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Abstract

Most of the approaches available in the literature for the identification of Linear Parameter-Varying (LPV) systems rely on
the assumption that only the measurements of the output signal are corrupted by the noise, while the observations of the
scheduling variable are considered to be noise free. However, in practice, this turns out to be an unrealistic assumption in
most of the cases, as the scheduling variable is often related to a measured signal and, thus, it is inherently affected by a
measurement noise. In this paper, it is shown that neglecting the noise on the scheduling signal, which corresponds to an
error-in-variables problem, can lead to a significant bias on the estimated parameters. Consequently, in order to overcome this
corruptive phenomenon affecting practical use of data-driven LPV modeling, we present an identification scheme to compute
a consistent estimate of LPV Input/Output (IO) models from noisy output and scheduling signal observations. A simulation
example is provided to prove the effectiveness of the proposed methodology.
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1 Introduction

The concept of linear parameter-varying (LPV) systems,
originally introduced in [21], offers a promising frame-
work for modeling and control of a large class of non-
linear (NL) and time-varying (TV) systems. LPV sys-
tems can be seen as an extension of linear time-invariant
(LTI) systems, as the dynamic relation between the in-
put and the output signals is linear. Unlike in the LTI
case, these signal relations are allowed to change over
time and they are assumed to depend on a measurable
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Tóth), vincent.laurain@univ-lorraine.fr (Vincent
Laurain).

time-varying signal, commonly referred in the literature
as the scheduling variable. Scheduling variables can be
external signals like space coordinates, measurable dis-
turbances or changing operating conditions. In this way,
the nonlinear and time-varying behavior of the system
can be embedded in the solution set of a linear dynamic
input-output relationship which varies with the schedul-
ing variable.

The LPV modeling paradigm has evolved rapidly in the
last twenty years, and it has been employed in many con-
trol applications like aircrafts [15,14], automotive sys-
tems [30,18,7,4], robotic manipulators [9] and induc-
tion motors [20]. Motivated by the need of accurate
and low-complexity LPV models for control design pur-
poses, significant efforts have been spent in the last years
for developing efficient approaches for identification of
LPV systems from measured data. In the current liter-
ature, the existing LPV identification approaches have
been mainly formulated in discrete-time (DT) and they
are categorized by the used model structure. In par-
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ticular, identification schemes for LPV models based
on a state-space (SS) representation are discussed in
[24,28,8,16,31,13,27], identification of LPV models rep-
resented in terms of a series expansion is dealt with in
[26], while identification of LPV input-output (IO) mod-
els is addressed in [2,3,1,29,11]. The reader is referred to
[25] for an overview on the existing LPV identification
methods.

Most of the LPV identification methods rely on the as-
sumption that only the output measurements are cor-
rupted by noise, while the observations of the schedul-
ing signal are considered to be noise free. However, in
practice, this turns out to be an unrealistic assumption
in most of the cases, as the scheduling variable is of-
ten related to a measured signal and, thus, it is inher-
ently affected by a measurement noise. Assuming noise
on the scheduling variables corresponds to a so-called
error-in-variables (EIV) problem for which several iden-
tification methods have been proposed in the LTI con-
text [32,10,22]. In the LPV setting, in order to model
a broader class of behaviors, the dependency on the
scheduling variable is mostly considered to be nonlinear.
This renders the EIV problem to be more difficult than
in the LTI case, since the stochastic noise affecting the
scheduling observations is distorted by nonlinear func-
tions. To the best of the authors’ knowledge, the only
contributions available in the literature addressing the
identification of LPV systems from noise-corruptedmea-
surements of both the output and the scheduling signal
are given in [5,6] and [3]. The methodologies in [5,6] fo-
cus on the identification of LPV-IO systems in the set-
membership (or bounded-error) identification context.
Specifically, a convex relaxation approach is used to cal-
culate an outer-bounding box of the so-called feasible pa-
rameter set (FPS), that is the set of all system parame-
ters consistent with the measurements, the error bounds,
and the assumed model structure, under the assump-
tion that the noise corrupting the output and schedul-
ing signal observations is bounded. The worst-case re-
alization of the noise sequence is computed and hard
bounds on the possible values of the model parameters
that are consistent with the a-priori assumptions are ob-
tained. Unfortunately, the selection of a nominal model
within the computed approximation of the FPS remains
an open problem. Furthermore, because of high compu-
tational complexity, the applicability of the approaches
in [5,6] is limited to small/medium scale LPV identifica-
tion problems. The work [3] proposes an instrumental-
variable (IV) based approach for identification of LPV-
IO systems in a statistical framework. The advantage
of using IV-based estimate in the LPV setting is the
ability to cope with realistic assumptions on the output
noise instead of applying nonlinear optimization. The
IV method delivers unbiased estimates for a large gen-
erality of noise scenarios with the sole condition that all
disturbances can be expressed as a zero mean noise pro-
cess. Furthermore, refined extension of the IV method
in [11] offer a solution to minimize the variance of the

IV estimate for even Box-Jenkins (BJ) noise models un-
der the condition of noise-free scheduling variables. In
case of noisy dependency, it is shown in [3] that unbi-
ased estimates can be computed if i) the instrument is
uncorrelated with the scheduling variable noise and ii)
the scheduling dependency is linear. The latter condi-
tion limits the applicability of the IV-based scheme in
[3]. Furthermore, as discussed in [11], in order to mini-
mize the variance of the IV estimate, the chosen instru-
ment should be correlated with the noise-free output and
of the scheduling signal of the data-generating system.
Although the refined IV algorithm proposed in [11] can
be used to iteratively compute an approximation of the
noise-free output, computing a variable which is corre-
lated with the noise-free scheduling signal and, at the
same time, uncorrelated with the measurement noise,
can be a difficult task in many applications, in particular
when the scheduling signal is not directly manipulatable.

