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Abstract

Least-Squares Support Vector Machines (LS-SVMs), originating from Statistical Learning and Reproducing Kernel Hilbert
Space (RKHS) theories, represent a promising approach to identify nonlinear systems via nonparametric estimation of the
involved nonlinearities in a computationally and stochastically attractive way. However, application of LS-SVMs and other
RKHS variants in the identification context is formulated as a regularized linear regression aiming at the minimization of the ℓ2
loss of the prediction error. This formulation corresponds to the assumption of an auto-regressive noise structure, which is often
found to be too restrictive in practical applications. In this paper, Instrumental Variable (IV) based estimation is integrated
into the LS-SVM approach, providing, under minor conditions, consistent identification of nonlinear systems regarding the
noise modeling error. It is shown how the cost function of the LS-SVM is modified to achieve an IV-based solution. Although,
a practically well applicable choice of the instrumental variable is proposed for the derived approach, optimal choice of this
instrument in terms of the estimates associated variance still remains to be an open problem. The effectiveness of the proposed
IV based LS-SVM scheme is also demonstrated by a Monte Carlo study based simulation example.

Key words: support vector machines; reproducing kernel Hilbert space; instrumental variables; nonlinear identification;
machine learning; non-parametric estimation.

1 Introduction

Support vector machines (SVMs) have been originally
developed as a class of supervised learning methods in
stochastic learning theory. Their original purpose was
to provide efficient tools for data analysis and pattern
recognition in classification problems and regression
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analysis [1,2]. SVMs have had a paramount impact on
the machine learning field since their extension as a
theoretical framework in that setting [3]. These meth-
ods also offer an attractive, so-called non-parametric
way of data-driven dynamic modeling, i.e., system iden-
tification, especially in the nonlinear context. In that
context, these approaches are part of the data-driven
model learning avenue [4–6], focusing on the paradigm
of estimation of the targeted system without posing
prior assumptions on its dynamical nature or the non-
linearities involved. Most of the research interest re-
garding identification with SVMs has been dedicated to
nonlinear block models so far, using various least-square
SVM (LS-SVM) approaches where the original nonlin-
ear estimation problem is posed as a linear regression
[7,8]. In general, LS-SVMs are particular variations of
the original support vector machine approach using
a regularized ℓ2 loss function instead of a so called ǫ-
insensitive loss function on the prediction error of the
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model. A particular advantage of expressing both the
regularization and the loss in the ℓ2 norm is that the
solution of the corresponding optimization problem is
obtained by solving a system of linear equations and
an attractive trade-off between regularization bias and
variance of the estimates is present [8]. LS-SVMs are
also related to Kriging [9] in geostatistics and Gaus-
sian processes (GPs) in machine learning, e.g., [10,11],
which approaches can be seen as different variants of
the reproducing kernel Hilbert space (RKHS) theory
based function estimators. The relation between these
methods is analyzed in [12,6].

A particular handicap of the variants of LS-SVMs (and
also GPs) is that the used linear regression form under
the ℓ2 loss function corresponds to the assumption that
all disturbances affecting the data-generating system can
be expressed as a white noise disturbance on the equa-
tion error level, which can be seen as the assumption of
a nonlinear auto-regressive noise structure. Such an as-
sumption is often found to be too restrictive in practi-
cal applications. In the classical identification literature,
significant research efforts have been devoted to achieve
consistent estimation in case of rather general noise as-
sumptions corresponding to the situations commonly en-
countered in practice [13]. To introduce the same gen-
erality of noise structures, some steps have been taken
in the LS-SVM context such as the recurrent LS-SVM
developed in [14] and the linear parametric noise model
equipped SVM derived in [15]. However, the classical
results in identification highlight that the chosen noise
model, i.e., the assumed noise properties, plays an im-
portant role in the consistency of the estimates. There-
fore, in the light of a non-parametric prior-free modeling
objective, the question rises why we should bound our-
self to a priori specified noise assumptions, especially
in the general nonlinear context. For example, in the
GPs related literature for LTI models, consistency un-
der general noise conditions is established by identifying
the one-step-ahead predictor of the output, which, due
to linearity, allows factorization of high order linear re-
gression based estimates to obtain estimates of the pro-
cess and the noise dynamics without posing any priors
on the noise [16]. However, in the nonlinear case, the loss
of linearity of this predictor in the inputs and outputs
prevents applicability of this methodology, allowing con-
sistency only under restrictive assumptions, see [5]. So,
the important question that rises is how we can achieve
similar generality in the nonlinear case.

