion between LPV-IO and LPV-SS models.
In particular, construction of a controllable canoni-
cal or an observable canonical SS form generally in-
troduces dynamic dependence [19]. It also affects the
representation of the closed-loop behavior. Regarding
Fig. 1, the transfer operator from w to y is given by
Gcl = (I + A−1BA−1

K BK)
−1A−1BA−1

K BK. In the LTI
case, provided that AK is chosen scalar, each prod-
uct commutes w.r.t. AK, thus Gcl can be rewritten as
Gcl = (AAK + BBK)

−1BBK. However, in the LPV case,
even for a scalar controller denominator polynomial
AK, products of polynomials in q do not commute as
illustrated by the previous example.

2.3 Implicit LPV-IO Representation

Consequently, in the LPV case, it is more difficult to de-
rive an IO difference equation (DE) for the closed loop
depicted in Fig. 1. The classical approach to the sta-
bility analysis of feedback using IO representations re-
quires formulating stability conditions with dynamic de-
pendence and leads to non-constructive results for syn-
thesizing controllers. To avoid such complications, we
employ an alternative description of the closed-loop be-

havior of the system shown in Fig. 1:

[

A −B

BK AK

]

︸ ︷︷ ︸

R(θ(t),q)

[

y(t)

u(t)

]

=

[

0

BK

]

︸ ︷︷ ︸

H(θ(t),q)

w(t), (6)

which corresponds to a so-called kernel representation of
the closed-loop LPV system [22]. This representation is
well posed, i.e., (y(t), u(t)) andw(t) correspond to a valid
IO partition if and only if R(θ(t), q) is full rank for any
θ(t) ∈ Pθ. Furthermore, G is (structurally) controllable
via u if and only if A and B are left coprime. Under the
previous conditions, we can also write (6) as

[

Ā(θ(t)) −B̄(θ(t))

B̄K(θ(t)) ĀK(θ(t))

]

︸ ︷︷ ︸

R(θ(t))

[

ȳ(t)

ū(t)

]

=

[

0

B̄K(θ(t))

]

︸ ︷︷ ︸

H(θ(t))

w̄(t), (7)

where ȳ(t), ū(t) and w̄(t) are given by ȳ(t) = [y⊤(t) · · ·
qndyy⊤(t)]⊤, ū(t) = [u⊤(t) · · · qnduu⊤(t)]⊤, w̄(t) =
[w⊤(t) · · · qnnKbw⊤(t)]⊤, with ndy = max(na, nKb) and
ndu = max(nb, nKa), where nKa and nKb are the or-
ders of the controller polynomial matrices AK and BK,
respectively. The resulting matrix functions Ā, B̄, ĀK

and B̄K have compatible dimensions and follow directly
from the DEs. For different orders of A, . . . ,BK, the cor-
responding tails of these matrices are filled with zeros.

Not being able to characterize IO stability of (6) via pole
locations or transfer functions in the LPV case, we will
construct a Lyapunov function for this purpose. By writ-
ing (6) as an equivalent 1st-order difference form with
state variables x, the linear system is globally asymp-
totically input-to-state (IS) stable, if there exists a Lya-
punov function V (0) = 0 and V (τ) > 0, for τ 6= 0
s.t., for all feasible state trajectories x(t) and t ∈ Z

+
0 ,

∆V (x(t)) = V (x(t + 1))− V (x(t)) < 0 if x(t) 6= 0. Un-
der mild conditions on the boundedness of the linear re-
lation between y and x, which will be satisfied by our
1st-order form, see (9) below, global asymptotic IS sta-
bility is sufficient for asymptotic IO stability and it is
also necessary if x is completely observable from y. In
this sense, asymptotic IO stability of (6) means that for
any scheduling trajectory θ(t) ∈ Pθ and signal trajec-
tories (y(t), u(t), w(t)) satisfying (7) and that w(t) = 0
for t > t0 with t0 ∈ R, it holds that (y(t), u(t)) → 0 as
t → ∞. IO stability of (6) also corresponds to internal
stability of the closed-loop system in Fig. 1 as all trajec-
tories of the latent signals of the loop, i.e., (y, u) are im-
plied to be bounded and convergent (see [28, pp. 121]).

3 Main Results

3.1 Stability Test

A novel stability condition is introduced through the
use of (7) and Finsler’s Lemma [7] that avoids dynamic
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dependence. For the sake of simplicity, we investigate
stability via the tracking example shown in Fig. 1, but all
results are equivalently applicable for control problems
formulated as generalized plants.