In this paper, a bias-corrected, IV-based method is
developed for the identification of LPV models from
noise-corrupted measurements of the output and of the
scheduling signal. The noise process associated with the
output is assumed to be colored, zero-mean and with
unknown distribution, while the measurements of the
scheduling signal are supposed to be affected by a white
Gaussian noise. The advantages of the proposed method
w.r.t. the approach in [3] are twofold:

• it provides a consistent estimate of LPV models with
polynomial dependence on the scheduling variable;
• the used instrument is only required to be uncor-
related with the noise corrupting the output obser-
vations. Thus, an approximation of the noise-free
scheduling signal does not need to be computed.

The paper is organized as follows. Section 2 is devoted
to the problem formulation. In Section 3, the asymptotic
properties of the IV approach, developed in [3], are dis-
cussed. A bias-corrected IV-based method is presented
in Section 4 to compute a consistent estimate of the sys-
tem parameters under the assumption that the variance
of the noise corrupting the scheduling signal measure-
ments is a-priori known. This assumption is relaxed in
Section 5 to extend the applicability of the developed
method for a more general setting. The effectiveness of
the presented identification approach is shown in Sec-
tion 6 through a simulation example and the obtained
results are compared with the ones obtained by the IV
method in [3].

2 Problem Description

2.1 The data-generating system

Consider a discrete-time single-input single-output
(SISO) linear-parameter-varying system So described
by the difference equation

Ao(po(k), q
−1)yo(k) = Bo(po(k), q−1)u(k), (1a)

y(k) = yo(k) + vo(k), (1b)
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where u(k) ∈ R is the input signal, po(k) ∈ Rnp is the
value of the scheduling variable at time k, yo(k) ∈ R
and y(k) ∈ R are the noise-free and the noise-corrupted
output, respectively, vo(k) ∈ R is an additive zero-mean
colored noise with bounded spectral density. For the sake
of exposition, only the case of scalar scheduling vari-
able po(k) (i.e., np = 1) will be discussed in this pa-
per. The terms Ao(po(k), q

−1) and Bo(po(k), q−1) in (1)
are polynomials in the backward shift operator q−1 (i.e.,
q−1u(k) = u(k − 1)) of finite degree na and nb, respec-
tively, i.e.,

Ao(po(k), q
−1) =1 +

na∑
i=1

aoi (po(k))q
−i, (2a)

Bo(po(k), q−1) =

nb∑
j=0

boj (po(k))q
−j , (2b)

where aoi : R → R and boj : R → R are polynomial
functions in the scheduling variable po(k) of maximum
degree ng, i.e.,

aoi (po(k)) =aoi,0 +

ng∑
s=1

aoi,sp
s
o(k), (3a)

boj (po(k)) =boj,0 +

ng∑
s=1

boj,sp
s
o(k), (3b)

where aoi,s ∈ R and boj,s ∈ R (with s ∈ {0, . . . , ng}) are
unknown real constants. For the sake of simplicity, in
(3), the polynomials aoi and boj are considered with the
same degree ng. Nevertheless, the discussion reported
in the sequel can be straightforwardly extended to the
case when aoi and boj have different degrees.

In order to describe the data-generating system So in
a compact form, let us introduce the following matrix
notation:

aoi =
[
aoi,0 aoi,1 . . . aoi,ng

]⊤,
boj =

[
boj,0 boj,1 . . . boj,ng

]⊤,
θo =

[
(ao1)

⊤
. . .

(
aona

)⊤
(bo0)

⊤
. . .

(
bonb

)⊤ ]⊤,
po(k) =

[
1 po(k) p2o(k) . . . png

o (k)
]⊤

,

χo(k)=[−yo(k −1) . . . − yo(k −na) u(k) . . . u(k−nb)]
⊤,

ϕo(k) = χo(k)⊗ po(k),

with ⊗ denoting the Kronecker product. Based on the
notation introduce above, the data-generating system in
(1) is rewritten as

y(k) = ϕ⊤
o (k)θo + vo(k). (4)

2.2 Scheduling signal measurements

The observations p(k) of the scheduling signal po(k) are
affected by an additive measurement noise ηo(k), i.e.,

p(k) = po(k) + ηo(k), (5)

where ηo(k) is a Gaussian distributed white noise
process with zero-mean and finite variance σ2

η, i.e.,

ηo(k) ∼ N (0, σ2
η) and E {ηo(k)ηo(t)} = σ2

ηδk,t, with
δk,t denoting the Kronecker delta function. Further-
more, we assume that ηo(k) is independent of the noise
vo(k) corrupting the measurements of the output signal
y(k), i.e., E {ηo(k)vo(t)} = 0 for all time indexes k and
t. Note that considering ηo(k) independent of vo(k) is a
realistic assumption, since usually the scheduling vari-
able is considered to be an external signal of the system,
and thus the noise ηo(k) corrupting the measurements
of po(k) is independent of the noise vo(t), which in turn
corrupts the output observations.

2.3 The considered model structure

The following parameterized model structure M(θ) is
used to identify So, i.e., estimate the parameters θo:

y(k)=−
na∑
i=1

ai(p(k))y(k−i)+
nb∑
j=0

bj(p(k))u(k−j) + ε(k),

(6)
with ε(k) ∈ R denoting the residual term. The functions
ai : R→ R and bj : R→ R, which depend on the noisy
observation p(k) of the scheduling signal, are polynomi-
als parameterized as

ai(p(k)) = ai,0 +

ng∑
s=1

ai,sp
s(k), (7a)

bj(p(k)) = bj,0 +

ng∑
s=1

bj,sp
s(k). (7b)

Based on a notation similar to the one introduced in
Section 2.1, the parametric modelM(θ) in (7) is written
in the linear regression form:

y(k) = ϕ⊤(k)θ + ε(k), (8)

where θ ∈ Rnθ (with nθ = (ng + 1)(na + nb + 1)) is
a vector stacking the parameters that characterize the
modelM(θ), i.e.,

θ =
[
a⊤1 . . . a⊤na

b⊤0 . . . b⊤nb

]⊤, (9)

with ai and bj defined similarly as aoi and boi , and ϕ(k)
being the observed regressor at time k defined as

ϕ(k) = χ(k)⊗ p(k), (10)
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with

χ(k)=[−y(k−1) . . . − y(k−na) u(k) . . . u(k−nb)]
⊤,

p(k) =
[
1 p(k) p2(k) . . . png(k)

]⊤
.

