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Abstract

Parametric identification of linear time-invariant (LTI) systems with output-error (OE) type of noise model structures has a
well-established theoretical framework. Different algorithms, like instrumental-variables approaches or prediction error methods
(PEMs), have been proposed in the literature to compute a consistent parameter estimate for linear OE systems. Although the
prediction error method provides a consistent parameter estimate also for nonlinear output-error (NOE) systems, it requires to
compute the solution of a nonconvex optimization problem. Therefore, an accurate initialization of the numerical optimization
algorithms is required, otherwise they may get stuck in a local minimum and, as a consequence, the computed estimate of
the system might not be accurate. In this paper, we propose an approach to obtain, in a computationally efficient fashion,
a consistent parameter estimate for output-error systems with polynomial nonlinearities. The performance of the method is
demonstrated through a simulation example.
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1 Introduction

Parametric identification of linear time-invariant (LTI)
systems with output-error (OE) noise models enjoys a
well-established theoretical framework. Different iden-
tification techniques have been proposed in the litera-
ture to compute a consistent estimate of the system pa-
rameters, like instrumental variables based approaches
[16]; prediction-error methods (PEMs) [14,6] and bias-
compensated least-squares algorithms, where the stan-
dard least square (LS) estimate is properly modified
in order to remove the bias introduced by the noise
[17,2,21,22,9]. Among the aforementioned identification
algorithms, only the PEM approach is guaranteed to
provide a consistent estimate of the parameters of non-
linear systems with an output-error noise model. Specif-
ically, in the PEM, the system parameters are estimated
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by minimizing the 2-norm of the difference between the
measured output of the data-generating system and the
simulated model output. This leads, also in the linear
case, to a nonconvex optimization problem. Although,
under mild assumptions, the global minimum of the min-
imized cost function is a consistent estimate of the sys-
tems parameters, the numerical optimization algorithms
(e.g., gradient methods) can get trapped in local min-
ima, which might lead to an inaccurate estimate of the
system, in particular when the initial conditions of the
optimization algorithm are not “close” to the global min-
imum or when complex nonlinear models have to be es-
timated (see, e.g., [13]).

Significant efforts have been spent in recent years to
develop numerical efficient algorithms for parametric
identification of nonlinear output-error (NOE) systems.
In particular, an instrumental-variable based approach
providing a consistent estimate for linear-parameter-
varying systems under zero-mean colored noise condi-
tions, e.g., output-error or Box-Jenkins setting, is pro-
posed by Laurain et al. in [12]. In the context of block-
oriented identification, different algorithms for paramet-
ric identification of Hammerstein-like and Wiener-like
structures with output-error noise models are presented
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in [5,20,11,3,4,23]. In the more general framework of
nonlinear errors-in-variables (EIV) models (i.e., when
all the regressor variables are contaminated by error
or measurement noise), identification schemes for sys-
tems described by continuous nonlinear functions are
presented in [7,19,1]. In these contributions, every mo-
ment of the noise is assumed to be a-priori known. In
[18], a generalization of the Koopmans-Levin’s method
[8], originally developed for EIV linear system identi-
fication, is properly extended to handle identification
of static systems described by polynomial functions,
under the assumption that the structure of the noise
covariance matrix is known. In [10], Jun and Bernstein
propose a method which is able to consistently estimate
the parameters of nonlinear systems described by third
or lower order polynomials without assuming that the
noise covariance is known.

In this paper, we present a novel approach to consistently
estimate the parameters of polynomial output-error sys-
tems withGaussian-distributedmeasurement noise. One
of the main benefits of the algorithm proposed in this pa-
per is its ability to compute a consistent estimate of the
system parameters with a modest computational com-
plexity and without assuming to know the variance of
the noise corrupting the data. The paper is organized as
follows. In Section 2, the considered estimation problem
is introduced. A consistent estimate of the system pa-
rameters is derived in Section 3 under the assumption
that the variance of the noise affecting the output mea-
surements is a-priori known. The latter assumption is
relaxed in Section 4 in order to extend the applicability
of the proposed method to a more general setting. The
effectiveness of the presented identification procedure is
shown in Section 5 through a simulation example.

