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Abstract

Identification of linear parameter-varying systems in an input-output setting is investigated, focusing on the case when the
noise part of the data generating system is an additive colored noise. In the Box-Jenkins and output-error cases, it is shown
that the currently available linear regression and instrumental variable methods from the literature are far from being optimal
in terms of bias and variance of the estimates. To overcome the underlying problems, a refined instrumental variable method
is introduced. The proposed approach is compared to the existing methods via a representative simulation example.
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1 Introduction

The common need for accurate and efficient control
of today’s industrial applications is driving the system
identification field to face the constant challenge of
providing better models of physical phenomena. Sys-
tems encountered in practice are often nonlinear or
have time-varying nature. Dealing with models of such
kind without any structure is often found infeasible in
practice. This rises the need for system descriptions
that form an intermediate step between Linear Time-
Invariant (LTI) systems and nonlinear/time-varying
plants. To cope with these expectations, the model class
of Linear Parameter-Varying (LPV) systems provides
an attractive candidate. In LPV systems the signal re-
lations are considered to be linear just as in the LTI
case, but the parameters are assumed to be functions of
a measurable time-varying signal, the so-called schedul-
ing variable p : Z 7→ P. The compact set P ⊆ R

nP

denotes the scheduling space. The LPV system class has
a wide representation capability of physical processes
and this framework is also supported by a well worked
out and industrially reputed control theory. Despite the
advances of the LPV control field, identification of such
systems is not well developed.
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The existing LPV identification approaches are almost
exclusively formulated in discrete-time, commonly as-
suming static dependence on the scheduling parameter
(dependence only on the instantaneous value of the
scheduling variable), and they are mainly characterized
by the type of LPV model structure used: Input-Output
(IO) [2,3,21] State-Space (SS) [14,20,5] or Orthogonal
Basis Functions (OBFs) based models [19] (see [18] for
an overview of existing methods). In the field of system
identification, IO models are widely used as the stochas-
tic meaning of estimation is much better understood
for such models, for example via the Prediction-Error
(PE) setting, than for other model structures. Often an
important advantage of IO models is that they can be
directly derived from physic/chemical laws in their con-
tinuous form. Therefore, it is more natural to express a
given physical system through an IO operator form or
transfer function modeling. A comparison between IO
and SS model based approaches can be found in [17] for
linear systems.
Among the available identification approaches of IO
models, the interest for Instrumental Variable (IV)
methods has been growing in the last years. The main
reason of this increasing interest is that IV methods of-
fer similar performance as extended Least Square (LS)
methods or other Prediction Error Minimization (PEM)
methods (see [15,13]) and provide consistent results
even for an imperfect noise structure which is the case
in most practical applications. These approaches have
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been used in many different frameworks such as direct
continuous-time [15,10], nonlinear [11] or closed-loop
identification [9,8] and lead to optimal estimates in the
LTI linear case if the system belongs to the model set
defined.
In the LPV case, most of the methods developed for
IO models based identification are derived under a lin-
ear regression form [21,2,1]. By using the concepts of
the LTI PE framework, recursive LS and IV methods
have been also introduced [7,4]. However, it has been
only recently understood how a PE framework can be
established for the estimation of general LPV models
[18]. Due to the linear regressor based estimation, the
usual model structure in existing methods is assumed
to be auto regressive with exogenous input (ARX). Even
if a non-statistically optimal IV method has been re-
cently introduced in [4] for LPV Output Error (OE)
models, no method has been proposed so far to deal
with colored noise. Moreover, it can be shown that it
is generally impossible to reach statistically optimal
estimates by using linear regression as presented so far
in the literature. These imply, that there is lack of an
LPV identification approach, which is capable of effi-
ciently estimating LPV-IO models under colored noise
conditions, e.g. as in a Box-Jenkins (BJ) setting, which
is the case in many practical applications.
By aiming at fulfilling this gap, an estimation method
is developed in this paper for LPV-IO BJ discrete-time
models in the SISO case. The properties of the method
are compared to the existing theory showing the in-
creased statistical performance of the estimation.
The paper is organized as follows: in Section 2, the
general class of LPV systems in an IO representation
form is introduced pointing out the main difficulties
presented. In Section 3, linear regression in the LPV
prediction error framework is analyzed and it is shown
that such an estimation scheme even in a IV setting is
statistically not optimal if the noise is not white. More-
over, a reformulation of the dynamical description of
LPV data generating plants in the considered setting
is introduced which makes possible the extension of
LTI-IV methods to the LPV framework. In Section 4,
LPV-IV methods are introduced and analyzed, while
their performance increase compared to other methods
is shown in Section 5. Finally in Section 6, the main
conclusions of the paper are drawn and directions of
future research are indicated.