2.4 The problem setting

The parameters θo, describing the LPV system to be
identified, are estimated based on an observed data se-
quence DN = {u(k), p(k), y(k)}Nk=1 of the system So.
The identification scheme developed in this work is
based on a appropriate modification of the instrumental-
variable approach proposed in [3]. Before introducing
the developed method, the asymptotic behaviour of the
IV-based estimates for LPV systems are analyzed in the
following section.

3 Asymptotic behaviour of the IV estimate

The basic IV estimate, originally introduced in [23] for
identification of LTI systems and extended to LPV sys-
tem identification in [3], can be seen as a modification
of the least-squares (LS) estimate:

θ̂LS =

(
1

N

N∑
k=1

ϕ(k)ϕ⊤(k)

)−1

1

N

N∑
k=1

ϕ(k)y(k), (11)

with the following expression:

θ̂IV =

(
1

N

N∑
k=1

z(k)ϕ⊤(k)︸ ︷︷ ︸
ΓN

)−1
1

N

N∑
k=1

z(k)y(k), (12)

where z(k) ∈ Rnθ is the so-called instrument and it is
chosen by the user to satisfy the following conditions:

C1 Γ−1
∗ = limN→∞

(
1
N

∑N
k=1 z(k)ϕ

⊤(k)
)−1

exists;

C2 the instrument z(k) is not correlated with the
noise vo(k) corrupting the output measurements, i.e.,
E {z(k)vo(k)} = 0 for all k.

In order to analyze the asymptotic behaviour of the IV

estimate θ̂IV, let us first decompose the output signal
y(k) as follows:

y(k) = ϕ⊤
o (k)θo + vo(k) =

= [χo(k)⊗ po(k)]
⊤
θo + vo(k) =

= [χ(k)⊗ p(k)]
⊤
θo +[χ(k)⊗ po(k)−χ(k)⊗ p(k)]

⊤
θo

+ [χo(k)⊗ po(k)− χ(k)⊗ po(k)]
⊤
θo + vo(k) =

= [χ(k)⊗ p(k)]
⊤
θo + [(χo(k)− χ(k))⊗ po(k)]

⊤
θo+

+vo(k) + [χ(k)⊗ (po(k)− p(k))]
⊤
θo.

(13)

Based on Eq. (13), the parameter estimate θ̂IV can be
decomposed as follows:

θ̂IV = Γ−1
N

N∑
k=1

1

N
z(k)y(k) =

= Γ−1
N

N∑
k=1

1

N
z(k) [χ(k)⊗ p(k)]

⊤
θo (14a)

+Γ−1
N

N∑
k=1

1

N
z(k)[(χo(k)−χ(k))⊗po(k)]

⊤
θo (14b)

+Γ−1
N

N∑
k=1

1

N
z(k)vo(k) (14c)

+Γ−1
N

N∑
k=1

1

N
z(k)[χ(k)⊗(po(k)−p(k))]

⊤
θo. (14d)

The asymptotical behaviour of each term in Eq. (14) is
now analyzed. First, note that, because of the definition
of the regressor ϕ(k) (see Eq. (10)), the term (14a) is
equal to θo. As far as the terms (14b) and (14c) are con-
cerned, they converge toward zero as N goes to infinity.
This follows from the fact that (χo(k)− χ(k)) and vo(k)
are zero mean and they are not correlated with the in-
strument z(k) (see [3] for a rigorous proof). As far as the
term (14d) is concerned, this is guaranteed to converge
to zero only whenC1,C2 and both of the following con-
ditions are fulfilled:

• the coefficient functions ai(p(k)) and bj(p(k)) de-
pend affinely on the scheduling variable p(k), i.e.,
E {[χ(k)⊗ (po(k)−p(k))]} = 0 since, if ai and bj are
affine functions of p(k), we have:

E {po(k)−p(k)} = E

{[
1

po(k)

]
−

[
1

p(k)

]}
=

= E

{[
0

−ηo(k)

]}
= 0; (15)

• the instrument z(k) is not correlated with the noise
ηo(k) affecting the scheduling signal measurements,
i.e., E {z(k)ηo(k)} = 0 for all k, or equivalently, pro-
vided that also the above condition and C2 are satis-
fied, E

{
z(k)[χ(k)⊗(po(k)−p(k))]

⊤
}
= 0.

Thus, when at least one of the above conditions is not
satisfied, the term (14d) introduces a bias in the esti-

mate θ̂IV. Note that, in principle, the latter condition
is not hard to fulfill since the instrument z(k) is chosen
by the user. However, in practice, in order to reduce the
variance of the estimate of the system parameters θo, the
instrument z(k) should be correlated with the noise-free
regressor ϕo(k) (given by χo(k)⊗po(k)), as discussed in
[11]. Although an approximation of the noise-free out-
put can be obtained through iterative schemes based on
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simulation of a model of the system to be identified (see,
e.g., [11]), approximating the noise-free scheduling sig-
nal po(k) is not an easy task. In order to overcome such
a problem, two realizations of p(k) are used in [3].

In the following section, we propose an algorithm to
eliminate the bias introduced by the term in (14d). This
allows to compute a consistent estimate for LPV sys-
tems under the conditions that: (i) the scheduling signal
observations p(k) are corrupted by noise; (ii) the coeffi-
cient functions ai(p(k)) and bj(p(k)) depend polynomi-
ally on p(k); (iii) only one noise-corrupted measurement
of po(k) is available.