2 Problem description

Consider a discrete-time, single-input single-output
(SISO) data-generating system So described by the
nonlinear output-error (NOE) structure:

x(t)=ho(x(t− 1), . . . , x(t− na), u(t), . . . , u(t− nb)),
(1a)

y(t)=x(t) + eo(t), (1b)

where u(t) is the measured input at time instant t, x(t)
and y(t) are the noise-free and the noise-corrupted out-
put, respectively, and eo(t) is a stationary white Gaus-
sian noise, independent of x(t) and u(t), with zero mean
and finite variance σ2

e . The function h
o(.) is a real-valued

multivariate polynomial, which is parameterized as fol-

lows:

ho(x(t− 1), . . . , x(t− na), u(t), . . . , u(t− nb)) =

=

nθ∑
i=1

θoiψi(x(t− 1), . . . , x(t− na), u(t), . . . , u(t− nb)),

(2)

where θoi ∈ R (with i = 1, . . . , nθ) are the unknown pa-
rameters to be estimated, while ψi : Rnθ → R (with
i = 1, . . . , nθ) are a-priori chosen functions belonging
to the canonical polynomial basis in the variables x(t−
1), . . . , x(t−na), u(t), . . . , u(t−nb). It is worth remark-
ing that the assumption that ho is a polynomial or it can
be well-approximated by polynomial functions is realis-
tic in many applications where the nonlinearities char-
acterizing the systems are smooth enough.

Let us rewrite the data-generating system So as

y(t)=

nθ∑
i=1

θoiψi

(
y(t−1)−eo(t−1), . . . , u(t− nb)

)
+eo(t).

(3)

By introducing the matrix notation

θo =
[
θo1 . . . θonθ

]⊤
,

φo(t) = [ ψ1(x(t− 1) . . . x(t− na) u(t) . . . u(t− nb)),

...

ψnθ
(x(t− 1) . . . x(t− na) u(t) . . . u(t− nb))],

the system in (3) can be rewritten in the compact form

y(t) = φ⊤
o (t)θo + eo(t). (4)

Let us introduce the following parametric model Mθ to
describe the system So:

y(t)=

nθ∑
i=1

θiψi

(
y(t−1),. . . , y(t−na),u(t), . . . , u(t−nb)

)
+

+ ε(t) = φ⊤(t)θ + ε(t), (5)

with ε(t) denoting the residual term. The vectors θ ∈
Rnθ and φ(t) ∈ Rnθ are defined as

θ =
[
θ1, . . . , θnθ

]⊤
,

φ(t) = [ ψ1(y(t− 1), . . . , y(t− na), u(t), . . . , u(t− nb)),

...

ψnθ
(y(t− 1), . . . , y(t− na), u(t), . . . , u(t− nb))].

It worth mentioning that the structure of the data-
generating system So is not known in practice. Thus,
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in order to guarantee that the true system belongs to
the chosen model class, an over-parameterized model
Mθ can be considered. The goal of this contribution is
to compute a consistent estimate of the system param-
eters θo based on a set of observed input/output data

DN = {u(t), y(t)}Nt=1 generated by So.

The proposed algorithm is based on a proper modifica-
tion of the least-squares methods. Before introducing the
developed approach, let us first review the asymptotical
properties of the least-square algorithm, which aims at
minimizing the ℓ2-loss function V(θ,DN ) defined as

V(θ,DN ) =

N∑
t=1

ε2(t)

N
=

N∑
t=1

1

N

(
y(t)− φ⊤(t)θ

)2
=

=
1

N
∥Y − Φθ∥22, (6)

where Y = [y(1), . . . , y(N)]
⊤ ∈ RN and Φ ∈ RN,nθ is

the noise-corrupted regressor matrix defined as

Φ =
[
φ(1) · · · φ(N)

]⊤
. (7)

The LS-estimate θ̂LS is then the argument minimizing
the cost function V(θ,DN ) over θ ∈ Rnθ , i.e.,

θ̂LS = arg min
θ∈Rnθ

1

N
∥Y −Φθ∥22 =

(
Φ⊤Φ

N

)−1
Φ⊤Y

N
. (8)

In order to compute the difference between θ̂LS and the
true system parameters θo, let us write the output signal
in (4) as

y(t) = φ⊤
o (t)θo + eo(t) =

= φ⊤
o (t)θo + φ⊤(t)θo − φ⊤(t)θo + eo(t) =

= φ⊤(t)θo +∆φ(t)θo + eo(t),

with ∆φ(t) =
(
φ⊤
o (t)− φ⊤(t)

)
. Let us stack the vectors

∆φ(t) and the noise samples eo(t), with t = 1, . . . , N ,
into the matrix ∆Φ ∈ RN,nθ and into the vector Eo ∈
RN , respectively:

∆Φ =


∆φ⊤(1)

...

∆φ⊤(N)

 =


φ⊤
o (1)
...