2 Problem description

2.1 System description

Consider the data generating LPV system described by
the following equations:

So

{

Ao(pk, q−1)χo(tk) = Bo(pk, q−1)u(tk−d)

y(tk) = χo(tk) + vo(tk)
(1)

where pk is the value of the scheduling parameter p at
sample time tk, d is the delay, χo is the noise-free out-

put, u is the input, vo is the additive noise with bounded
spectral density, y is the noisy output of the system
and q is the time-shift operator, i.e. q−iu(tk) = u(tk−i).
Ao(pk, q−1) and Bo(pk, q−1) are polynomials in q−1 of
degree na and nb respectively:

Ao(pk, q−1) = 1 +

na∑

i=1

ao
i (pk)q−i, (2a)

Bo(pk, q−1) =

nb∑

j=0

bo
j (pk)q−i, (2b)

where the coefficients ai and bj are real meromorphic
functions (f : R

n 7→ R is a real meromorphic function
if f = g/h with g, h analytic and h 6= 0) with static
dependence on p. It is assumed that these coefficients
are non-singular on P, thus the solutions of So are well-
defined and the process part is completely characterized
by the coefficient functions {ao

i }
na
i=1 and {bo

j}
nb
j=0.

Most of existing methods in the literature assume an
ARX type of data generating system, which means that
the noise process vo can be written as

eo(tk) = Ao(pk, q−1)vo(tk), (3)

where eo is a zero-mean, discrete-time white noise pro-
cess with a normal distribution N (0, σ2

o), where σ2
o is the

variance. Even if in some specific applications, the de-
pendence of the noise on p can be considered as a fair as-
sumption, the structure of (3) is often found unrealistic
as it assumes that both the noise and the process part of
So contain the same dynamics. In this paper, a more gen-
eral case is considered where the colored noise associated
with the sampled output measurement y(tk) is assumed
to have a rational spectral density which might has no
relation to the actual process dynamics of So. As a pre-
liminary step towards the case of a p-dependent noise,
it is also assumed that this rational spectral density is
not dependent on p: this corresponds to a more realistic
assumption than (3), especially in case of measurement
noise. Therefore, vo is represented by a discrete-time au-
toregressive moving average (ARMA) model:

vo(tk) = Ho(q)eo(tk) =
Co(q

−1)

Do(q−1)
eo(tk), (4)

where Co(q
−1) and Do(q

−1) are monic polynomials with
constant coefficients and with respective degree nc and
nd. Furthermore, all roots of zndDo(z

−1) are inside the
unit disc. It can be noticed that in case Co(q

−1) =
Do(q

−1) = 1, (4) defines an OE noise model.

2.2 Model considered

Next we introduce a discrete-time LPV Box-Jenkins
(BJ) type of model structure that we propose for the
identification of the data-generating system (1) with
noise model (4). In the proposed model structure, the
noise model and the process model are parameterized
separately.
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2.2.1 Process model

The process model is denoted by Gρ and defined in a
form of an LPV-IO representation:

Gρ :
(
A(pk, q−1, ρ), B(pk, q−1, ρ)