4 A bias-corrected IV estimate

4.1 Construction of a consistent estimate

Denote with B∆(θo,p,po) the term in (14d), i.e., let

B∆(θo,p,po) =

Γ−1
N

N∑
k=1

1

N
z(k)[χ(k)⊗(po(k)−p(k))]

⊤
θo. (16)

The term B∆(θo,p,po) will be referred in the sequel
as structural bias. Note that B∆(θo,p,po) depends both
on the true system parameters θo and on the noise-free
observations po(k) of the scheduling signal. As a conse-
quence, B∆(θo,p,po) cannot be computed from the ob-
servations DN = {u(k), p(k), y(k)}Nk=1 and thus it can-

not be directly subtracted from the estimate θ̂IV.

Instead, inspired by (14), the following corrected IV es-
timate is introduced:

θ̃CIV = θ̂IV −B∆(θ̃CIV,p,po), (17)

where B∆(θ̃CIV,p,po) is (16) evaluated at θ̃CIV (instead
of θo) and the instruments z(k) are chosen according to
conditions C1 and C2.

Algebraic manipulations of Eq. (17) lead to

θ̃CIV =
( 1

N

N∑
k=1

z(k) [χ(k)⊗ po(k)]
⊤

︸ ︷︷ ︸
R(po)

)−1 N∑
k=1

z(k)y(k)

N
.

(18)

Property 1 Let us assume that the following limit ex-
ists:

lim
N→∞

(
1

N

N∑
k=1

z(k) [χ(k)⊗ po(k)]
⊤

)−1

. (19)

Then, θ̃CIV is a consistent estimate of the true parameters
θo, that is:

lim
N→∞

θ̃CIV = θo w.p. 1. (20)

Proof: See Appendix 8.1. �

Note that, unlike the structural bias B∆(θo,p,po),

the correction term B∆(θ̃CIV,p,po) does not depend

on the true parameter vector θo. However, θ̃CIV can-
not be computed since B∆(θ̃CIV,p,po) depends on the
noise-free observations po(k) of the scheduling variable.
In order to overcome such a problem, the estimate
θ̃CIV (Eq. (18)) is modified by replacing each matrix

Ωk :=z(k) [χ(k)⊗ po(k)]
⊤

(for k ∈ IN1 := {1, . . . , N})
with a matrix Ψk (constructed through the procedure
described in Section 4.2) satisfying the following prop-
erties:

C3 for all k ∈ IN1 , the matrix Ψk does not depend on
the noise-free scheduling signal po(k), but only on
the noisy observations p(k) and on the variance σ2

η of
the noise corrupting these measurements.

C4 lim
N→∞

1

N

N∑
k=1

z(k) [χ(k)⊗ po(k)]
⊤︸ ︷︷ ︸

Ωk

= lim
N→∞

1

N

N∑
k=1

Ψk

w.p. 1.

4.2 Construction of the matrices Ψk

Under the assumption that the variance σ2
η of the noise

corrupting the scheduling signal observations is known,
the matrices Ψk satisfying conditionsC3 andC4 can be
constructed through the following procedure (inspired
by [19]):

(i) For each k ∈ IN1 , compute the analytical ex-
pression of the matrix E {Ωk | yN}, which de-
notes the conditional expected value of the matrix

Ωk = z(k) [χ(k)⊗ po(k)]
⊤

given the output obser-
vation sequence yN = {y(k)}Nk=1. Note that, since
each component of po(k) is a polynomial in po(k),
the entries of E {Ωk | yN} are described by an affine
combination of the monomials po(k), p

2
o(k), p

3
o(k), . . ..

(ii) For each monomial po(k), p
2
o(k), p

3
o(k), . . ., compute

the coefficients α1(k), α2(k), α3(k), . . . satisfying the
following properties:
• po(k) = E {p(k) + α1(k)}
• p2o(k) = E

{
p2(k) + α2(k)

}
• p3o(k) = E

{
p3(k) + α3(k)

}
•
...
The coefficients α1, α2, α3, . . . are computed in a re-

cursive way. Consider first α1(k). Then,

po(k) = E {p(k) + α1(k)} =
= E {po(k) + ηo(k) + α1(k)} =
= po(k) + E {α1(k)} . (21)
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Equation (21) implies that E {α1(k)} = 0 and
po(k) = E {p(k)}. Thus, a possible choice of α1(k) is
α1(k) = 0 for all k ∈ IN1 .

For α2, we have:

p2o(k) = E
{
p2(k) + α2(k)

}
=

= E
{
(po(k) + ηo(k))

2 + α2(k)
}
=

= p2o(k) + σ2
η + E {α2(k)} . (22)

Therefore, a possible choice of α2(k) is α2(k) = −σ2
η,

which provides p2o(k) = E
{
p2(k)

}
−σ2

η for all k ∈ IN1 .

In case d > 2, the values of αd(k) can be recursively
computed on the basis of the (previously computed)
unbiased estimates of po(k), p

2
o(k), . . . , p

d−1
o (k). For in-

stance, for d = 3, a possible choice of α3(k) can be
computed as follows:

p3o(k) = E
{
p3(k) + α3(k)

}
=

= E
{
(po(k) + ηo(k))

3 + α3(k)
}
=

= p3o(k) + 3po(k)σ
2
η + E {α3(k)} . (23)

Eq. (23) implies that α3(k) should be such that:

E {α3(k)} = −3po(k)σ2
η. (24)

Since, based on the previous computation, po(k) =
E {p(k)}, from Eq. (24) we get:

E {α3(k)} = −3E {p(k)}σ2
η = E

{
−3p(k)σ2

η

}
. (25)

This means that a possible choice for α3(k) is α3(k) =
−3p(k)σ2

η. Thus, p
3
o(k) = E

{
p3(k)− 3p(k)σ2

η

}
for all

k ∈ IN1 .

(iii) The matrix Ψk is obtained by replacing, in the
analytical expression of E {Ωk | yN}, the monomi-
als po(k), p

2
o(k), p

3
o(k), . . . with p(k) + α1(k), p

2(k) +
α2(k), p

3(k) + α3(k), . . ..

An illustrative example of the construction of the ma-
trices Ψk is reported in Appendix 8.4.