To guarantee stability of the closed-loop system, linear-
ity of the signal relations implies that it suffices (see e.g.,
[13, Ch. 7]) to analyze stability of the autonomous part
of (7) given by

R(θ(t))η(t) = 0, (8)

i.e., w(t) ≡ 0, where η(t) := [ȳ⊤(t) ū⊤(t)]⊤, t ∈ Z
+
0 and

R(θ(t)) ∈ Rns×nr with nr = ny(ndy + 1) + nu(ndu + 1)
and ns = ny+nu. This kernel type of representation can
be written in a 1st-order form, (see [22]):

R1(θ(t))qx(t)+R2(θ(t))x(t)+R3(θ(t))

[

y(t)

u(t)

]

= 0, (9)

where the latent variable x trivially fulfills the property
of state [25, pp. 191–192]. Let I{n} denote the identity
matrix of size n and 0{m,n} the zero matrix of size m
by n. Assume that ndy, ndu ≥ 1 and consider the choice
x(t) = [(Π1,1,y ȳ(t))

⊤ (Π1,1,uū(t))
⊤]⊤, where Πi,j,⋆ =

[I{(nd⋆+1−i)n⋆} 0{(nd⋆+1−i)n⋆,jn⋆}]. Consequently, it

holds that qx(t) = [(Πc
1,1,yȳ(t))

⊤ (Πc
1,1,uū(t))

⊤]⊤,
where Πc

i,j,⋆ = [0{(nd⋆+1−i)n⋆,jn⋆} I{(nd⋆+1−i)n⋆}].With

Γ⋆ = [0{(nd⋆+1)n⋆,(nd⋆−1)n⋆} Πc⊤
nd⋆,nd⋆,⋆

], (7) and using
the above given expressions of x(t) and qx(t) lead to
[R1(θ(t) |R2(θ(t)] =







R(θ(t)) diag(Γy,Γu) R(θ(t)) diag(Π⊤
1,1,y,Π

⊤
1,1,u)

diag(Π2,1,y,Π2,1,u) −diag(Πc
2,1,y,Π

c
2,1,u)

0{ny+nu,nx} −Π∗






,

with Π∗ = diag(Πndy,(ndy−1),y,Πndu,(ndu−1),u) and

R3 = [0⊤{nx,ny+nu}
I⊤{ny+nu}

]⊤. The 1st-order form ad-

mits an equivalent state-space realization (see [22])

with state-space matrix functions (Ẽ, Ã, C̃) satisfying

R1 = [Ẽ⊤0⊤]⊤, R2 = [−Ã⊤ − C̃⊤]⊤, R3 = [0⊤I]⊤,
(the corresponding polynomials are equal in order and
are monic). This (descriptor) SS form represents the
autonomous part of the behavior of (6).

For stability analysis, we only require the 1st-order form
(9), where u is eliminable as a latent variable if ndu = 0.
Asymptotic stability (in the IS and IO sense) can be
inferred if there exists a Lyapunov function candidate
V (x(t)) = x⊤(t)Px(t), P ∈ Rnx×nx positive definite and
∆V (x(t)) < 0 for all feasible (x(t), θ(t)) trajectories of
(9) with θ(t) ∈ Pθ, ∀t ≥ 0. Note that IS implies IO sta-
bility in this case as y = [I{ny} 0{ny,nx−ny}]x. For a
symmetric matrix X , X ≺ 0, (and X ≻ 0) denote nega-
tive (positive) definiteness. Then, defining the matrices
U(P ) = Π⊤

2 PΠ2 −Π⊤
1 PΠ1, Π1 = diag(Π1,1,y, Π1,1,u) ∈

Rnx×nr and Π2 = diag(Πc
1,1,y, Π

c
1,1,u), where U(P ) ∈

Rnr×nr , Π1,Π2 ∈ Rnx×nr and nx = nyndy + nundu, the
following theorem can be stated:

Theorem 1 (Quadratic IO stability) The closed-
loop system, described by (8), is asymptotically stable,
if there exist an F ∈ R

nr×ns and a positive definite
P ∈ Rnx×nx , s.t.