φ⊤
o (N)


︸ ︷︷ ︸

Φo

−


φ⊤(1)

...

φ⊤(N)


︸ ︷︷ ︸

Φ

, (9a)

Eo = [eo(1) . . . eo(N)]
⊤
. (9b)

Based on the above definitions, the difference between

the estimate θ̂LS and the true parameter vector θo can

be expressed as:

θ̂LS−θo=
(
Φ⊤Φ

N

)−1
Φ⊤Y

N
− θo =

=

(
Φ⊤Φ

N

)−1
Φ⊤ (Φθo +∆Φθo + Eo)

N
− θo =

=

(
Φ⊤Φ

N

)−1
Φ⊤∆Φ

N
θo︸ ︷︷ ︸

B∆(θo,Φ,∆Φ)

+

(
Φ⊤Φ

N

)−1
Φ⊤Eo

N︸ ︷︷ ︸
BE

.

(10)

Eq. (10) shows that the estimate θ̂LS is not consistent,

i.e., lim
N→∞

θ̂LS − θo ̸= 0. In fact, although the term BE

is guaranteed to converge to 0 as the number of mea-
surements N goes to infinity, B∆(θo,Φ,∆Φ) does not
converge to 0 in general. The bias term B∆(θo,Φ,∆Φ)
will be referred in the sequel as noise-induced bias.

In the next section, we propose an algorithm to eliminate
the noise-induced bias B∆(θo,Φ,∆Φ), thus obtaining a
consistent estimate of the true system parameters θo.

3 A bias-corrected LS estimate

In order to correct the noise-induced bias introduced by
the LS estimate, first note that B∆(θo,Φ,∆Φ) depends
on the true parameters θo and the noise-free regressor
matrix Φo (see the definition of ∆Φ in (9a)). As a con-
sequence, such a bias cannot be computed based on the
observed input/output data and thus it cannot be di-

rectly subtracted from the LS estimate θ̂LS.

Inspired by (10), the following corrected LS estimate is
introduced:

θ̃CLS = θ̂LS −B∆(θ̃CLS,Φ,∆Φ), (11)

with B∆(θ̃CLS,Φ,∆Φ) being

B∆(θ̃CLS,Φ,∆Φ) =

(
Φ⊤Φ

N

)−1
Φ⊤∆Φ

N
θ̃CLS. (12)

Algebraic manipulations of (11) lead to the following

expression of θ̃CLS:

θ̃CLS =

(
Φ⊤Φ+ Φ⊤∆Φ

N

)−1
Φ⊤Y

N
. (13)

Property 1 Let us assume that the following limit ex-
ists:

lim
N→∞

(
Φ⊤Φ+Φ⊤∆Φ

N

)−1

. (14)
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Then, θ̃CLS is a consistent estimate of the true system
parameters θo, i.e.,

lim
N→∞

θ̃CLS = θo w.p. 1. (15)

Proof: See Appendix 7.1. �

Note that the estimate θ̃CLS does not explicitly depend
on the true system parameters θo. However, it cannot
be computed since it depends on the matrix Φ⊤∆Φ,
which is unknown. In fact, ∆Φ depends, by definition,
on the noise-free regressor matrix Φo (see (9a)). In order

to overcome such a problem, the estimate θ̃CLS is modi-
fied by replacing Φ⊤∆Φ in (11) with the matrix Ψ (con-
structed through Algorithm 1, see later) which depends
on the measured output y(t) and satisfies the following
condition:

C1 lim
N→∞

1

N
Φ⊤∆Φ = lim

N→∞

1

N
Ψ w.p. 1.

From (11), the new corrected LS estimate is then given
by:

θ̂CLS = θ̂LS −B∆(θ̂CLS,Ψ), (16)

that is:

θ̂CLS =

(
Φ⊤Φ+Ψ

N

)−1
Φ⊤Y

N
. (17)

Property 2 Let us assume that the limit in (14) exists.

Then, θ̂CLS is a consistent estimate of the true system
parameters θo, i.e.,

lim
N→∞

θ̂CLS = θo w.p. 1. (18)

Proof: See Appendix 7.2. �

The matrix Ψ satisfying condition C1 can be con-
structed through the following Algorithm.

Algorithm 1 [Construction of Ψ]

A1.1 Compute the analytical expression of the matrix
E
{
Φ⊤∆Φ

}
. Note that, since polynomial nonlinear-

ities are considered, the entries of E
{
Φ⊤∆Φ

}
are

described by an affine combination of the monomi-
als x(t), x2(t), x3(t), . . . , x(t)x(t− 1), . . . , x(t)x(t−
1)x(t− na), . . ..