Remark 1 Note that the structure of the matrices Ψk

only depends on the monomials used to parameterize the
p-dependent coefficient functions ai and bj in (7). �

Remark 2 The assumption that the noise ηo corrupt-
ing the scheduling signal has a Gaussian distribution is
only required for the computation of the αd coefficients
in the construction of the matrices Ψk. In case of other
distributions, the statistical moments of ηo are required
to constructΨk. Therefore, the Gaussian distribution as-
sumption can be relaxed by assuming that the moment-
generating function of ηo is known or can be estimated.
�

Remark 3 By construction, the matrix Ψk satisfies the
following condition for all k = 1, . . . , N :

E
{

1
NΩk | yN

}
=E

{
1
NΨk | yN

}
(26)
�

Property 2 The computed matrices Ψk satisfy condi-
tions C3 and C4 under the assumption that the ampli-
tude of the measured output and of the scheduling signal is
bounded, i.e., there exists a G ∈ R such that: ∥y∥∞ < G
and ∥po∥∞ < G, where ∥ · ∥∞ denotes the ℓ∞-norm of a
signal.

Proof: See Appendix 8.2. �

4.3 A consistent data-dependent parameter estimate

The matrix Ψk represents the expectation of Ωk and
it is constructed by using the available observations of
p(k) and the knowledge of the variance σ2

η of the noise
corrupting these observations. Thus, the new corrected

IV estimate θ̂CIV is given by replacing in (18) the term

Ωk =z(k) [χ(k)⊗ po(k)]
⊤

with its expected value Ψk,
i.e.,

θ̂CIV =

(
1

N

N∑
k=1

Ψk

)−1 N∑
k=1

z(k)y(k)

N
. (27)

Property 3 Let us assume that the limit in Eq. (19)

exists. Then, θ̂CIV is a consistent estimate of the true
parameters θo, that is:

lim
N→∞

θ̂CIV = θo w.p. 1. (28)

Proof: See Appendix 8.3. �
4.4 Choice of the instrument z(k)

As discussed in the previous section, the instrument z(k)

used to compute θ̂CIV (Eq. (27)) has to satisfy condition
C2, which means that z(k) has to be chosen by the user
so that it is independent of the output noise realization
vo(k). It is worth pointing out that, in case the schedul-
ing signal measurements are not affected by noise, the
optimal instrument z(k) minimizing the asymptotic co-
variance matrix of the estimated parameters is given by
the noise-free regressor ([11]), i.e.,

z(k) = ϕo(k) = χo(k)⊗ po(k). (29)

Consequently, the instrument chosen to address the bias-
corrected IV solution is inspired by the instrument pro-
posed in the LPV identification setting with noise-free
scheduling parameter. More precisely, the variable z(k)
is chosen to be maximally correlated with the noise-free
part of the sample ϕo(k). Note that neither χo(k) nor
po(k) are available in practice. Nevertheless, since z(k)
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is not required to be uncorrelated with the noise ηo(k)
affecting the scheduling signal measurements, the follow-
ing instrument can be used to approximate the optimal
instrument in (29):

z(k) = χ̂(k)⊗ p(k), (30)

where

χ̂(k)=[−ŷ(k−1) . . . − ŷ(k−na) u(k) . . . u(k−nb)]
⊤,

with ŷ(k − 1), . . . , ŷ(k − na) being an approximation of
the noise-free output samples yo(k − 1), . . . , yo(k − na)
obtained, for instance, by simulating an estimatedmodel
of the system. This choice of the instrument resembles
the widely used IV solution for linear regression [23,12].
The following iterative algorithm can be implemented
in order to mitigate the effect of the estimated noiseless
signals on the IV scheme and hence “maximize” the ac-
curacy of the IV solution by iteratively refining the in-
struments.

Algorithm 1 Recursive IV scheme

1: set τ ← 0.
2: compute the LS parameter estimate θ̂LS via (11),

resulting in the biased model estimateM(0).
3: repeat
4: set τ ← τ + 1
5: use M(τ−1) and the sequence {u(k), p(k)}Nk=1 to

generate, by simulation, {ŷ(τ)(k)}Nk=1.
6: calculate {z(k)}Nk=1 via (30) using

{u(k), p(k), ŷ(τ)(k)}Nk=1.

7: estimate θ̂
(τ)
CIV via (27), resulting in the model es-

timateM(τ).
8: until θ̂

(τ)
CIV has converged or the maximum number

of iterations is reached.
9: return parameter estimate θ̂

(τ)
CIV.

5 Estimation with unknown noise variance

The application of the proposed identification approach
is limited, in principle, to the case when the variance σ2

η

of the noise ηo(k) affecting the scheduling signal mea-
surements is known. In this section, we present an ap-
proach to extend the applicability of the developed iden-
tification procedure to the case when σ2

η is not a-priori
available.

In order to estimate the noise variance σ2
η, an addi-

tional equation relating σ2
η and the system parameters

θo is required. Inspired by the papers [32,10], where bias-
eliminated least-squares algorithms for identification of
LTI systems in the EIV framework are discussed, let us

introduce the following augmented vectors:

θo =
[
θ⊤o 0

]⊤
,

z(k) =
[
z⊤(k) u(k − (nb + 1))p(k)

]⊤
=

=
[
(χ̂(k)⊗ p(k))

⊤
u(k − (nb + 1))p(k)

]⊤
,

and the augmented matrices Ψk (with k ∈ IN1 ) which are
constructed in order to satisfy the condition:

lim
N→∞

1

N

N∑
k=1

z(k)
[
(χ(k)⊗po(k))

⊤
u(k−(nb + 1))p(k)

]
= lim

N→∞

1

N

N∑
k=1

Ψk w.p. 1.

Note that Ψk can be constructed through the same pro-
cedure used to define the matrix Ψk, as described in Sec-

tion 4.2. Consider now the term 1
N

∑N
k=1 z(k)y(k) which

is guaranteed to satisfy the following property:

lim
N→∞

1

N

N∑
k=1

z(k)y(k) = lim
N→∞

1

N

N∑
k=1

Ψkθo. w.p. 1.