)
= (Aρ,Bρ) (5)

where the p-dependent polynomials A and B are param-
eterized as

Aρ







A(pk, q−1, ρ) = 1 +

na∑

i=1

ai(pk)q−i,

ai(pk) = ai,0 +

nα∑

l=1

ai,lfl(pk) i = 1, . . . , na

Bρ







B(pk, q−1, ρ) =

nb∑

j=0

bj(pk)q−i,

bj(pk) = bj,0 +

nβ∑

l=1

bj,lgl(pk) j = 0, . . . , nb

In this parametrization, {fl}
nα

l=1 and {gl}
nβ

l=1 are mero-
morphic functions of p, with static dependence, allow-
ing the identifiability of the model (pairwise orthogonal
functions on P for example). The associated model pa-
rameters ρ are stacked columnwise:

ρ =
[

a1 . . . ana
b0 . . . bnb

]⊤

∈ R
nρ , (7)

where

ai =
[

ai,0 ai,1 . . . ai,nα

]

∈ R
nα+1

bj =
[

bj,0 bj,1 . . . bj,nβ

]

∈ R
nβ+1

and nρ = na(nα + 1) + (nb + 1)(nβ + 1). Introduce also
G = {Gρ | ρ ∈ R

nρ}, as the collection of all process
models in the form of (5).

2.2.2 Noise model

The noise model is denoted by H and defined as an LTI
transfer function:

Hη : (H(q, η)) (8)

where H is a monic rational function given in the form of

H(q, η) =
C(q−1, η)

D(q−1, η)
=

1 + c1q
−1 + . . . + cnc

q−nc

1 + d1q−1 + . . . + dnd
q−nd

. (9)

The associated model parameters η are stacked colum-
nwise in the parameter vector,

η =
[

c1 . . . cnc
d1 . . . dnd

]⊤

∈ R
nη , (10)

where nη = nc + nd. Additionally, denote H = {Hη |
η ∈ R

nη}, the collection of all noise models in the form
of (8).

2.2.3 Whole model

With respect to a given process and noise part (Gρ,Hη),

the parameters can be collected as θ = [ ρ⊤ η⊤ ] and the

signal relations of the LPV-BJ model, denoted in the
sequel as Mθ, are defined as:

Mθ







A(pk, q−1, ρ)χ(tk)=B(pk, q−1, ρ)u(tk−d)

v(tk)=
C(q−1, η)

D(q−1, η)
e(tk)

y(tk)=χ(tk) + v(tk)

(11)

Based on this model structure, the model set, denoted
as M, with process (Gρ) and noise (Hη) models param-
eterized independently, takes the form

M =
{
(Gρ,Hη) | col(ρ, η) = θ ∈ R

nρ+nη
}

. (12)

This set corresponds to the set of candidate models in
which we seek the model that explains data gathered
from So the best, under a given identification criterion
(cost function).

2.3 Predictors and prediction error

Similar to the LTI case, in the LPV prediction error
framework, one is concerned about finding a model in
a given LPV model structure M, which minimizes the
statistical mean of the squared prediction error based
on past samples of (y, u, p). However in the LPV case,
no transfer function representation of systems is avail-
able. Furthermore, multiplication with q is not commu-
tative over the p-dependent coefficients, meaning that
q−1B(pk, q−1)u(tk) = B(pk−1, q

−1)u(tk−1) which is not
equal to B(pk, q−1)u(tk−1). Therefore to define predic-
tors with respect to models Mθ ∈ M, a convolution type
representation of the system dynamics, i.e. an LPV Im-
pulse Response Representation (IRR), is used where the
coefficients have dynamic dependence on p (dependence
on future and past samples of p) [18]. This means that
S0 with an asymptotically stable process and noise part
is written as

y(tk)=(Go(q) ⋄ p)(tk)u(tk)
︸ ︷︷ ︸

χo(tk)

+(Ho(q) ⋄ p)(tk)eo(tk)
︸ ︷︷ ︸

vo(tk)

(13)

where

(Go(q) ⋄ p)(tk) =

∞∑

i=0

(αo
i ⋄ p)(tk)q−i, (14a)