A1.2 For each monomial x(t), x2(t), x3(t), . . . , x(t)x(t −
1), . . . , x(t)x(t−1)x(t−na), . . ., compute the coeffi-
cients α1(t), α2(t), α3(t), . . . , αn(t), . . . , αm(t), . . .,
such that:
• x(t) = E {y(t) + α1(t)}

• x2(t) = E
{
y2(t) + α2(t)

}
• x3(t) = E

{
y3(t) + α3(t)

}
•
...

• x(t)x(t− 1) = E {y(t)y(t− 1) + αn(t)}

•
...

• x(t)x(t−1)x(t−na)=E{y(t)y(t−1)y(t−na)+αm(t)}
...
To illustrate this construction, we develop the

computation of the α coefficients through a recur-
sive procedure. Consider first α1(t). Then,

x(t)=E {y(t)+α1(t)} = E {x(t)+eo(t)+α1(t)} =

=x(t) + E {α1(t)} . (19)

Equation (19) implies that α1(t) = 0 and x(t) =
E {y(t)} for all t = 1, . . . , N .
For α2, we have:

x2(t) = E
{
y2(t) + α2(t)

}
=

= E
{
(x(t) + eo(t))

2 + α2(t)
}
=

= x2(t) + σ2
e + E {α2(t)} . (20)

Therefore, a possible choice is α2(t) = −σ2
e , which

provides x2(t) = E
{
y2(t)

}
−σ2

e for all t = 1, . . . , N .

In case d > 2, the values of αd(t) can be recur-
sively computed on the basis of the (previously com-
puted) unbiased estimates of x(t), x2(t), . . . , xd−1(t).
For instance, a possible choice of α3 is given by:

x3(t) = E
{
y3(t) + α3(t)

}
=

= E
{
(x(t) + eo(t))

3 + α3(t)
}
=

= x3(t) + 3x(t)σ2
e + E {α3(t)} . (21)

Eq. (21) implies that α3(t) should be such that:

E {α3(t)} = −3x(t)σ2
e . (22)

Since, based on the previous computation, x(t) =
E {y(t)}, from Eq. (22) we get:

E {α3(t)} = −3x(t)σ2
e = E

{
−3y(t)σ2

e

}
. (23)

This means that a possible choice for α3(t) is
α3(t) = −3y(t)σ2

e . Thus, x
3(t) = E

{
y3(t)− 3y(t)σ2

e

}
for all t = 1, . . . , N .

As far as the computation of the coefficient αm(t)
satisfying the condition x(t)x(t − 1)x(t − na) =
E {y(t)y(t− 1)y(t− na) + αm(t)} is concerned, we
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have

x(t)x(t− 1)x(t− na) =

=E {y(t)y(t− 1)y(t− na) + αm(t)} = (24)

=E {x(t)x(t− 1)x(t− na) + αm(t)} ,

which implies that a possible choice of αm(t) is
αm(t) = 0 for all t = 1, . . . , N . Note that Eq. (24)
follows from the assumption that the noise process
eo is white.

A1.3 The matrix Ψ is constructed by replacing,
in the analytical expression of E

{
Φ⊤∆Φ

}
,

the monomials x(t), x2(t), x3(t), . . . , x(t)x(t −
1), . . . , x(t)x(t − 1)x(t − na), . . . with y(t) +
α1(t), y

2(t)+α2(t), y
3(t)+α3(t), . . . , y(t)y(t−1)+

αn(t), . . . , y(t)y(t− 1)y(t− na) + αm(t), . . .. �

An illustrative example on the construction of thematrix
Ψ is reported in Appendix 7.4.

Property 3 The matrix Ψ, computed through Al-
gorithm 1, satisfies condition C1 under the assump-
tion that the noise-free output sequence {x(t)}∞t=1 is
bounded, i.e., there exists a constant Mx > 0 such that

|x(t)| ≤Mx for all t = 1, 2, . . . . (25)

Proof: See Appendix 7.3. �

The application of the proposed identification scheme
is limited, in principle, to the case when the value of
the noise variance σ2

e is available, either because σ2
e is

a-priori known or because it can be estimated through
a set of dedicated experiments. In the next section, we
present an algorithm to extend the applicability of the
developed identification procedure to the case when the
estimate of σ2

e is not a-priori available.