(31)
Eq. (31) follows from the fact that

y(k) = (χo(k)⊗ po(k))
⊤
θo + vo(k)

=
[
(χo(k)⊗po(k))

⊤
u(k−(nb+1))po(k)

]
θo+vo(k).

Eq. (31) provides an (asymptotic) additional relation
between the noise variance σ2

η (which appears in the
construction of Ψk) and the true system parameters θo.
Specifically, an estimate of the noise variance σ2

η and the
system parameters θo can be computed by combing Eq.
(27) and (31) for finiteN . This leads to the set of bilinear
equations in the variables (θ, σ2):

θ =

(
1

N

N∑
k=1

Ψk(σ
2)

)−1 N∑
k=1

z(k)y(k)

N
, (32a)[

1

N

N∑
k=1

z(k)y(k)

]
nθ+1

=

[
1

N

N∑
k=1

Ψk(σ
2)

[
θ

0

]]
nθ+1

, (32b)

where the symbol Ψk(σ
2) has been used to highlight that

the matrix Ψk depends on the chosen noise variance σ2.
In (32b), [ � ]n denotes the n-th component of a vector.
This means that, for finite N , (32b) is the last equation
of system of equations in (31). Indeed, as N → ∞, the
pair (θo, σ

2
η) becomes a solution of the set of equations

in (32). The solution of (32) can be easily computed
through a grid over different noise variances, as described
in the following:
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(i) Generate a set {σ2
i }Mi=1 of M equally-spaced points

in the interval [0, σ2
η], with σ2

η being an upper bound

of the expected noise variance σ2
η.

(ii) For all the points {σ2
i }Mi=1 generated at step (i),

compute θ̂(i) through Eq. (32a) with σ2 = σ2
i , i.e.,

θ̂(i) =

(
1

N

N∑
k=1

Ψk(σ
2
i )

)−1 N∑
k=1

z(k)y(k)

N
.

(iii) Among the M parameter vectors θ̂(i) computed at

step (ii), the estimate θ̂CIV is given by the vector θ̂(i)

which satisfies Eq. (32) with the least error.

Remark 4 The identification approach developed in the
paper can be extended, in principle, to the case of multi-
dimensional scheduling variable po(k) (i.e., np > 1), at
the cost of increasing the computational complexity. As
a matter of fact, increasing the dimension of the schedul-
ing variable po(k) requires to consider a larger number
of monomials to characterize the p-dependent coefficient
functions ai(p(k)) and bj(p(k)) in (7). As a consequence,
the construction of the matrices Ψk (and Ψk) requires to
compute a larger number of coefficients αd(k). Further-
more, in order to solve equations (32), a gridding of an
np-dimensional box should be performed. Thus, in case
the variance of the noise corrupting the scheduling obser-
vations is unknown, the computational complexity of the
developed algorithm increases exponentially with np. �

6 Simulation Example

The purpose of this section is to demonstrate the perfor-
mance of the developed identification approach through
a numerical example and to show how the noise on
the measurements of the scheduling signal can dete-
riorate the estimate of the system parameters, if the
bias-correction scheme is not applied.

6.1 Data-generating system and model structure

The considered data-generating system So is described
by (1)-(3) with

ao1(po(k)) = 1− 0.5po(k)− 0.3p2o(k), (33a)

ao2(po(k)) = 0.5− 0.7po(k)− 0.5p2o(k), (33b)

bo1(po(k)) = 0.5− 0.4po(k) + 0.1p2o(k), (33c)

bo2(po(k)) = 0.2− 0.3po(k)− 0.2p2o(k). (33d)

In this example, we will focus on the comparison between
the developed bias-correction approach and the IV based
approach proposed in [3], hence the data-generating sys-
tem is assumed to belong to the chosen model class. The
following LPV model structure is used:

y(k) = −
2∑

i=1

ai(p(k), θ)y(k − i)

+
2∑

j=1

bj(p(k), θ)u(k − j) + ε(k).

The functions ai and bj , are parameterized as follows:

a1(p(k), θ) =a1,0 + a1,1p(k) + a1,2p
2(k), (34a)

a2(p(k), θ) =a2,0 + a2,1p(k) + a2,2p
2(k), (34b)

b1(p(k), θ) =b1,0 + b1,1p(k) + b1,2p
2(k), (34c)

b2(p(k), θ) =b2,0 + b2,1p(k) + b2,2p
2(k). (34d)

The input u(k) is taken as a white-noise sequence with
uniform distribution U(0, 1) and lengthN = 4000, while
the noise-free scheduling signal po(k) is given by:

po(k) = 0.2 + 0.4 sin(0.035πk) + δ(k), (35)

with δ(k) being a random variable with uniform distribu-
tion U(0, 0.3). The noises vo(k) and ηo(k) corrupting the
output and the scheduling signal measurements, respec-
tively, are white Gaussian noise processes with standard
deviation σv = 0.08 and ση = 0.10. This corresponds to
the following signal-to-noise-ratios:

SNRy =10 log

∑N
k=1 (yo(k)− ȳo)

2∑N
k=1 (v

2
o(k))

= 17dB,

SNRp =10 log

∑N
k=1 (po(k)− p̄o)

2∑N
k=1 (η

2
o(k))

= 21dB,

with yo and po denoting the mean value of the noise-free
output and scheduling signal, respectively. Note that,
since vo(k) is white, the data-generating system (1) is an
LPV system with an output-error type of model struc-
ture. In order to empirically study the statistical prop-
erties of the developed bias-correction scheme, a Monte
Carlo study with NMC = 100 runs with new input,
scheduling variable and noise realizations in each run is
carried out.

6.2 Obtained results

Themodel parameters θ are computedwith the following
three approaches:

• IV based approach ([3]);
• Bias-corrected IV identification approach with known
noise variance σ2

η.
• Bias-corrected IV identification approach with un-
known noise variance σ2

η. The parameter estimate

θ̂CIV is then computed through the procedure dis-
cussed at the end of Section 5, by setting the upper
bound σ̄2

η on the noise variance equal to 0.2, and by

gridding the interval [0 σ̄2
η] withM = 100 equidistant

points.
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Table 2
Validation results of the estimated models. Average and
standard deviation over the Monte Carlo simulation of the
best fit rate (BFR) and of the mean squared error (MSE).