(Ho(q) ⋄ p)(tk) = 1 +

∞∑

i=1

(βo
i ⋄ p)(tk)q−i, (14b)

with αo
i ⋄ p expressing dynamic dependence of αi on

p, i.e. αo
i ⋄ p = αi(p, qp, q−1p, q2p, . . .). Now if p is

deterministic and there exits a convergent adjoint H†
o of

Ho such that

eo(tk) = (H†
o(q) ⋄ p)(tk)vo(tk), (15)
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then it is possible to show (see [18]) that the one-step
ahead predictor of y is

y(tk | tk−1) =
(
(H†

o(q)Go(q)) ⋄ p
)
(tk) u(tk)

+
(
(1 − H†

o(q)) ⋄ p
)
(tk) y(tk). (16)

In case the noise model is not dependent on p, like in (4),

(Ho(q)⋄p)(tk) = Co(q
−1)

Do(q−1) and (H†
o(q)⋄p)(tk) = Do(q

−1)
Co(q−1) .

With respect to a parameterized model structure, we
can define the one-step ahead prediction error as

εθ(tk) = y(tk) − ŷ(tk | tk−1), (17)

where

ŷ(tk | tk−1) =
(
(H†(q, θ)G(q, θ)) ⋄ p

)
(tk) u(tk)

+
(
(1 − H†(q, θ)) ⋄ p

)
(tk) y(tk) (18)

with G(q, θ) and H(q, θ) the IRR’s of the pro-
cess and noise part respectively. Denote DN =
{y(tk), u(tk), p(tk)}N

k=1 a data sequence of So. Then to
provide an estimate of θ based on the minimization of
εθ, an identification criterion W (DN , θ) can be intro-
duced, like the least squares criterion

W (DN , θ) =
1

N

N∑

k=1

ε2
θ(tk), (19)

such that the parameter estimate is

θ̂N = arg min
θ∈R

nρ+nη

W (DN , θ). (20)

2.4 Persistency of excitation

In order to estimate an adequate model in a given model
set, most PEM algorithms like least squares or instru-
mental variable methods require that a persistency of
excitation condition with respect to DN collected from
the system is satisfied. Such condition is required to
guarantee consistency and convergence of the algorithm
providing estimates. However, in the LPV case it turns
out that persistency of excitation in terms of (u, p) for a
given order, as it is understood in the LTI case (see [12]),
does not guarantee consistency of the estimated parame-
ters. The reason is that even if identifiability of the given
parametrization is satisfied under the considered iden-
tification criterion, statistically global minimum of the
criterion function is not guaranteed with respect to such
data. This means that the terminology of persistency of
excitation with order n is ill-defined in the LPV case.
Instead, the informativity of the data sets (see [6]) with
respect to the assumed coefficient parametrization and
model order is needed to be satisfied in order to ensure
consistency and convergence of the estimation. However,
conditions of informative data sets have not been inves-
tigated directly in the LPV literature. For some prelim-
inary work with conservative conditions see [3,21]. The

question whether a data set is informative in the LPV
case remains open. In terms of the upcoming analysis,
it is assumed that the considered data sets satisfy this
property. However in practice, the absence of a solid cri-
terion restricts the user to the paradigm to excite as
much as possible the system in order to guarantee con-
sistency and convergence of the estimation.

2.5 Identification problem statement

Based on the previous considerations, the identification
problem addressed in the sequel can now be defined.

Problem 1 Given a discrete time LPV data generating
system So defined as in (1) and a data set DN collected
from So. Based on the LPV-BJ model structure Mθ de-
fined by (11), estimate the parameter vector θ using DN

under the following assumptions:

A1 So ∈ M, i.e. there exits a Go ∈ G and a Ho ∈ H such
that (Go,Ho) is equal to So.

A2 In the parametrization Aρ and Bρ, {fl}
nα

l=1 and

{gl}
nβ

l=1 are chosen such that (Go,Ho) is identifiable
for any trajectory of p.