4 Estimation with unknown noise variance

In order to compute a relation between the noise vari-
ance σ2

e and the system parameters θo, let us rewrite the
minimal value of the loss function V(θ,DN ) as

V(θ̂LS,DN ) =
1

N
∥Y − Φθ̂LS∥22 =

=
1

N
∥Φoθo + Eo − Φθ̂LS∥22 =

=
1

N

(
∥Eo∥22 + ∥Φoθo − Φθ̂LS∥22−2E⊤

o

(
Φoθo−Φθ̂LS

))
.

(26)

As the number of measurements N goes to infinity,
the term 1

N ∥Eo∥22 converges (w.p. 1) to σ2
e , while

1
NE

⊤
o

(
Φoθo − Φθ̂LS

)
converges (w.p. 1) to 0 because of

the independence of eo(t) from the noise-free and noise-
corrupted regressors φo(t) and φ(t). Based on such
considerations, from Eq. (26), it follows that:

lim
N→∞

V(θ̂LS,DN ) = lim
N→∞

1

N
∥Y − Φθ̂LS∥22 =

=σ2
e+ lim

N→∞

1

N

(
θ⊤o Φ

⊤
o Φoθo+θ̂

⊤
LSΦ

⊤Φθ̂LS−2θ⊤o Φ
⊤
o Φθ̂LS

)
.

(27)

Let us now construct from the noise-corrupted output
observations y(t) two matrices Ω′ ∈ Rnθ,nθ and Ω′′ ∈
Rnθ,nθ satisfying the following condition:

X1 The matrices Ω′ and Ω′′ are such that:

lim
N→∞

1

N
Ω′ = lim

N→∞

1

N
Φ⊤

o Φo, w.p. 1, (28a)

lim
N→∞

1

N
Ω′′ = lim

N→∞

1

N
Φ⊤

o Φ, w.p. 1. (28b)

The matrices Ω′ ∈ Rnθ,nθ and Ω′′ ∈ Rnθ,nθ satisfying
condition X1 can be constructed through a procedure
similar to the one described in Algorithm 1 to construct
the matrix Ψ. Note that, like for the matrix Ψ, the noise
variance σ2

e is needed to construct the matrices Ω′ and
Ω′′.

A (nonlinear) relation between σ2
e and θo is then ob-

tained by substituting (28a) and (28b) into Eq. (27), i.e.,

lim
N→∞

V(θ̂LS,DN ) = lim
N→∞

1

N
∥Y − Φθ̂LS∥22 =

=σ2
e+ lim

N→∞

1

N

(
θ⊤o Ω

′θo + θ̂⊤LSΦ
⊤Φθ̂LS − 2θ⊤o Ω

′′θ̂LS

)
.

(29)

Note that also the matrices Ω′ and Ω′ depend on the
(unknown) noise variance σ2

e . An estimate of σ2
e and the

system parameters θo can be then computed by combing
Eq. (17) and Eq. (29) (for finite N). This leads to the
set of nonlinear equations in the variables (θ, σ2):

θ =
(
Φ⊤Φ+Ψ(σ2)

)−1
Φ⊤Y, (30a)

1

N
∥Y−Φθ̂LS∥22=σ2+

1

N

(
θ⊤Ω′θ+θ̂⊤LSΦ

⊤Φθ̂LS−2θ⊤Ω′′θ̂LS

)
.

(30b)

Indeed, as N → ∞, the pair (θo, σ
2
e ) becomes a solution

of the set of equations in (30). A simple numerical algo-
rithm to compute a solution of the nonlinear system of
equations in (30) is described in the following.

Algorithm 2 [Combined bias-corrected LS and
noise variance estimate]
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Initialization: Set an upper bound σ2
max that can be

assumed for the noise variance σ2
e .

A2.1 Generate a set {σ2
i }Mi=1 ofM equally-spaced points

in the interval [0, σ2
max].

A2.2 for i from 1 to M .
A2.3 Compute θ̂(i) through Eq. (30a) with σ2

i as the noise

variance, i.e., θ̂(i) =
(
Φ⊤Φ+Ψ(σ2

i )
)−1

Φ⊤Y .

A2.4 Compute the error term ϵ
(
θ̂(i)
)
(see Eq. (30b)) as

ϵ
(
θ̂(i)
)
=

1

N
∥Y − Φθ̂LS∥22 − σ2

i+

− 1

N

[̂
θ(i)

⊤
Ω′(σ2

i

)
θ̂(i)+θ̂⊤LSΦ

⊤Φθ̂LS−2θ̂(i)
⊤
Ω′′(σ2

i

)
θ̂LS

]
A2.5 end for
A2.6 return θ̂CLS = arg min

i=1,...,M

∣∣∣ϵ(θ̂(i))∣∣∣. �

Note that the accuracy of Algorithm 2 can be arbitrarily
increased by refining the gridding at stage A2.1, at the
cost of increasing the computational load.