By turning to the classical results, we can find that
variants of linear regression based methods, e.g., instru-
mental variable (IV) approaches, have been developed
to cope with realistic assumptions on the noise without
specifying a direct parametrization or structure [13]. The
strength of IV methods in the LTI case has been found
in delivering consistent estimates independently of the
chosen noise model assumption in a computationally at-
tractive way [17]. Therefore, to extend consistency of

non-parametric identification with LS-SVMs in the non-
linear case, in this paper, we consider the idea of intro-
ducing the IV scheme into the LS-SVM regression struc-
ture, which was first 1 proposed in [19]. As a significant
improvement of the initial scheme described in [19], in
this paper, we provide a rigorous treatment of instru-
mental variables based LS-SVMs and showing the appli-
cability of IV based techniques both in non-parametric
identification and in regularized contexts. Furthermore,
this contribution not only preserves the computationally
attractive feature of the original approach by satisfying
the Mercer conditions, but also provides unbiased esti-
mates under general noise model structures/conditions;
opening a large set of application areas for data-driven
nonlinear model learning.

The paper is organized as follows: the considered prob-
lem setting and the motivation for improving the LS-
SVM method are discussed in Section 2. In Section 3,
the optimization problem associated with the IV-based,
non-parametric model estimation is introduced together
with its solution. This is followed by integrating the IV
solution into the LS-SVM estimation scheme for nonlin-
ear dynamic systems resulting in the IV-SVM method.
In Section 4, the choice of the instrumental variables are
discussed from the variance point of view together with
the selection of kernel functions and tuning of the hy-
per parameters. To demonstrate the advantages of the
IV-SVM, a Monte Carlo study in Section 5 is provided
in which the identification of a nonlinear system under
colored noise is analyzed. Finally, conclusions and some
future directions of research are given in Section 6.

2 Problem description

To set the stage for the upcoming discussion, the con-
sidered identification problem is defined in this section.

2.1 The data-generating system

As an objective of the identification scenario, the data-
driven estimation of a rather general class of nonlinear
discrete-time systems is considered. For the sake of sim-
plicity of the upcoming derivations, the system So is as-
sumed to be single-input single-output (SISO). The be-
havior of So is described by the following difference equa-
tion

y(k) = fo(x(k)) +vo(k), (1)

where x(k) ∈ R
ng is a vector which, in the present iden-

tification context, is composed of the delayed values of
the output and input signals of So, y and u respectively:

x(k)=[y(k − 1) . . . y(k − na) u(k) . . . u(k − nb)]
⊤,

with ng = na + nb + 1. fo : Rng → R is assumed to
be a bounded nonlinear function belonging to the set

1 Note that IV has also been applied to nonlinear systems in
[18]. However, [18] is not related to the current work as it only
applies a parametric IV method to identify local LTI models
of a nonlinear system around some operating conditions.
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of real square integrable functions L2(R�,R). vo(k) is
considered as a zero-mean, quasi-stationary stochastic
noise process (not necessarily white), independent of u.
Note that the general structure of the system defined
by (1) can be used to describe usual block structures
such asHammerstein and/orWiener systems by a priori
restrictions of the structure of fo, e.g.:

y(k) =

na∑

i=1

fo
i

(
y(k − i)

)
+

nb∑

j=0

goj
(
u(k − j)

)
+vo(k). (2)

Formulation of (1) in the multi-input multi-output
(MIMO) case is also available as shown in [8]. Note that
in case vo = eo, where eo is white, (1) can be seen as a
nonlinear auto-regressive with exogenous input (NARX)
model [20].

2.2 The modeling paradigm

To briefly discuss the concept behind the LS-SVM esti-
mator and to develop the motivations for the proposed
extension of this approach, let us consider the classical
parametric estimation of (1), in which the the nonlin-
earity is assumed to have an expansion (e.g., see [21]):

fo
(
x(k)

)
=

nH∑

i=1

θoi φi

(
x(k)

)
, (3)

where {φi : R
ng → R}nH

i=1 is a set of basis functions over
a function space H ⊂ (Rng)R, for example L2(Rng ,R),
and {θoi ∈ R}nH

i=1 are the associated expansion param-
eters. This means that the nonlinearity is conceptually
modeled as the projection φ⊤(�)θ by an a priori spec-
ified nH dimensional mapping φ : R

ng → R
nH from

the space of input-output samples to the so called fea-
ture space of the output samples. This concept leads to
a parametrized modelMθ :

y(k) = ϕ⊤(k) θ + e(k), (4)

where e(k) qualifies as the prediction error and fθ =
ϕ⊤(k)θ is the function estimate. The regressor ϕ(k) and
the parameter vector θ are nH-dimensional vectors de-
fined as

ϕ(k) =
[

φ⊤
1

(
x(k)

)
. . . φ⊤

nH

(
x(k)

)
]⊤

, (5a)

θ =
[

θ⊤1 . . . θ⊤nH

]⊤

. (5b)