A3 u(tk) is not correlated to eo(tk).
A4 DN is informative with respect to M.
A5 So is globally BIBO stable, i.e. for any trajectory of

p : R 7→ P and any bounded input signal u, the output
of So is bounded [18].

3 On the use of linear regression framework and
statistical optimality

LPV-IO parametric identification methods proposed in
the literature so far are based on LS methods such as
least squares or instrumental variables [3,4]. The cur-
rently accepted view in the literature is that if the sys-
tem belongs to the model set defined in (12), then y(tk)
can be written in the linear regression form:

y(tk) = ϕ⊤(tk)ρ + ṽ(tk) (21)

with ρ as defined in (7) and

ϕ(tk) =
[

−y(tk−1) . . . −y(tk−na
) −y(tk−1)f1(pk) . . .

−y(tk−na
)fnα

(pk) u(tk−d) . . . u(tk−nb−d)

u(tk−d)g1(pk) . . . u(tk−nb−d)gnβ
(pk)

]⊤

(22a)

ṽ(tk) = A(pk, q−1, ρ)v(tk). (22b)

In this section it is shown why such a linear regression
cannot lead to statistically optimal (unbiased and mini-
mal variance) estimates when the model structure is an
LPV Box–Jenkins. Let us first introduce the adjoint A†

of A, such that χ = A†(pk, q−1, ρ)u ⇔ A(pk, q−1, ρ)χ =
u. Note that the adjoint always exits in a IRR sense with
respect to an asymptotically stable A. In the LTI case,
A† = 1

A , however, in the LPV case, A† 6= 1
A due to the

non-commutativity of the multiplication by q.
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3.1 The conclusion brought in [4]

By considering (21) and the associated extended re-
gressor in (22a), it is well known that the LS method
leads to optimal estimate only if the noise model is
ARX (ṽ(tk) is a white noise). This condition implies that
v(tk) = A†(pk, q−1, ρ)e(tk) and is not fulfilled in many
practical situations as vo is often not related directly to
the process itself and might not depend on pk. There-
fore it is proposed in [4] to use an IV method where the
instrument is built using the simulated data generated
from an estimated auxiliary ARX model:

Algorithm 1 (One-step IV method)

Step 1 Estimate an ARX model by the LS method (min-
imizing (19)) using the extended regressor (22a).

Step 2 Generate an estimate χ̂(tk) of χ(tk) based on the
resulting ARX model of the previous step. Build an
instrument based on χ̂(tk) and then estimate ρ using
the IV method.

In general, instrumental variable methods have the par-
ticularity to produce unbiased estimates if the instru-
ment is not correlated to the measurement noise. Based
on the numerical simulation given in [4], the following
conclusions have been proposed:

• In case So corresponds to an LPV-OE model (vo =
eo), Algorithm 1 leads to an unbiased estimate.

• The variance of the estimated parameters is much
larger than in a LS estimation as it is well-known.

• The estimation result can be improved if one uses a
multi-step algorithm such as in [12].

3.2 Existing methods and optimal estimates

In the present paper, the authors only partially agree
with the conclusions stated in [4]. It is true that the
results can be improved and that the IV estimates are
unbiased but this paper claims that:

• Even by using multi-step algorithm of [12], the optimal
estimate cannot be reached with the linear regression
form (21).

• For LPV-BJ models, estimates that are close to the
statistically optimal solution can be reached by using
IV methods and the variance of the estimated param-
eters is close to variance of the LS estimator in given
situations.

In the following part it is shown why these statements
hold true. In order to show why statistically optimal
estimation of the model (11) cannot be reached under
the viewpoint (21), it is necessary to revisit the result of
optimal prediction error in the LTI case.

3.2.1 The LTI case

In analogy with (11), consider the LTI-BJ model as

MLTI

θ







A(q−1, ρ)χ(tk) = B(q−1, ρ)u(tk−d)

v(tk) =
C(q−1, η)

D(q−1, η)
e(tk),

y(tk) = χ(tk) + v(tk).