U(P ) + FR(θ̄) +R⊤(θ̄)F⊤ ≺ 0, ∀θ̄ ∈ Pθ. (10)

PROOF. Asymptotic stability can be inferred if
V (x(t)) > 0 and ∆V (x(t)) < 0 where x(t) 6= 0 for
all (x(t), θ(t)) satisfying (9) with θ(t) ∈ Pθ. ∆V (x(t))
can be written in terms of η(t) as ∆V (x(t)) =
η⊤(t)(Π⊤

2 PΠ2 − Π⊤
1 PΠ1)η(t). Asymptotic stability is

guaranteed if ∆V (x(t)) < 0, ∀η(t) 6= 0 : R(θ(t))η(t) =
0. Applying Finsler’s Lemma [7] yields the matrix in-
equality (10) and completes the proof. �

Condition (10) is exact in the sense that no dynamic de-
pendence is introduced in (8) nor neglected as in [8,5].
Still, Thm. 1 corresponds to an infinite number of matrix
inequality conditions. However, as in state-space based
analysis, as R(θ(t)) is affine in θ and Pθ is convex, veri-
fying that (10) holds for all θ̄ ∈ Pθ is equivalent to ver-
ifying (10) for all θ̄∗i s.t. Pθ = Co({θ̄∗i }). Thus, LPV-
IO stability analysis reduces to a definite convex pro-
gram represented by a finite set of LMI’s. Thm. 1 can be
further generalized with polynomially parameter depen-
dent P diminishing the conservativeness of searching for
a quadratic Lyapunov function. However, this increases
complexity due to required relaxation techniques, e.g.,
sums-of-squares (SOS) relaxation.

3.2 Quadratic Performance

First a convex, quadratic performance test is derived
based on (7), then synthesis of a stabilizing controller
that achieves a desired performance level is outlined. In
line with the classical concept of storage functions [24],
we can characterise performance objectives by

∞∑

t=0

[

z(t)

w(t)

]⊤ [

Z S

S⊤ V

]

︸ ︷︷ ︸

Q

[

z(t)

w(t)

]

< 0, (11)

for certain choices of Z ∈ Rnz×nz , V ∈ Rnw×nw and
S ∈ R

nz×nw , where w(t) : Z → R
nw denotes general-

ized disturbance and z(t) : Z → Rnz represents general-
ized performance channels. Considering the problem of
minimization of the induced L2-gain of the closed-loop
response, one can choose Z = I, V = −γ2I and S = 0.
The closed-loop system, shown in Fig. 1, is augmented
with shaping filters, as shown in Fig. 3, which repre-
sents a mixed S/KS setting and is chosen here for ex-
emplification. Note, that the approach is not restricted
to closed-loop systems as shown in Fig. 3, but can han-
dle any generalized plant and controller interconnection.
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K(θ(t), q) G(θ(t), q)

Wk(θ(t), q)

Ws(θ(t), q)

u(t)w(t) e(t) y(t)

−

zk(t)

zs(t)

Fig. 3. Closed-loop system with shaping filters

For the S/KS setting, we have z(t) = [z⊤s (k) z
⊤
k (t)]⊤ and

the dynamics are governed by

Ā(θ(t))ȳ(t)= B̄(θ(t))ū(t), ĀK(θ(t))ū(t)= B̄K(θ(t))ē(t),

Ās(θ(t))z̄s(t)= B̄s(θ(t))ē(t), Āk(θ(t))z̄k(t)= B̄k(θ(t))ū(t).

The filters Ws(θ(t), q) and Wk(θ(t), q) are specified by
the latter two DE’s with z̄s(t) = [z⊤s (t) · · · qndzs z⊤s (t)]⊤,
z̄k(t) = [z⊤k (t) · · · qndzk z⊤k (t)]⊤. Consequently, the
θ-dependent matrices Ās, B̄s, Āk and B̄k can be con-
structed similarly to Ā and B̄ or ĀK and B̄K respectively.
By defining the vector signal η̃(t) := [η⊤(t) z̄⊤(t)]⊤

with η(t) from (8) and z̄⊤(t) := [z̄⊤s (t) z̄⊤k (t)]
⊤, the

dynamics which are governed by the DE’s, can be de-
scribed as a kernel representation