It is worth pointing out that the idea of computing a
relation between the noise variance σ2

e and the system
parameters θo from the minimal value of the LS crite-
rion V(θ,DN ) has been inspired by the papers [21,22,9],
where bias-eliminated least-squares algorithms for iden-
tification of LTI systems in the EIV framework are dis-
cussed.

Remark 1 The bias-corrected estimate θ̂CLS in (17) is
guaranteed to be consistent also in case themeasurement
noise eo(t) is not Gaussian. However, if eo(t) is not Gaus-
sian, the matrix Ψ depends not only on the noise vari-
ance σ2

e (i.e., second-order moment of the noise eo(t)),
but also on higher order moments. Therefore, in order

to compute the bias-corrected estimate θ̂CLS in case of
unknown moments of eo(t), a set of nonlinear equations
depending on higher order moments of eo(t) need to be
considered together with (30b). However, solving such a
set of nonlinear equations might be quite demanding in
terms of computational resources. �

5 Numerical example

The capabilities of the estimation scheme proposed in
the paper are now shown through a simulation example.

5.1 Simulation setup

Consider the data-generating system So described by the
nonlinear output-error structure:

x(t) =ao1x(t−1)+ao2x(t−2)+ao4x
2(t−2)+

+ ao6x
3(t−1)+ao10u(t),

y(t) =x(t) + eo(t),

with

θo = [ao1 a
o
2 a

o
4 a

o
6 a

o
10]

⊤ = [−0.2 0.1 0.2 − 0.15 1.4]⊤.

Since the structure of the true system is not known in
practice, the following over-parameterized model class is
chosen:

y(t) =a1y(t−1)+a2y(t−2)+a3y
2(t−1)+a4y

2(t−2)+

+a5y(t−1)y(t−2) +a6y
3(t−1)+ a7y

2(t−1)y(t−2)

+a8y(t−1)y2(t−2) + a9y
3(t−2) + a10u(t) + ε(t).

The noise measurement eo(t) is taken as a zero-mean
stationary white-noise process with Gaussian distribu-
tionN (0, σ2

e ), while the input signal u(t) is a white-noise
sequence with uniform distribution U(−0.5, 0.5). The
model parameters θ are estimated from an input/output
data set DN of length N = 4000 generated by the sys-
tem. In order to empirically study the statistical prop-
erties of the developed bias-correction scheme, a Monte
Carlo study with NMC = 1000 runs with new noise and
input realizations in each run, is carried out. In this
study, σ2

e is chosen to be 0.03, corresponding to an av-
erage signal-to-noise ratio (SNR) of 8 dB. The SNR is
defined as

SNR = 10 log10

(
N∑
t=1

x2(t)

/
N∑
t=1

e2o(t)

)
.

5.2 Obtained results

The following three estimates of the model parameters
θ are computed:

• LS estimate θ̂LS, computed by minimizing the sample
variance of the residual ε(t).

• PEM estimate with output error noise model. The LS

estimate θ̂LS has been used as an initial estimate for
the PEM.

• Bias-corrected LS estimate θ̂CLS, computed through
Eq. (17) and under the assumption that the value of
the noise variance σ2

e is known.

• Bias-corrected LS estimate θ̂CLS, computed through
Algorithm 2, i.e., the noise variance σ2

e is assumed to
be a-priori unknown. 101 equally-spaced points in the
interval [0, σ2

max] = [0, 1] are considered in Algorithm
2.

The obtained results are reported in Table 1, which
shows the average of the estimated parameters and their
standard deviation over the 1000 Monte Carlo runs. Ta-
ble 1 also shows that, in line with the theory, the LS
method provides a biased estimate of the system param-
eters, while the approach proposed in the paper provides
a consistent estimate of the true system parameters θo
also in the case when the noise variance is unknown. It
is worth noting that, due to the uncertainty introduced
in estimating the matrix Ψ, the bias-corrected approach
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provides an estimate of the model parameters with a
larger variance than the LS method. Results in Table
1 also emphasize that, even if the PEM is guaranteed
to provide, theoretically, a consistent estimate for NOE
models, due of the usual absence of a good initializa-
tion and heavy complexity of the associated nonlinear
optimization problem, it fails to provide reliable esti-
mates. This concludes that the proposed approach of-
fers a good tradeoff in terms consistency, variance, and
required computational effort.