(23)

where A(q−1, ρ) and B(q−1, ρ) are polynomials in q−1

with constant real coefficients and have degree na and nb

respectively and e is a white noise with e(tk) ∈ N (0, σ2).
y(tk) can be written in the linear regression form:

y(tk) = ϕ⊤(tk)ρ + ṽ(tk), (24)

with

ρ =
[

a1 . . . ana
b0 . . . bnb

]⊤

∈ R
na+nb+1

ϕ =
[

y(tk−1) . . . y(tk−na
) u(tk−d) . . . u(tk−nb−d)

]⊤

and

ṽ(tk) = A(q−1, ρ)v(tk). (25)

Following the conventional PEM approach of the LTI
framework (which is maximum likelihood estimation be-
cause of the normal distribution assumption on e(tk)),
the prediction error εθ(tk) of (24) with respect to (23) is

εθ(tk) =
D(q−1, η)

C(q−1, η)A(q−1, ρ)

(

A(q−1, ρ)y(tk)

− B(q−1, ρ)u(tk)
)

, (26)

where the filter D(q−1, η)/C(q−1, η) can be recognized
as the inverse of the ARMA(nc,nd) noise model in (23).
The polynomial operators commute and therefore εθ(tk)
is equivalent to the error function ε∗(tk) defined as:

ε∗(tk) = A(pk, q−1, ρ)yf(tk) − B(pk, q−1, ρ)uf(tk), (27)

where yf = Q(q−1, θ)y and uf = Q(q−1, θ)u represent
the outputs of the prefiltering operation with

Q(q−1, θ) =
D(q−1, η)

C(q−1, η)A(q−1, ρ)
. (28)

Therefore (24) is equivalent to:

yf(tk) = ϕ⊤
f (tk)ρ + ṽf(tk) (29)

with

ṽf(tk) = A(q−1, ρ)vf(tk) = e(tk). (30)

In other words, if the optimal filter (28) is known a pri-
ori, it is possible to filter the data such that the estima-
tion problem is reduced to the maximum likelihood esti-
mation. This implies that a simple LS algorithm applied
to the data prefiltered with (28) leads to the statistically
optimal estimate under minor conditions.
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3.2.2 The LPV case

Following the above introduced PEM approach in the
LPV case (which is again maximum likelihood estima-
tion because eo(tk) ∈ N (0, σ2

o)), the prediction error
εθ(tk) of (21) with respect to (11) is

εθ(tk) =
D(q−1, η)

C(q−1, η)
A†(pk, q−1, ρ)

(

A(pk, q−1, ρ)y(tk)

− B(pk, q−1, ρ)u(tk)
)

(31)

where D(q−1, η)/C(q−1, η) can be again recognized as
the inverse of the ARMA(nc,nd) noise model of (11). In
contrast to the LTI case, the polynomial operators do
not commute as it has been shown in Section 2.3. Hence,
no filter can be chosen such that both conditions

A(pk, q−1, ρ)yf(tk)= D(q−1,η)
C(q−1,η)A

†(pk, q−1, ρ)A(pk, q−1, ρ)y(tk)

B(pk, q−1, ρ)uf(tk)= D(q−1,η)
C(q−1,η)A

†(pk, q−1, ρ)B(pk, q−1, ρ)u(tk)

are fulfilled simultaneously. Consequently, no filtering of
the data can lead to a regression equation

yf(tk) = ϕ⊤
f (tk)ρ + ṽf(tk) (32)

which is equivalent to (21) and where ṽf is white. In
other words, by choosing ϕ such as in (22a) and there-
fore by assuming (21) (as in [3] and [4]) it is not possible
to transform the estimation problem of (11) into a max-
imum likelihood estimation problem. The latter implies
that no method proposed so far in the literature for solv-
ing the estimation of LPV-IO models or LTI-IO models
can lead to optimal estimate in the LPV-BJ case by as-
suming the regression form (21). As a consequence, the
existing theory needs to be modified in order to solve
the identification problem stated in Section 2.5.