L(θ(t))ζ(t) = [R̃(θ(t)) − H̃(θ(t))]ζ(t) = 0, (12)

where ζ(t) = [η̃⊤(t) w̄⊤(t)]⊤. Assume that ndy, ndu,
nds, ndk ≥ 1 and consider the choice x(t) = Π1ζ(t).
Note that (12) can be brought to a 1st-order form
similar to (9), which guarantees that x qualifies as
a state. The matrix Π1 ∈ Rnx×nr is given by Π1 :=
diag(Π1,1,y, Π1,1,u, Π1,1,zs , Π1,1,zk , Π1,1,w), and Πi,j,⋆ =
[I{(nd⋆+1−i)n⋆} 0{(nd⋆+1−i)n⋆,jn⋆}], Consequently, it fol-

lows that qx(t) = Π2ζ(t), where Π2 ∈ R
nx×nr is given by

Π2 := diag(Πc
1,1,y, Π

c
1,1,u, Π

c
1,1,zs , Πc

1,1,zk , Π
c
1,1,w) and

Πc
i,j,⋆ = [0{(nd⋆+1−i)n⋆,jn⋆} I{(nd⋆+1−i)n⋆}]. As in the

previous section, U(P ) is defined with Π1 and Π2 given
above. Furthermore, the performance constraints (11)
can be rewritten in the form

∑∞
t=0 −ζ⊤(t)QPζ(t) > 0,

where QP = [0 diag(Πz, Πw)]
⊤Q[0 diag(Πz, Πw)].

Note that z(t) = Πzz̄(t) and w(t) = Πww̄(t), where
Πz = [I{nz} 0] and Πw = [I{nw} 0]. The following theo-
rem can be stated:

Theorem 2 (Quadratic IO performance) The
closed-loop system described by (12) is asymptotically
stable and achieves the performance constraint (11)
if there exist an F ∈ Rnr×ns and a positive definite
P = P⊤ ∈ Rnx×nx , s.t.

U(P ) +QP + FL(θ̄) + L⊤(θ̄)F⊤ < 0, ∀θ̄ ∈ Pθ. (13)

The proof is omitted due to lack of space. For analysis,
(13) represents a convex program. For synthesis, mini-
mizing, e.g., the closed loop L2-gain γ over the product

of controller parameters and F renders the problem non-
convex ((13) becomes a BMI). This is however to be ex-
pected when solving fixed-structure synthesis problems.

3.3 Controller Synthesis

Algorithm 1 LPV-IO synthesis via DK-iteration.

Require: Plant model (A,B), controller parametrization
(AK,BK), performance constraint QP, an initial con-

troller K(0) satisfying Thm. 2 with γ(0) > 0.

1: Set τ → 0.
2: repeat

3: (D-step) Minimize γ w.r.t. Thm. 2 and a fixed

K(τ) = (A
(τ)
K ,B

(τ)
K ):

minimize
P̃ ,F (τ)

γ
2

subject to P̃ > 0,

U(P̃ ) +QP + F
(τ)

L(θ̄,K(τ))

+ L
⊤(θ̄,K(τ))(F (τ))⊤ < 0.

4: (K-step) Minimize γ w.r.t. Thm. 2 and a fixed F (τ):

minimize
P̃ ,K(τ+1)

γ
2

subject to P̃ > 0,

U(P̃ ) +QP + F
(τ)

L(θ̄,K(τ+1))

+ L
⊤(θ̄,K(τ+1))(F (τ))⊤ < 0.

5: Set γ(τ+1) to the minimum found in Step 4. Set τ →
τ + 1.

6: until γ(τ) has converged.

The non-convex synthesis problem can be solved, e.g.,
by using DK-iteration (see Alg. 1). To execute the DK-
iteration, an initial controller satisfying Thm. 2 needs
to be found. One possible approach to find such an ini-
tial controller is to design a robust LTI-IO controller
that can stabilize the closed-loop system on a dense grid

P = {θ̄i}
Ng

i=1 ⊂ Pθ of the scheduling range. The con-
troller is parametrized to be LTI and its parameters
(coefficients of AK and BK) are gathered in a vector δ.
Then, for each value of θ̄ ∈ P , the frozen behavior (when
θ(t) ≡ θ̄) of the plant G is equal to an LTI system rep-
resented by the polynomials A(θ̄, q) and B(θ̄, q). There-
fore, at each θ̄ ∈ P , an LTI state-space representation
for the autonomous part of the closed-loop system shown
in Fig. 3, including shaping filters and the controller pa-
rameters, can be determined, via standard LTI realiza-
tion, resulting in the state matrix Ass,θ̄. This realization
can be always computed if the closed-loop system is well-
posed, i.e., I + B0(θ̄)B0,K is invertible. Then, Alg. 2 is
executed to find the initial LPV controller.