6 Conclusion

In this paper, we have proposed a method for comput-
ing a consistent parameter estimate for output-error sys-
tems with polynomial nonlinearities. The noise corrupt-
ing the output measurements has been assumed to be
white and Gaussian with unknown variance. The under-
lying idea of the proposed approach is to estimate, from
the measured data, the bias introduced by the LS ap-
proach. The estimated bias is guaranteed to asymptoti-
cally converge to the true one as the number of measure-
ments increases, and it is used to correct the LS estimate.
Possible extensions of the developed approach include:

• identification of nonlinear systems with different
types of nonlinear parameterizations, noise-models
and noise distributions;

• data-driven selection of the model structure.

7 Appendix

7.1 Proof of Property 1

Property 1 is proved on the basis of the following alge-
braic manipulations:

θ̃CLS =

(
Φ⊤Φ+Φ⊤∆Φ

N

)−1
1

N
Φ⊤(Φθo +∆Φθo + Eo)︸ ︷︷ ︸

Y

=

(
Φ⊤Φ+Φ⊤∆Φ

N

)−1[(
Φ⊤Φ+Φ⊤∆Φ

N

)
θo+

Φ⊤Eo

N

]
=θo +

(
Φ⊤Φ+ Φ⊤∆Φ

N

)−1
Φ⊤Eo

N
.

Because of the independence between the measurement
noise eo(t) and the regressor φ(t), the term

(
Φ⊤Φ+ Φ⊤∆Φ

N

)−1
Φ⊤Eo

N
(32)

converges to zero with probability 1. This implies (15).

7.2 Proof of Property 2

Let us rewrite the bias-corrected estimate θ̂CLS in (17)
as follows

θ̂CLS =

(
Φ⊤Φ +Ψ

N

)−1
1

N
Φ⊤(Φθo +∆Φθo + Eo)︸ ︷︷ ︸

Y

=

(
Φ⊤Φ

N
+

Ψ

N

)−1(
Φ⊤Φ

N
+

Φ⊤∆Φ

N

)
θo+

+

(
Φ⊤Φ

N
+

Ψ

N

)−1
Φ⊤Eo

N
. (33)

Because of the independence between the measure-
ment noise eo(t) and the regressor φ(t), the term(
Φ⊤Φ

N
+

Ψ

N

)−1
Φ⊤Eo

N
converges to zero with proba-

bility 1, while, because of condition C1, the matrix

(
Φ⊤Φ

N
+

Ψ

N

)−1(
Φ⊤Φ

N
+

Φ⊤∆Φ

N

)
(34)

converges to the identity matrix with probability 1.
Based on the above considerations and from Eq. (33),
Property 2 follows.

7.3 Proof of Property 3

In order to prove that Ψ satisfies condition C1, the
following necessary lemma coming from a direct appli-
cation of the Ninness’s strong law of large numbers [15]
is first presented.

Lemma 1 Let {ν(t)} be a sequence of random variables
with arbitrary correlation structure (not necessarily sta-
tionary) that is characterized by the existence of a finite
value C such that

N∑
t=1

N∑
s=1

E {ν(t)ν(s)} < CN. (35)

Then,

1

N

N∑
t=1

ν(t)
a.s.−−→ 0 as N → ∞ (36)

�

Let [·]i,j be the (i, j)-th entry of a matrix. Let us consider
the term:[

1

N
Ψ− 1

N
Φ⊤∆Φ

]
i,j

=
1

N

N∑
t=1

νi,j(t), (37)
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Table 1
Mean and standard deviation of the estimates of the parameters θ over the 1000 Monte Carlo runs.

True least-squares PEM bias-corrected bias-corrected

value estimate θ̂LS estimate estimate θ̂CLS (σ2
e known) estimate θ̂CLS (σ2

e unknown)