A well known approach to obtain an estimate of θ is to
minimize the least-squares (LS) criterion (used to for-

mulate the quality of the model fit)
∑N

k=1 e
2(k), where

e(k) = y(k)−ϕ⊤(k)θ is the prediction error w.r.t. a data
set DN = {(y(k), u(k))}Nk=1 generated by (1). As al-
ready motivated, the major problem with the paramet-
ric approach is the a priori choice of the basis functions
φ influencing the approximation error and the variance
of the estimates. Therefore, it is generally important to
find {φi}

nH

i=1, based on a given DN , which can achieve a
good trade-off between the following objectives:

• to minimize nH, i.e., the number of estimated param-
eters (minimizing the variance of θ);

• to represent the function fo with minimal error (min-
imizing the structural bias).

Instead of constraining fo to a specific parametric struc-
ture, these objectives can be achieved by searching for
the estimate f in a possibly infinite dimensional func-
tion space H. Let H to be a Hilbert space, i.e., a func-
tion space equipped with an inner product 〈�, �〉, like
L2, and being complete (in terms of convergence of all
Cauchy sequences) with respect to the induced norm

‖f‖H =
√

〈f, f〉, see [22]. Then, an elegant way of guar-
anteeing well-posedness and avoiding overfitting is to in-
troduce ‖f‖H as a regularizer in the criterion:

V(f, e)=
1

2
‖f‖2H +

γ

2N

N∑

k=1

e2(k), (6)

where the scalar γ > 0 is the regularization parameter
which defines the trade-off between the above listed ob-
jectives and 1/N is a normalization. However, since we
only have a finite set of observations X = {x(k)}Nk=1 in
DN , i.e., our information on the system is limited, hence
the minimization of (6) is only well posed if we restrict
our search space to the RKHS over X , which is a Hilbert
space of functions f : X → R satisfying the following
boundedness criterion: ∀f ∈ H and ∀x ∈ X , there is a
0 ≤ c < ∞ such that |f(x)| < c‖f‖H. For every such
RKHS H, there exists a unique symmetric, so called re-
producing Kernel function K : X × X → R which is
positive semidefinite 2 and f(x) = 〈f(�),K(�, x)〉 for all
(f, x) ∈ (H,X ) [23]. This observation gives a one-to-one
correspondence between RKHS of functions and posi-
tive semidefinite Kernel functions and leads us to a data-
driven estimation of fo in terms of the following theorem:

Theorem 1 (Representer Theorem, [24]) For the
RKHS H, the minimizer of (6) is

f̂LS(�) =

N∑

i=1

α̂iKxi
(�), (7)

with Kxi
(�) = K(�, x(i)) and α̂LS = [ α̂1 . . . α̂N ] ∈ R

N

being given by

α̂LS =

(
1

N
Kxx + γ−1IN

)−1
1

N
Y, (8)

where Y =
[

y(1) . . . y(N)
]⊤

, IN ∈ R
N×N is an iden-

tity matrix and Kxx is a matrix defined as:

Kxx(i, j) = K
(
x(i), x(j)

)
. (9)

This RKHS optimal function estimator has become
known as the LS-SVM approach, due to the regular-
ized ℓ2-loss (6) [12]. Note that the estimator (7) has an
interpretation in terms of GPs, Kriging or any other

2 K : X × X → R is positive semidefinite, if ∀n ∈ N,∑n

i=1

∑n

j=1
ciK(xi, xj)cj ≥ 0, ∀(xi, ci), (xj , cj) ∈ X ×R.
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estimators based on the result of Theorem 1. More gen-
eral version of Theorem 1 also exists where the ℓ2 loss is
replaced by a convex function of the estimation error,
leading to the class of general SVMs [2].

A typical choice of the kernel, which provides uniformly
effective representation of a large class of smooth func-
tions, is the radial basis function (RBF) kernel:

K
(
x(i), x(j)

)
=exp

(
−‖x(i)−x(j)‖2

2

σ2

)

, (10)

with σ > 0 being a tunable hyper-parameter of the in-
duced RKHS. However, other positive definite kernels,
like linear, polynomial, rational, spline or wavelet ker-
nels, can also be used [2]. Choosing the most appropriate
kernel highly depends on the problem at hand. Auto-
matic kernel selection for general SVM problems is pos-
sible and is discussed in [25].