3.3 Reformulation of the model equations

In order to introduce a method which provides a solution
to the identification problem of LPV-BJ models, rewrite
the signal relations of (11) as

Mθ







χ(tk) +

na∑

i=1

ai,0χ(tk−i)

︸ ︷︷ ︸

F (q−1)χ(tk)

+

na∑

i=1

nα∑

l=1

ai,lfl(pk)χ(tk−i)
︸ ︷︷ ︸

χi,l(tk)

=

nb∑

j=0

nβ∑

l=0

bj,lgl(pk)u(tk−d−j
︸ ︷︷ ︸

)

uj,l(tk)

v(tk)=
C(q−1, η)

D(q−1, η)
e(tk)

y(tk)=χ(tk) + v(tk)

(33)

where F (q−1) = 1 +
∑na

i=1 ai,0q
−i and g0(tk) = 1. Note

that in this way, the LPV-BJ model is rewritten as a

Multiple-Input Single-Output (MISO) system with (nb+
1)(nβ+1)+nanα inputs {χi,l}

na,nα

i=1,l=1 and {uj,l}
nb,nβ

j=0,l=0 as
represented in Fig. 1. Given the fact that the polynomial
operator commutes in this representation (F (q−1) does
not depend on pk), (33) can be rewritten as

y(tk) = −
na∑

i=1

nα∑

l=1

ai,l

F (q−1)
χi,l(tk)

+

nb∑

j=0

nβ∑

l=0

bj,l

F (q−1)
uj,l(tk) + H(q)e(tk), (34)

which is an LTI representation. As (34) is an equivalent
form of the model (11), thus under the Assumption A1,
it holds that the data generating system So has also a
MISO-LTI interpretation.

4 Refined Instrumental variable for LPV sys-
tems

Based on the MISO-LTI formulation (34), it becomes
possible in theory to achieve optimal PEM using lin-
ear regression. This allows to extend the Refined Instru-
mental Variable (RIV) approach of the LTI identifica-
tion framework to provide an efficient way of identifying
LPV-BJ models.

4.1 Optimal PEM for LPV-BJ models

Using (34), y(tk) can be written in the regression form:

y(tk) = ϕ⊤(tk)ρ + ṽ(tk) (35)

where,

ϕ(tk) =
[

−y(tk−1) . . . −y(tk−na
) −χ1,1(tk) . . .

−χna,nα
(tk) u0,0(tk) . . . unb,nβ

(tk)
]⊤

ρ =
[

a1,0 . . . ana,0 a1,1 . . . ana,nα
b0,0 . . . bnb,nβ

]⊤

ṽ(tk) = F (q−1, ρ)v(tk).

It is important to notice that (35) and (21) are not equiv-
alent. The extended regressor in (35) contains the noise-
free output terms {χi,l}. Therefore, by momentary as-
suming that {χi,l(tk)}na,nα

i=1,l=0 are known a priori, the con-

ventional PEM approach on (35) leads to the prediction
error εθ(tk) given as:

εθ(tk) =
D(q−1, η)

C(q−1, η)F (q−1, ρ)

(

F (q−1, ρ)y(tk)−

−
na∑

i=1

nα∑

l=1

ai,lχi,l(tk) +

nb∑

j=0

nb∑

l=0

bj,luj,l(tk)

)

(36)

where D(q−1, η)/C(q−1, η) can be recognized again as
the inverse of the ARMA(nc,nd) noise model in (11).
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LTI model

u(tk) q -1

q -n

1 � g1(pk)
1�gn (pk)

y(tk)

q -1

q -n� f1(pk)
1�fn (pk)

+
+

+ +

H(q,η)

e(tk)

F -1(q)

LPV-BJ model

a1,0

an ,n��
b0,0

bn ,n��
χ1,0(tk)

χn ,n (tk)��
u0,0(tk)

un ,n (tk)��
v(tk)

χ(tk)

Fig. 1. MISO LTI interpretation of the LPV-BJ model

However, since the system written as in (34) is equivalent
to a LTI system, the polynomial operators commute and
(36) can be considered in the alternative form