The optimization problem (14) can be efficiently solved
by a quasi-Newton approach (or other gradient based
optimization techniques) [11], [4], [15], see [14] for com-
puting the gradient of λ̄ w.r.t. δ. Even though, there are
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Algorithm 2 Initialization of the DK-iteration.

Require: A set of grid points P ⊂ Pθ and, for each θ̄ ∈ P ,
a parameterized state-space matrix (realization) Ass,θ̄ of
the frozen closed-loop behavior with controller parame-
ters δ.

1: Let Po ⊂ P be a coarse gridding of Pθ (often the vertices
of Pθ are sufficient) and Pv = P \ Po.

2: repeat

3: Generate a random initial value of the controller pa-
rameters δ.

4: Solve

min
δ

max
θ̄∈Po

λ̄(Ass,θ̄), (14a)

subject to max
θ̄∈Po

λ̄(Ass,θ̄) < 1, (14b)

where λ̄ indicates the spectral radius of a matrix.

5: until all {Ass,θ̄}θ̄∈Pv
are Schur.

no guarantees that the controller provided by Alg. 2 sat-
isfies Thm. 2, it has been empirically observed to serve
as an efficient initialization of the DK iteration.

4 Properties

The main results, given by Thm. 1 and Thm. 2 can be
extended to continuous time (CT) by replacing the for-
ward shift operator q with the differential operator d

dt

as well as assuming that (y, u) ∈ C
ny+nu
∞ , i.e., only arbi-

trary differentiable solution trajectories are considered.
Consequently, the CT LPV-IO representation is given
by the differential equation

na∑

i=0

Ai(θ(t))
di

dti
y(t) =

nb∑

j=0

Bi(θ(t))
dj

dtj
u(t).

Due to the chosen DT filter representation using poly-
nomials in q, the same notation can be used to han-
dle the CT case. Merely the linear map U(P ) has to
be adjusted, such that ∆V (x(t)) represents the time
derivative of the Lyapunov function candidate. Along
the same lines as in Sec. 3.1, stability conditions can be
derived by setting U(P ) = Π⊤

1 PΠ2 +Π⊤
2 PΠ1. By ana-

lyzing the results, it turns out that the implied condi-
tions for stability in CT are more strict than in DT.
This becomes clear by comparing the CT version of
Thm. 1 to the DT version of Thm. 1, where the matrix
R(θ̄) describes implicitly the autonomous part of the
system. Then a necessary condition for the existence of
a solution (P, F, ĀK (θ̄), B̄K(θ̄)) in the CT case is that
N {Π1} ∩ N

{
R(θ̄)

}
= ∅ and N {Π2} ∩ N

{
R(θ̄)

}
= ∅,

∀θ̄ ∈ Pθ, where N denotes the null-space of a matrix.
Comparing this to DT, a necessary condition for the
existence of a solution (P, F, ĀK(θ̄), B̄K(θ̄)) is given by
N {Π1} ∩N

{
R(θ̄)

}
= ∅, ∀θ̄ ∈ Pθ. Note that in CT, the

same initialization with Alg. 2 can be used if (14b) is re-
placed with maxθ̄∈Po

λ̄(Ass,θ̄) < 0 and the termination

condition is all {Ass,θ̄}θ̄∈Pv
are Hurwitz.

In the following, the meaning of the conditions men-
tioned above as well as the conditions/assumptions used
to derive our results are investigated. Since the following
considerations apply in CT as well as in DT, both the
differential operator and the shift operator are denoted
by ξ. It is well known that the existence of a quadratic
Lyapunov function is a sufficient condition for stability
of (9), but not a necessary condition. However, input-
to-state stability of (9) is also only a sufficient condition
for the IO stability of (6). State stability of (9) is also a
necessary condition for the IO stability of (6) if x is com-
pletely observable from (y, u), i.e., the constructed first-
order form is minimal. Unfortunately, this property is
not guaranteed in general with the proposed first-order
form and non-minimality can yield a conservative sta-
bility test / synthesis procedure. Computing a (state)
minimal first-order form realization is certainly an op-
tion if the controller is given, but it often results in the
introduction of dynamic dependence (see, [19], [20]). A
strictly necessary condition to guarantee observability of
x is [(Ã(θ̄)− λẼ(θ̄))⊤ C̃⊤] being full rank for all θ̄ ∈ Pθ

and λ ∈ C. In conclusion, any stability result for LPV-
IO representations, which establishes a stability condi-
tion via a first-order form, like in [8], [5], [2], is only suf-
ficient concerning the IO stability of the interconnected
system. The main advantage of Thm. 1 is, that it allows
to apply such a sufficient IO stability test without any
approximations or requirement of a central polynomial.