Itmust be noted that, similarly to the classic parametriza-
tion based approaches, the optimal function estimate
(7), based on the given data set, is a linear combination
of basis functions, but these basis are not fixed a priori,
they are generated by the Kernel function centered on
a set of node points ω ∈ R

N , i.e.: {φi(�) = Kωi
(�)}nH=N

i=1

where the ith node is ωi = x(i). This has got two im-
portant consequences:

• As shown in [22], with these basis functions, (6) can
be equivalently stated as

V(θ, e)=
1

2
θ⊤θ +

γ

2N

N∑

k=1

e2(k), (11)

which results in a simplified derivation of LS-SVMs
where minimization of (11) over θ and e leads to a
dual estimation problem of the Lagrangian parameter
vector α ∈ R

N with a solution of (7); giving an other
interpretation of the RKHS estimator.
• In view of (11), the estimator (7) is actually equivalent
to the regularized estimation of the following model
on DN :

y(k) =

N∑

i=1

αiKωi
(x(k)) + e(k), (12)

or
Y = Kxωα+ E, (13)

with E =
[

e(1) . . . e(N)
]⊤

.

Hence, the LS-SVM estimate (8) is a particular estimate
of α in (12) when using {ωi = x(i)}Ni=1. This particular
choice is an essential and unavoidable ingredient of the
RKHS and the learning theories [1,2]. However, after es-
timation, the resulting predictor of the output takes the

form ŷ(k | k − 1) =
∑N

i=1 α̂LS,iKωi
(x(k)). This means

that ω, in terms of the training data set, remains asso-
ciated with the model estimate and its structure, fixing

the series expansion of (3) to fo(�) ≈
∑N

i=1 αo,iKωi
(�)

where αo,i are interpreted as the optimal expansion co-
efficients in the RKHS norm sense. This observation will
play a crucial role in our analysis.

2.3 Noise induced bias of the LS-SVM estimate

The main objectives of this paper are to show how non-
whiteness of vo induces a bias for RKHS based methods
and to propose a solution in order to handle such cases
efficiently in the nonlinear context. Hence, the analysis
will be driven by discussing how the estimated functions
in LS-SVMmodels are affected by noise in terms of their
deviation from the true nonlinear function fo. In order
to simplify the discussion by parting the function ap-
proximation problem from the analysis of the stochastic
properties, let us consider the ideal case when the true
data-generating system has a direct explicit definition in
terms of the Kernel function K such as:

y(k) =

N∑

i=1

αo,iK(x(k), ωi)

︸ ︷︷ ︸

fo(x(k))

+vo(k), (14)

where all ωi are distinct and αo,i = 〈fo(�),K(�, ωi)〉 in
terms of the RKHS inner product. Based on the consid-
erations given in Section 2.2, the node points {ωi}Ni=1
are assumed to be equivalent with the data points in
DN used to obtain the LS-SVM estimate via (8). This
means that there exists a Ωo ⊆ {ωi}Ni=1 for which fo(�) =∑

ωi∈Ωo
αo,iK(�, ωi) and, in terms of the representer the-

orem [22], if N → ∞ and {wi}Ni=1 are all distinct, then
the corresponding sequence of {αo,i}∞i=1 is well-defined
and absolute convergent. Hence, if we can show that the
estimated function is biased w.r.t. this ideal case, then
such a conclusion demonstrates that RKHSmethods can
fail to capture the underlaying system.

Let E be the expectation operator and for a random
process f(x) with f : Rng → R, let mf(x) = E{f(x)}
denote the mean function. As a shorthand notation, we
will refer to E{f(x)} as a function of x ∈ R

ng with
E{f(�)}. Then, in view of (14) and (8),

Ē

{

f̂LS(�)− fo(�)
}

= Ē {K
�ω(α̂LS − αo)}

= E

{
∞∑

i=1

K(�, ωi)(α̂LS,i − αo,i)

}

(15)

where Ē{�} is the generalized expectation operator,
K

�ω ∈ R
1×N = [K(�, ω1) . . .K(�, ωN)] and the data

set DN is assumed to be quasi stationary. By defining
R(γ,N) =

(
1
N
Kxω + γ−1IN

)
with γ > 0, α̂LS as a

random variable is equal to

α̂LS = R−1(γ,N)
1

N
Y = R−1(γ,N)

1

N
(Kxωαo + Vo),

(16)

where Vo =
[

vo(1) . . . vo(N)
]⊤

. Therefore,

α̂LS − αo = R(γ,N)−1
( 1

N
Vo −

1

γ
αo

)

. (17)

As R−1(γ,N) = γIN −
γ
N
R−1(γ,N)Kxω, Eq. (17) leads

to the following formulation of the bias
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Ē

{

f̂LS(�)− fo(�)
}

= BLS
N −BLS

R , (18)

where

BLS
N = Ē

{ γ

N
K

�ωVo

}

− Ē

{ γ

N2
K

�ωR
−1(γ,N)KxωVo

}

,

BLS
R = Ē

{
1

γ
K

�ωR
−1(γ,N)αo

}

.

Due to quasi stationarity of (u, y), for γ > 0, RK
∗ (�) :=

limN→∞ K
�ωR

−1(γ,N) is assumed to exist.