BFR BFR MSE MSE
(mean) (std) (mean) (std)

IV estimate 45% 21% 1.78·10−2 7.10·10−3

Bias-corrected IV 96% 2% 1.04·10−4 9.04·10−6

The obtained results are reported in Table 1, which
shows the average of the estimated parameters and their
standard deviation over the 100Monte Carlo runs. Table
1 shows that the estimate of the system parameters is
very sensitive to the noise on the scheduling signal mea-
surements. As a matter of fact, although the SNR on the
scheduling signal measurements is relatively moderate
(21 dB), the IV based identification approach in [3] pro-
vides a biased parameter estimate, with a bias which, in
some cases, has the same magnitude as the true value of
the parameters (see, e.g., the estimate of the parameters
a1,1, a2,2 and b1,2). On the other hand, in line with the
theory, the bias-corrected IV method proposed in the
paper provides an unbiased estimate of the true system
parameters θo, also when the noise variance is unknown.

The performance of the IV based approach [3] and the
bias-corrected IV identification approach with unknown
noise variance σ2

η is also tested on a noiseless validation
data sequence of length Nval = 200. The true output yo
and the simulated output sequences ŷ of the estimated
models are plotted in Fig. 1a-b, while the error between
the true output yo(k) and ŷ(k) is plotted in Fig. 1c-
d. The best fit rate (BFR) and the mean squared error
(MSE), defined as

MSE =
1

N

N∑
k=1

(yo(k)− ŷ(k))
2
, (36)

BFR =max

{
1− ∥yo(k)− ŷ(k)∥2

∥yo(k)− yo∥2
, 0

}
· 100%, (37)

and computed on the simulated response ŷ of the esti-
mated models, are reported in Table 2. The obtained
results show that the bias-corrected algorithm signifi-
cantly outperforms the standard IV approach.

7 Conclusion

In this paper, a solution has been proposed for the chal-
lenging problem of LPV system identification under the
realistic assumption of noise-corrupted measurements of
the scheduling variable. The solution relies on an innova-
tive combination of IV-based methods and bias correc-
tion. While the IV optimization ensures unbiased esti-
mates under the sole condition that the noise corrupting
the output observations is zero mean, the bias correction
enables the relaxation of the usual assumption of noise-
free scheduling variables. The analysis has been derived
in a context where the scheduling noise is a white Gaus-
sian process and the parametrization of the scheduling

dependent coefficient functions is based on polynomial
basis. These assumptions are realistic in many real appli-
cations where the scheduling noise comes from measure-
ments and the nonlinearities characterizing the schedul-
ing dependencies are smooth enough to be well approx-
imated by polynomial functions. Furthermore, the as-
sumption that the noise corrupting the scheduling sig-
nal observations is Gaussian distributed can be relaxed
by assuming that the moment-generating function of the
noise is known. Hence, this paper presents one of the
first solutions of EIV problems in the LPV setting. The
variance of the estimates can be reduced by extending
the developed method to output-error and Box-Jenkins
noise models via the results of [11]. Finally, in trying to
come closer to more realistic assumptions, this work is
intended to be extended towards non-parametric esti-
mation of nonlinearities and non a-priori specified dis-
tributions of the noise corrupting the scheduling signal
observations.

8 Appendix

8.1 Proof of Property 1

In order to prove Property 1, the following necessary
results coming from the application of the results pre-
sented in [3] are first reported:

lim
N→∞

N∑
k=1

1

N
z(k)[(χo(k)−χ(k))⊗po(k)]

⊤
=0, (38a)

lim
N→∞

N∑
k=1

1

N
z(k)vo(k) = 0, (38b)

with probability 1. Eq. (38a) and (38b) hold since χo(k)−
χ(k) and vo(k) are zero mean and both of them are not
correlated with the instrument z(k).

Property 1 is now proven. Substitution of Eq. (13) into
(18) leads to:

θ̃CIV = R(po)
−1

N∑
k=1

1

N
z(k)[(χo(k)−χ(k))⊗po(k)]

⊤
θo

(39a)

+R(po)
−1

N∑
k=1

1

N
z(k)vo(k) (39b)

+R(po)
−1

N∑
k=1

1

N
z(k) [χ(k)⊗ po(k)]

⊤

︸ ︷︷ ︸
R(po)

θo. (39c)

From (38a) and (38b), Eq. (39a) and (39b) converge to
zero as N →∞. This implies (20).
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Table 1
Mean and standard deviation of the model parameter estimates over the 100 Monte Carlo runs.

True bias-corrected bias-corrected

value IV-estimate [3] estimate θ̂CIV estimate θ̂CIV

(σ2
η known) (σ2

η unknown)

a1,0 mean 1 0.8904 0.9987 1.0006

std – 0.0163 0.0171 0.0182

a1,1 mean −0.5 −1.1307 −0.4936 −0.4922

std – 0.1302 0.1461 0.1493

a1,2 mean −0.3 −0.4929 −0.3127 −0.3143

std – 0.1494 0.1657 0.1699

a2,0 mean 0.5 0.4276 0.4997 0.5005

std – 0.0065 0.0080 0.0083

a2,1 mean −0.7 −1.0638 −0.7015 −0.6882

std – 0.0803 0.0943 0.0985

a2,2 mean −0.5 −0.0261 −0.5134 −0.5169

std – 0.1098 0.1134 0.1148

b1,0 mean 0.5 0.4906 0.5006 0.5006

std – 0.0035 0.0028 0.0031

b1,1 mean −0.4 −0.3316 −0.4012 −0.4038

std – 0.0240 0.0267 0.0271

b1,2 mean 0.1 0.0423 0.0995 0.1004

std – 0.0259 0.0316 0.0378

b2,0 mean 0.2 0.1482 0.2002 0.1997

std – 0.0084 0.0069 0.0070

b2,1 mean −0.3 −0.5648 −0.2948 −0.2879

std – 0.0382 0.0432 0.0476

b2,2 mean −0.2 −0.2610 −0.2035 −0.2071

std – 0.0513 0.0643 0.0672

8.2 Proof of Property 2

The matrices Ψk satisfy condition C3 by construction.
In order to prove that Ψk satisfy also condition C4, the
following necessary lemma coming from a direct appli-
cation of the Ninness’s strong law of large numbers [17]
is first presented.