Moreover, the assumption that R(θ(t), ξ) is of full rank,
nr := rank(R(θ̄, ξ)) = nu+ny for any θ̄ ∈ Pθ, is a neces-
sary condition of well-posedness, ensuring that the sig-
nals (y, u) are completely determined by their initial con-
ditions and the input w for all scheduling trajectories.
Otherwise, there exists a θ̄ ∈ Pθ for which R(θ̄, ξ) loses
rank implying that some elements of (y, u) are free vari-
ables, they function as extra inputs, violating the well-
posedness of the interconnected system. Furthermore,
the condition that A and B are left co-prime is required
to ensure that there are no autonomous dynamics in G,
i.e. y is fully controllable via u (see [13, Ch. 5]). The
latter condition is commonly satisfied by first-principles
based IO models of real-world systems or can be ensured
by left-factorization. Moreover, this condition is always
fulfilled by IO models identified from data due to the
variance of the model estimates induced by noise.

5 Numerical Example

In this section, the performance of the proposed con-
troller synthesis approach is demonstrated on a simula-
tion example. The performance objective is chosen as the
L2-performance, i.e, the L2-gain γ of the closed-loop sys-
tem, is aimed to be minimized. The considered problem
is to control the outlet concentration of a substance in an
ideal continuously stirred tank reactor (CSTR). This ex-
ample describes the chemical conversion of an inflow of
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substance A to a product B, which has a non-isothermal
reaction. Using the example of a CSTR given in [16], the
following 1st-order nonlinear differential equation can be
used to describe the system dynamics

Ċ2(t) =
Q1(t)

5
(C1(t)−C2(t))−25e−

30
0.008T (t)C2(t), (15)

where C1(t), C2(t) are the concentrations of component
A in the inflow and in the reactor, respectively, in kg/m3,
Q1(t) is the input mass flow in m3/s and T (t) is the
temperature in the reactor in K. In this example, we are
interested in regulatingC2(t) viaQ1(t) and consider T (t)
andC1(t) as external effects corresponding to scheduling
signals. The nonlinear 1st-order model in (15) has been
discretized with a sampling-time Ts = 60 s using Euler’s
forward method. Then, it has been normalized (w.r.t.
the input Q1 with range [0.009 0.011] kg/m3 and the
output C2 with range [150 270] kg/m3) and represented
in an LPV-IO form with the polynomials

A(θ(t), q) = q + a0(θ(t)), B(θ(t), q) = b0(θ(t)), (16)

where a0(θ(t)) = 1500 θ1(t)−
22
25 , b0(θ(t)) = θ2(t)−

21
500 ,

θ1(t) = exp(− 30
0.008T (t) ) with T (t) ∈ [347 484] K and

θ2(t) = C1(t)
5000 − 3C2n(t)

250 with C1(t) ∈ [400 1200] kg/m3

andC2n(t) ∈ [−1 1], which isC2(t) but normalized. Note
that the output C2n is also a scheduling signal, thus (16)
represents a so-called quasi-LPV model. Furthermore,
Pθ is the convex hull of the range of θ(t) with vertices

θ̄∗1=

[

θ1,min

θ2,min

]

, θ̄∗2=

[

θ1,max

θ2,min

]

, θ̄∗3=

[

θ1,min

θ2,max

]

, θ̄∗4=

[

θ1,max

θ2,max

]

.

The control objectives are fast reference tracking with
a rise-time less than 10 samples, no overshoot and zero
steady steady-state error. Examining the poles of frozen
LTI systems obtained from (16) for constant θ shows that
they vary between 0.016 and 0.835, which demonstrates
that an LPV controller is required to preserve the control
objectives for the whole range of operation [21]. A 1st-
order LPV PI controller

(q − 1)
︸ ︷︷ ︸

AK(q)

u(t) = (bk1(θ(t))q + bk0(θ(t)))
︸ ︷︷ ︸

BK(θ(t),q)

e(t) (17)

is synthesized to achieve the control objectives,
where bk1(θ(t)) = bk10 + bk11θ1(t) + bk12θ2(t) and
bk0(θ(t)) = bk00+ bk01θ1(t)+ bk02θ2(t). An LPV-IO sen-
sitivity weighting filter Ws is chosen with the following
transfer functions at the vertices of Pθ

Ws1 =
0.0169q− 0.0111

q − 0.9650
, Ws2 =

0.0356q+ 0.0148

q − 0.6975
,

Ws3 =
0.0889q− 0.0776

q − 0.9322
, Ws4 =

0.0306q− 0.0052

q − 0.8477
.
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Fig. 4. Scheduling signals: C1(t) ( ), T (t) ( ).