2.3.1 The no-correlation case

If ωk is not correlated to vo(k), e.g., vo is a white
noise process, then the noise induced terms composing
BLS

N in (18) vanish. Indeed, if vo is quasi stationary
and zero mean, then Ē

{
γ
N2K�ωR

−1(γ,N)KxωVo

}
=

RK
∗ (�)Ē

{
γ
N2KxωVo

}
and

Ē

{ γ

N
K

�ωVo

}

= Ē

{ γ

N
K

�ω

}

Ē {Vo} ≡ 0, (19a)

Ē

{ γ

N2
KxωVo

}

= Ē

{ γ

N2
Kxω

}

Ē {Vo} ≡ 0. (19b)

Hence, the bias expression becomes

Ē

{

f̂(�)− fo(�)
}

=−
1

γ
RK

∗ (�)αo=−B
LS
R . (20)

The term BLS
R can be seen as the regularization induced

bias and it can be made arbitrary small by the choice of
γ, which scales the trade-off between this bias and the
resulting variance of the function estimate.

2.3.2 The correlation case

In case ωk is correlated to vo(k), conditions (19a)-(19b)
are not fulfilled and the termBLS

N in (18) does not vanish.
This means that the estimate f , besides of the regular-
ization bias which is controlled by γ, will be deteriorated
by an additional noise induced term BLS

N . It is also im-
portant to note that while increasing γ decreasesBLS

R , it
has the opposite effect on BLS

N . This means that tuning
of γ will correspond to a trade-off between balancing of
the bias terms, resulting in a decreased approximation
capability of the learning process.

3 The instrumental variables SVM

Among the available identification approaches used in
the regression framework, the principle idea behind the
instrumental variable (IV) approach has been success-
fully applied in many contexts to elegantly resolve the
inconsistency problem of LS estimation under correlated
noise vo [26,13]. However, it has never been applied for
kernel-based methods. In the sequel, our objective is
therefore to develop and analyze an IV regularized cri-
terion and to use an extension of the LS-SVM kernel
theory in order to propose a solution to the nonlinearity
modeling problem, allowing a much wider applicability
of this identification approach in practice.

We have seen previously that the condition required for
the consistency of the LS-SVM is the absence of correla-
tion between x(k) and vo(k). In the parametric context,
an IV identification criterion has been introduced which
relaxes this hypothesis to a less restrictive condition and
prevents the deterioration of the estimation performance
[26]. The idea is to introduce a so-called instrument sig-
nal ζ : Z→ R

nθ in order to obtain an unbiased estimate.
The regularized IV estimate proposed here can be seen
as the minimizer of the IV criterion:

W(f, e)=
1

2
‖f‖2H +

γ

2N2

∥
∥
∥
∥
∥

N∑

k=1

ζ(k)e(k)

∥
∥
∥
∥
∥

2

2

=
1

2
‖θ‖2ℓ2 +

γ

2N2
‖Γ⊤E‖22, (21)

based on the data set DN and with Γ and E defined as

Γ =
[

ζ(1) . . . ζ(N)
]⊤

, (22a)

E =
[

e(1) . . . e(N)
]⊤

. (22b)

The motivations to pursue an IV-scheme based solution
for bias reduction are the following:

• In general, recent IV approaches offer similar perfor-
mance as the optimal (minimum variance and unbi-
ased estimate) prediction error methods in case of cor-
rect assumptions on the system and noise models.
• As it will be shown later, the IV-based LS-SVM esti-
mation problem has a similar solution to the LS-SVM
estimator, implying approximately the same compu-
tational load as well as the same complexity.
• Most importantly, the IV-schemes can provide consis-
tent estimates in case of incorrect noise assumptions.

To derive the solution of the IV-SVM, note that in (21),
‖Γ⊤E‖22 = E⊤ΓΓ⊤E, which corresponds to a weighted
ℓ2 loss by the Grammian matrix ΓΓ⊤. Hence, in terms
of the Theorem 1, the minimizer of (21) is

f̂IV(�) =

N∑

i=1

α̂iKxi
(�), (23)

with α̂IV = [ α̂1 . . . α̂N ] ∈ R
N being given by

α̂IV =

(
1

N2
ΓΓ⊤Kxx + γ−1IN

)−1
1

N2
ΓΓ⊤Y. (24)

An alternative way of obtaining this solution via the
dualization of (21) and applying the KKT conditions is
provided in [27].