a1 mean −0.2 −0.2233 −0.2205 −0.2006 −0.2008

std – 0.0094 0.0365 0.0184 0.0186

a2 mean 0.1 0.1009 0.0988 0.1005 0.1004

std – 0.0091 0.0293 0.0136 0.0137

a3 mean 0 0.0043 −0.0045 −0.0004 −0.0006

std – 0.0074 0.0304 0.0143 0.0147

a4 mean 0.2 0.1350 0.1444 0.2003 0.2006

std – 0.0073 0.0297 0.0128 0.0129

a5 mean 0 −0.0065 −0.0105 −0.0002 −0.0005

std – 0.0111 0.0322 0.0158 0.0160

a6 mean −0.15 0.0234 −0.0127 −0.1489 −0.1493

std – 0.0168 0.1105 0.0576 0.0589

a7 mean 0 0.0774 0.0586 0.0013 0.0013

std – 0.0236 0.1187 0.0506 0.0514

a8 mean 0 0.0023 0.0066 0.0016 0.0012

std – 0.0217 0.0948 0.0365 0.0377

a9 mean 0 −0.0221 −0.0051 −0.0010 −0.0012

std – 0.0148 0.0594 0.0324 0.0341

a10 mean 1.4 1.4000 1.4001 1.4000 1.4000

std – 0.0070 0.0206 0.0070 0.0070

From the construction of the matrix Ψ (Algorithm 1),
the random variable νi,j(t) is guaranteed to be zero-
mean and it only depends on the deterministic noise-free
output samples x(t− 1), . . . , x(t− na) and on the white
noise samples eo(t−1), . . . , eo(t−na). As a consequence,
the variables νi,j(t) and νi,j(s) are stochastically inde-
pendent for all t, s such that s ≥ t+ na. Therefore,

E {νi,j(t)νi,j(s)} = 0 for all s ≥ t+ na. (38)

Note also that, since x(t) is assumed to be bounded for
all t ≥ 0 and the variance σ2

e is finite, then the term
E {νi,j(t)νi,j(s)} is bounded for any index-pair t, s > 0,
i.e., there exists a positive constant Mi,j such that

E {νi,j(t)νi,j(s)} < Mi,j for all s, t > 0. (39)

Based on the above considerations, we have:

N∑
t=1

N∑
s=1

E{νi,j(t)νi,j(s)} =
N∑
t=1

min{t+na−1,N}∑
s=t

E {νi,j(t)νi,j(s)}

<

N∑
t=1

naMi,j = naMi,jN.

Therefore, from Lemma 1, it follows

1

N

N∑
t=1

νi,j(t)
a.s.−−→ 0 as N → ∞, (40)

or equivalently, (see Eq. (37))

lim
N→∞

1

N
[Ψ]i,j = lim

N→∞

1

N

[
Φ⊤∆Φ

]
i,j

w.p. 1. (41)

This proves that Ψ satisfies condition C1.

7.4 Example: structure of the matrices Φ⊤∆Φ and Ψ

Let us consider a data-generating system So described
by

x(t) =a11x(t− 1) + a12x
2(t− 1) + a21x(t− 2), (45a)

y(t) =x(t) + eo(t), (45b)

where a11, a12 and a21 are real-valued constants. Then,
the noise-free and the noise-corrupted regressors φo(t)
and φ(t) are:

φo(t) =


x(t− 1)

x2(t− 1)

x(t− 2)

 , φ(t) =


y(t− 1)

y2(t− 1)

y(t− 2)

 , (46)

and the matrix Φ⊤∆Φ and its expected value are given
by (42) and (43), respectively. The matrix Ψ (see (44))
is then obtained by substituting the terms x(t− 1) and
x2(t−1) in (43) with y(t−1) and y2(t−1)−σ2

e , respec-
tively.
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Φ⊤∆Φ=



N∑
t=1

y(t− 1)(x(t− 1)− y(t− 1))

N∑
t=1

y(t− 1)
(
x2(t− 1)− y2(t− 1)

) N∑
t=1

y(t− 1)(x(t− 2)−y(t− 2))

N∑
t=1

y2(t− 1)(x(t− 1)− y(t− 1))
N∑
t=1

y2(t− 1)
(
x2(t− 1)− y2(t− 1)

) N∑
t=1

y2(t− 1)(x(t− 2)−y(t− 2))

N∑
t=1

y(t− 2)(x(t− 1)− y(t− 1))

N∑
t=1

y(t− 2)
(
x2(t− 1)− y2(t− 1)

) N∑
t=1

y(t− 2)(x(t− 2)−y(t− 2))


(42)

E
{
Φ⊤∆Φ

}
=−



Nσ2
e σ2

e

N∑
t=1

3x(t− 1) 0

σ2
e

N∑
t=1

2x(t− 1) σ2
e

N∑
t=1

5x2(t− 1) + 3Nσ4
e 0

0 σ2
e

N∑
t=1

x(t− 2) Nσ2
e


(43)

Ψ=−



Nσ2
e σ2

e

N∑
t=1

3y(t− 1) 0

σ2
e

N∑
t=1

2y(t− 1) σ2
e

N∑
t=1

5
(
y2(t− 1)− σ2

e

)
+ 3Nσ4

e 0

0 σ2
e

N∑
t=1

y(t− 2) Nσ2
e


(44)
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