The optimization problem is solved in a DK-iteration
based manner, using the SDPT3 LMI solver for (13).
Optimization w.r.t. γ yields an LPV controller, LPV-IO-
PI1, which achieves γ = 1.032. To assess consistency and
computational complexity of the proposed approach, the
design procedure is executed 100 times. Without op-
timizing the implementation, the mean and standard
deviation (std) of the CPU time for the initialization
step to determine a feasible initial controller amounts
to 4.71 ± 3.95 s and for the DK-iteration to converge
to 70.09 ± 17.78 s, respectively. It requires 84.8 ± 21.6
iterations to converge, achieves γ = 1.031 ± 0.002 and
shows consistency as well as tractability of the overall
procedure. In general, there are no guarantees that the
DK-iteration either converges to a local optimum or pro-
duces the same solution with different initialization. Yet,
as illustrated above, it can show a certain level of con-
sistency in the achieved γ in practice.

The closed-loop system is simulated to track a reference
signal of C2n, while T , C1 and also θ cover the whole
range of operation as depicted in Fig. 4. Figure 5 shows
that the controlled output C2n tracks the reference in-
put reasonably well without violating the design objec-
tives. The variation of the controller parameters is shown
in Fig. 6. For comparison, two other LPV control de-
signs are considered. Firstly, a standard LPV synthesis
in the SS framework, see [3], is applied. An exact LPV-
SS realization can be constructed for (16) without oc-
currence of dynamic dependence since the LPV model
here is a 1st-order system [22]. To provide integral ac-
tion, the shaping filter Ws is retuned. Then, a discrete-
time version of the Matlab command hinfgs is used
for controller design yielding the 3rd-order controller,
LPV-SS-FO. Secondly, an LPV-IO controller is synthe-
sized using the central polynomial based approach of [2]
which optimizes over the set of central polynomials and
thus solves a BMI problem. The same weighting filter
Ws as for LPV-IO-PI1 is used and the controller struc-
ture (17) is chosen. The BMI optimization by the DK-
iteration based approach results in a controller LPV-
IO-PI2 that achieves γ = 2.051. For this approach, to
ensure affine dependence of the closed-loop representa-
tion on θ, the scheduling regime has been redefined as
P̄θ = C({θ̄∗i }

16
i=1), which increases the conservatism of

the design. Figure 7 shows the closed-loop response when
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Fig. 6. Controller parameters bk0(t) ( ), bk1(t) ( ) of
the LPV-IO-PI1.

using the controllers LPV-SS-FO, LPV-IO-PI2 and an
LTI controller, LTI-IO-PI, obtained from LPV-IO-PI1
at the center of the scheduling range Pθ. It is apparent
that LPV-IO-PI1 designed based on the condition (13)
outperforms LPV-IO-PI2 and LTI-IO-PI which violates
the design objectives. Moreover, LPV-IO-PI1 provides
almost the same performance as the controller LPV-SS-
FO. Note that the controller LPV-IO-PI2 which is de-
signed based on an approximate closed-loop representa-
tion yields undesired oscillations in the controlled out-
put at some operating points, see Fig. 7. Finally, it is
worth to mention that, in terms of the mean square er-
ror between the reference and the tracking output, the
LPV-IO-PI1 controller achieves a 17.6% improvement in
average over the LTI design.

6 Conclusion

In this work, novel stability as well as quadratic per-
formance conditions in terms of LMI’s (analysis) and
BMI’s (synthesis) have been presented, which are based
on exact implicit LPV-IO system representations. By
the framework of implicit dynamic constraints, this ap-
proach offers a general method to address the problem
of LPV-IO fixed-structure controller synthesis. The pro-
posed method has been illustrated with a numerical ex-
ample that shows the performance advantages of the ap-
proach over other LPV-IO synthesis methods. A convex
solution to the full-order synthesis problem is presented
in [27].
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