The remaining question is how the instrument ζ(k) ∈
R

nθ should be chosen efficiently based on data such that
i) the noise induced bias can be eliminated and ii) we can
still derive an RKHS estimator. Based on the interpre-
tation of the LS-SVM in terms of {φi(�) = Kωi

(�)}nH=N
i=1

discussed in Section 2.2, in this paper, the following
choice is proposed:

ζ(k) =
[

φ⊤
1

(
ξ(k)

)
. . . φ⊤

nH

(
ξ(k)

)
]⊤

, (25)
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such that the Grammian ΓΓ⊤ can also be rewritten in
terms of the same kernel function, i.e., ΓΓ⊤ = Kξξ. The
specific choice of ξ will be detailed in Section 4. This
leads to the following solution of the IV-SVM estimator:

α̂IV =

(
1

N2
KξξKxx + γ−1IN

)

︸ ︷︷ ︸

Q(γ,N)

−1
1

N2
KξξY. (26)

It is important to note that even though (21) introduces
a different sum of norms criterion than (6), it provides
the same model structure as the LS-SVM: once αIV is
computed via (26), the estimate of the nonlinear func-
tion fo is given by (23). This clearly shows that this
proposed estimate is also an estimate of the model (14)
using {ωi = x(i)}Ni=1 as the node points. In other words,
the consistency of αIV can also be analyzed in the same
way as for the LS-SVM estimate.

4 The choice of the instrument

In this section, the choice of the instrument ξ in (25),
which definesKξξ, is discussed both from the bias and co-
variance point of view, showing how an efficient elimina-
tion of the noise bias is possible via the IV-SVMmethod.

4.1 Bias analysis of the IV-SVM estimator

Using the same problem setting as in Section 2.3 with
ω = x, the bias of the IV estimator is

Ē

{

f̂IV(�)− fo(�)
}

= BIV
N −BIV

R , (27)

where

BIV
N = Ē

{ γ

N2
K

�ωQ
−1(γ,N)KξξVo

}

, (28a)

BIV
R = Ē

{
1

γ
K

�ωQ
−1(γ,N)αo

}

, (28b)

and under the condition of quasi stationarity of (y, u, ξ),
QK

∗ (�) := limN→∞ K
�ωQ

−1(γ,N), for γ > 0, is assumed
to exist.

Note that BIV
R can be again seen as the regularization

bias and it can be made arbitrary small based on the
user given choice of γ. Our focus is to eliminate BIV

N
and hence achieve the ideal setting where choosing γ
corresponds to a trade-off between bias and variance not
as a balancing term between two sources of bias.

Analyzing (28a) shows that if the instrument ξ fulfills
the following condition:

X1 E{ξ(k)vo(k)} = 0, ∀k ∈ Z,

and if vo is quasi stationary and zero mean, then
Ē{ γ

N2K�ωQ
−1(γ,N)KξξVo} = QK

∗ (�)Ē{
γ
N2KξξVo} and

Ē

{ γ

N2
KξξVo

}

= Ē

{ γ

N2
Kξξ

}

Ē {Vo} ≡ 0. (29)

Eq. (29) implies that choosing the instrument ξ such that
condition X1 is satisfied leads to BIV

N ≡ 0, which can be

considered as an unbiased estimate with respect to the
noise. Similar to the LTI case, projection of the data
on a space orthogonal to the noise eliminates the noise
induced bias. This idea grants a wide range of possible
choices for achieving consistency by picking instruments
uncorrelated with the noise. However, these choices can
have various undesired effects on other moments of the
function estimate. The next section discusses the choice
of an instrument ξ which is also attractive from the co-
variance viewpoint.

4.2 Covariance analysis of the IV-SVM estimator

Analyzing the full expression of cov{fIV(�)− fo(�)} and
getting meaningful conclusions on the choice of ξ are
difficult tasks in case ωk is correlated to vo(k) due to the
effect of regularization. Hence, consider the ideal case
when ωk and vo(k) are independent, i.e., what would be
the best choice of the instrument which would render the
covariance to the level of the LS-SVM estimate, when no-
noise bias would be present. In this case, if γ → 0, then,
under the assumption that KξξKxω is positive definite,

cov {α̂IV − αo} = Ē
{
(KξξKxω)

−1
}
·

Ē
{
(KξξVoV

⊤
o Kξξ

}
Ē
{
(KξξKxω)

−1
}
. (30)

In this much simpler situation, the results of [28] can be
directly used such that the optimal instrument must be
chosen that it satisfies

X2 ΓΓ⊤ = Kξξ = Ē{Kxx}.

Even if the mathematical justification is only intuitive,
condition X2 suggests that i) ζ(k) should be chosen as
in (25) and ii) the choice of ξ is strongly related to the
kernel K used and to the deterministic dynamics of the
system. To approximately fulfill this condition under an
unknown correlation structure of x(k), ξ(k) is chosen as

[y̆(k − 1) . . . y̆(k − na) u(k) . . . u(k − nb)]
⊤ (31)

where y̆ is the simulated output of an estimated model
of the system, e.g., a model obtained via the LS-SVM
approach. This choice of the instrument resembles to the
widely used IV solution for linear regression [26,13].