Lemma 1 Ninness’ strong law of large numbers
[17]. Let {ν(t)} be a sequence of random variables with
arbitrary correlation structure (not necessarily station-
ary) that is characterized by the existence of a finite value
C such that

N∑
t=1

N∑
s=1

E {ν(t)ν(s)} < CN. (40)

Then,

1

N

N∑
t=1

ν(t)
a.s.−−→ 0 as N →∞. (41)

�

Property 2 will now be proven. Let us denote with [ � ]i,j
the (i, j)-th entry of a matrix. Let us define the variable
νi,j(k) as follows:[

Ψk−z(k) (χ(k)⊗ po(k))
⊤
]
i,j

= νi,j(k). (42)

By construction of the matrix Ψk (see Remark 3), we
have:

E {νi,j(k) | yN} = 0 for all k = 1, . . . , N. (43)

Moreover, since the noise process ηo corrupting the
scheduling signal observations is white, we have:

E {νi,j(k)νi,j(t) | yN} = 0 for all k, t ≥ 0, k ̸= t. (44)

Note also that, since the output signal y(k) and the
scheduling variable po(k) are assumed to be bounded,
then E {νi,j(k)νi,j(k) | yN} is bounded for any index-
pair k > 0, i.e., there exists a positive constant Gi,j such
that

E {νi,j(k)νi,j(k) | yN} < Gi,j for all k > 0. (45)
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Fig. 1. Validation data based comparison of the true output yo(k) (black line) with the simulated output sequence ŷ(k) (gray
line) of one model estimated from the Monte Carlo simulation by the IV-based approach and the bias-corrected IV approach.

Based on the above considerations, we have:

N∑
k=1

N∑
t=1

E{νi,j(k)νi,j(t) | yN} =

=
N∑

k=1

E {νi,j(k)νi,j(k) | yN} < Gi,jN. (46)

Therefore, from Lemma 1, it follows

1

N

N∑
t=1

νi,j(k)
a.s.−−→ 0 as N →∞,

or equivalently, (see Eq. (42))

lim
N→∞

1

N

[
N∑

k=1

Ψk

]
i,j

=

= lim
N→∞

1

N

[
N∑

k=1

z(k) (χ(k)⊗ po(k))
⊤

]
i,j

w.p. 1.

8.3 Proof of Property 3

Property 3 is proven similarly to Property 1.More specif-

ically, let us decompose the estimate θ̂CIV as follows

θ̂CIV=

(
N∑

k=1

1

N
Ψk

)−1 N∑
k=1

1

N
z(k)[(χo(k)−χ(k))⊗po(k)]

⊤
θo

(47a)

+

(
N∑

k=1

1

N
Ψk

)−1 N∑
k=1

1

N
z(k)vo(k) (47b)

+

(
N∑

k=1

1

N
Ψk

)−1 N∑
k=1

1

N
z(k) [χ(k)⊗ po(k)]

⊤︸ ︷︷ ︸
Ωk

θo.

(47c)

From (38a) and (38b), Eq. (47a) and (47b) converge to
zero as N →∞. Furthermore, since the matrices Ψk are
constructed in order to satisfy condition C4, the term
in (47c) converges to θo as N →∞. This implies (28).

8.4 Construction of the matrices Ψk: an illustrative ex-
ample

Consider an LPV data-generating system So of the form:

yo(k) =− a1,2p
2
o(k)yo(k − 1) + b0,2p

2
o(k)u(k),

y(k) =yo(k) + vo(k),

p(k) =po(k) + ηo(k).
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Then, according to the definitions used in the paper, we
have:

χ(k) = [−y(k − 1) u(k)]
⊤
,

p(k) = p2(k), po(k) = p2o(k),

χ(k)⊗ po(k) =
[
−y(k − 1)p2o(k) u(k)p2o(k)

]⊤
,

and

z(k) =
[
−ŷ(k − 1)p2(k) u(k)p2(k)

]⊤
,

where ŷ(k − 1) is the instrument and it is chosen to be
uncorrelated with the noise process vo(k).

Then, the matrix z(k) (χ(k)⊗ po(k))
⊤
is given by(̂

y(k−1)y(k−1)p2(k)p2o(k) −ŷ(k−1)u(k)p2(k)p2o(k)
−u(k)y(k − 1)p2(k)p2o(k) u2(k)p2(k)p2o(k)

)
,

and E
{
z(k) (χ(k)⊗ po(k))

⊤ | yN
}
is given by

(
p4o(k) + p2o(k)σ

2
η

)(ŷ(k−1)y(k−1) −ŷ(k−1)u(k)
−u(k)y(k − 1) u2(k)

)
.

Since
p2o(k) = E

{
p2(k)− σ2

η

}
,

and
p4o(k) = E

{
p4(k) + 3σ4

η − 6σ2
ηp

2(k)
}
,

then, the matrix Ψk, with k = 1, . . . , N , is given by

(
p4(k)−5p2(k)σ2

η+2σ
4
η

)(̂y(k−1)y(k−1) −ŷ(k−1)u(k)
−u(k)y(k−1) u2(k)

)
.
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[10] M. Hong, T. Söderström, and W. X. Zheng. Accuracy
analysis of bias-eliminating least squares estimates for errors-
in-variables systems. Automatica, 43(9):1590–1596, 2007.

[11] V. Laurain, M. Gilson, R. Tóth, and H. Garnier. Refined
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[25] R. Tóth. Modeling and identification of linear parameter-
varying systems. Lecture Notes in Control and Information
Sciences, Vol. 403, Springer, Heidelberg, 2010.
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