To refine such a choice, an iterative IV-SVM scheme de-
scribed by Algorithm 1 can be implemented in order to
iteratively refine ξ. Note that due to the analytic solu-
tion of the IV-SVM estimator (24), computational com-
plexity of Algorithm 1 in each step is the same as for the
standard LS-SVM, i.e., O(N3) (main difference is due
to model simulation which is O(N2)). Furthermore, in
case the resulting estimate M(τ−1) is unstable, Step 6
needs to applied as a forward-backward nonlinear filter-
ing to avoid divergence.

4.3 The choice of γ and the kernels

As it has been briefly explained in Section 2.2, the choice
of the most appropriate kernel for the modeling prob-
lem at hand highly depends on the structure of the sys-
tem to be identified and on the available data. However,
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Algorithm 1 Refined IV-SVM

Require: model structure (4) in terms of model orders
na and nb with ng := na + nb + 1, data set DN =
{y(k), u(k)}Nk=1, regularization parameter γ, kernel
function K.

1: set τ ← 0.
2: compute the matrix Kxx based on DN .

3: estimate α(0) =
(

1
N
Kxx + γ−1IN

)−1 1
N
Y via the LS-

SVM resulting in the model estimateM(0).
4: repeat
5: set τ ← τ + 1
6: use M(τ−1) to generate, by simulation,

{y̆(τ)(k)}Nk=1.
7: calculate {ξ(k)}Nk=1 via (31) using

{y̆(τ)(k), u(k)}Nk=1 and compute Kξξ.

8: estimate α(τ) via (24) resulting in the model esti-
mateMτ .

9: until α(τ) has converged.
10: return M(τ) with the estimate of the nonlinear

function f̂ obtained via (23).

these choices have an impact on the function class, i.e.,
the RKHSH in which the expansion (23) is made rather
than the actual decay rate of the expansion error. So it
becomes a question, how the particular parameters of
these kernel functions, like σ in (10), should be chosen
to maximize the decay rate of the expansion w.r.t. the
estimated unknown functional terms and hence the ac-
curacy of the obtained model. Furthermore, the optimal
choice of the regularization parameter γ is dependent
on the choice of kernel functions, hence all such hyper-
parameters must be simultaneously optimized.

If we restrict our attention to RBF kernels, a sim-
ple methodology can be used to optimize the kernel
functions K and γ for the system to be estimated.
The parameters σ and γ are tuned via cross-validation
based optimization. For instance, the values of σ and γ
providing the most accurate model w.r.t. an indepen-
dent “validation” data set can be computed through a
two-dimensional grid-search procedure over the space
of hyper-parameters. Other numerically efficient tech-
niques for the computation of the optimal hyper-
parameters by means of genetic algorithms, particle
swarm optimization and marginalization of the likeli-
hood under a Bayesian setting are discussed in [29–31,5].

5 Simulation example

To demonstrate the results of this paper, the perfor-
mance of the IV-SVM and LS-SVM approaches are com-
pared using a Monte-Carlo study based on a simulation
example.

5.1 The data-generating system

The noise-free data-generating system So considered in
this study is described by the difference equation

y̆(k) = fo
(
y̆(k − 1), y̆(k − 2), u(k), u(k − 1)

)
, (32)

where

fo
(
x1, x2, x3, x4

)
= fo

1

(
x1

)
+ fo

2

(
x2

)
+ go0

(
x3

)
+ go1

(
x4

)
,

specified by:

fo
1 (x) = −0.7x, fo

2 (x) = 1
8x

2

go0(x) =







0.5 if x ≥ 0.5,

x if −0.5 < x < 0.5,

−0.5 if x ≤ −0.5.

go1(x) = −0.4x.

In order to study the effect of the noise on the non-
parametric identification of this system, four different,
realistic noise scenarios, corresponding to four data gen-
erating systems, are considered:

S1: y(k) = fo
(
y(k−1), y(k−2), u(k), u(k−1)

)
+eo(k),

which corresponds to a NARX structure.
S2: y(k) = y̆(k)+ eo(k), corresponding to a NOE struc-
ture.
S3: y(k) = fo

(
y(k−1), y(k−2), u(k), u(k−1)

)
+vo(k),

corresponding an NARMA structure.
S4: y(k) = y̆(k) + vo(k) which is a NBJ structure.

In S1 and S2, eo is a white noise with eo(k) ∼ N (0, σ2
e ).

In S3 and S4, vo(k) is a zero-mean colored noise gener-
ated by filtering eo(k) ∼ N (0, σ2

e ) as

vo(k) = a1vo(k) + b0eo(k) + b1eo(k − 1), (33)

where a1 = 0.95, b0 = 1.5 and b1 = −0.3. To generate
data sets DN = {u(k), y(k)}Nk=1, the system is excited
with a N = 1000 long white input sequence with uni-
form distribution U(−1, 1) starting with zero initial con-
ditions. In order to provide representative results, 100 of
such data sets are generated with independent realiza-
tions of the noise, setting up a Monte Carlo study with
NMC = 100 runs. The variance σ2

e has been calculated
separately for each structure in order to provide a signal-

to-noise ratio, SNR = 10 log(
∑N

k=1 y̆
2(k)/

∑N

k=1 v
2
o(k)),

equal to 11dB.

5.2 The model structure

In all estimation scenarios using both the the LS-SVM
and IV-SVM, the model structure is assumed to be:

y(k) = f(x(k)) + e(k), (34a)

x(k) = [ y(k − 1) y(k − 2) u(k) u(k − 1) ]⊤, (34b)

where e(k) is the residual error. A four dimensional RBF
kernel (10) is used to characterize this nonlinear func-
tion. The hyper-parameters are optimized using cross-
validation by maximizing the best fit rate (BFR) on the
noisy validation dataset. The BFR is defined as:

BFR = max

{

1−
‖y(k)− ŷ(k)‖ℓ2
‖y(k)− y‖ℓ2

, 0

}

· 100%, (35)
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Table 1
Hyper-parameter values

S1 S2 S3 S4

σLS
γLS

N
5.6 800 4.4 800 3.8 600 4.4 600

σIV
γIV
N2 5.3 800 4.9 800 4.1 800 4.9 800

Table 2
BFR values computed on noise-free validation data sets
(mean±std [%])

S1 S2 S3 S4

LS-SVM 88±1.3 86.5±1.2 84.5±2 77±2.5

IV-SVM 87±2.5 88±1.8 89.5±2.7 86.5±2.6

with y denoting the mean value of the output sequence
y(k), while ŷ(k) is the simulated output of the estimated
model. Based on a coarse grid search, the optimized
hyper-parameter values are displayed in Table 1.

5.3 Estimation results

Usually, quality of non-parametric model identification
is solely assessed by comparing the achieved fit w.r.t.
validation data using the same excitation conditions.
Therefore, bias with respect to a true nonlinear function
is never really assessed. In order to cope with usual as-
sessment scores, the achieved mean and standard devi-
ation of the BFR of both methods on a noise-free vali-
dation data set is displayed in Table 2 which is in accor-
dance with the statistical properties of the estimates. In
other words, it can be seen in Table 2 that, similarly to
the linear regression case, the variance of the IV method
is always higher than for LS-based methods. Neverthe-
less, it can also be seen that the mean of the BFR is much
less affected by the noise structure in the IV-SVM case
than in the LS-SVM case. This emphasizes the unbiased
properties of the IV-based methods. Finally, these re-
sults also show that, in the realistic case where the noise
generating system is unknown, the IV-SVM offers better
prediction capabilities than the LS-SVM estimate.

To visualize the function estimates on the assumed 4-
dimensional domain, a set of grid points is used, dis-
played in Figure 1, which covers a subset of R4 excited
during identification. The mean value and standard de-
viation of the estimated nonlinear functions computed
using the LS-SVM and IV-SVM estimates are displayed
on these grid points and compared to the true nonlinear
function fo in Figure 2. It is interesting to notice that
the LS-SVM is strongly affected by the structure of the
noise (the SNR is constant in all examples) while the un-
biased IV-SVM estimate produces a nonlinear function
centered on the true one.

6 Conclusions

In this paper, an instrumental variable based formula-
tion of the LS-SVM approach has been introduced in
order to cope with the limitations of the assumed noise
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Fig. 1. Grid points for comparing the estimates.
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Fig. 2. The true nonlinear function and the estimated func-
tions (mean: solid line, std: dashed line) displayed at the grid
points given in Figure 1 over the Monte Carlo study.

structure, but, at the same time, preserving its attrac-
tive computational properties. It has been shown that
the proposed IV-SVM scheme allows the elimination of
the noise induced bias in case the noise process is addi-
tive and zero-mean. Hence, the proposed scheme consid-
erably widens the applicability of LS-SVM (and the re-
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lated GP and Kriging) based methods. A suitable choice
for the required instrument has been discussed and an
iterative instrument refining scheme, inspired by the LTI
IV methods, has been proposed. The performance of the
resulting IV-SVM algorithm with respect to the regu-
lar LS-SVM method has been demonstrated in a Monte
Carlo study. Generalization of the approach for non-zero
mean and/or nonlinearly distorted noise is technically
more demanding and remains the objective of future re-
search in the LS-SVM context.
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