εθ(tk) = F (q−1, ρ)yf(tk) −
na∑

i=1

nα∑

l=1

ai,lχ
f
i,l(tk)

+

nb∑

j=0

nβ∑

l=0

bj,lu
f
j,l(tk) (37)

where yf(tk), uf
k,j(tk) and χf

i,l(tk) represent the outputs

of the prefiltering operation, using the filter (see [24]):

Q(q−1, θ) =
D(q−1, η)

C(q−1, η)F (q−1, ρ)
. (38)

Based on (37), the associated linear-in-the-parameters
model takes the form [24]:

yf(tk) = ϕ⊤
f (tk)ρ + ṽf(tk), (39)

where

ϕf(tk) =
[

−yf(tk−1) . . . −yf(tk−na
) −χf

1,1(tk) . . .

−χf
na,nα

(tk) uf
0,0(tk) . . . uf

nb,nβ
(tk)

]⊤

ṽf(tk) = F (q−1, ρ)vf(tk) =

F (q−1, ρ)
D(q−1, η)

C(q−1, η)F (q−1, ρ)
v(tk) = e(tk).

4.2 The refined instrumental variable estimate

Many methods of the LTI identification framework can
be used to provide an efficient estimate of ρ given (39)
where ṽf(tk) is a white noise. Here, the RIV method is
chosen for the following reasons:

• RIV methods lead to optimal estimates in the LTI case
if So ∈ M, see [16]. This statement is true as well for
usual prediction error methods such as the extended
LS approach.

• In practical situation of identification, Go ∈ G might
be fulfilled due to first principle or expert’s knowledge.
However, it is commonly fair to assume that Ho /∈ H.
In such case, RIV methods has the advantage that
they still provide consistent estimates whereas meth-
ods such as extended LS are biased and more advanced
PEM methods needs robust initialization [13].

Aiming at the extension of the RIV approach for the
estimation of LPV-BJ models, consider the relationship
between the process input and output signals as in (35).
Based on this form, the extended-IV estimate can be
given as [16]:

ρ̂XIV(N) = arg min
ρ∈R

nρ

∥
∥
∥
∥
∥

[

1

N

N∑

k=1

L(q)ζ(tk)L(q)ϕ⊤(tk)

]

ρ

−

[

1

N

N∑

t=1

L(q)ζ(tk)L(q)y(tk)

]∥
∥
∥
∥
∥

2

W

, (40)

where ζ(tk) is the instrument, ‖x‖2
W = xT Wx, with

W a positive definite weighting matrix and L(q) is a
stable prefilter. if Go ∈ G, the extended-IV estimate is
consistent under the following conditions 1 :

C1 Ē{L(q)ζ(tk)L(q)ϕ⊤(tk)} is full column rank.
C2 Ē{L(q)ζ(tk)L(q)ṽ(tk)} = 0.

Moreover it has been shown in [16] and [22] that the
minimum variance estimator can be achieved if:

C3 W = I.
C4 ζ is chosen as the noise-free version of the extended

regressor in (35) and is therefore defined in the present
LPV case as:

ζ(tk) =
[

−χ(tk−1) . . . −χ(tk−na
) −χ1,1(tk) . . .

−χna,nα
(tk) u0,0(tk) . . . unb,nβ

(tk)
]⊤

1 The notation Ē{.} = limN→∞

1

N

PN

t=1
E{.} is adopted

from the prediction error framework of [12].
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C5 Go ∈ G and nρ is equal to the minimal number of pa-
rameters required to represent Go with the considered
model structure.

C6 L(q) is chosen as in (38).

4.3 Remarks on the use of the RIV approach

• Full column rank of Ē{L(q)ϕ(tk)L(q)ϕ⊤(tk)} follows
under Assumption A4 [3]. To fulfill C1 under A4, the
discussion can be found in [16].

• In a practical situation none of F (q−1, ρ), C(q−1, η),
D(q−1, η) or {ai,l(ρ)}na,nα

i=1,l=0, {bj,l(ρ)}
nb,nβ

j=0,l=0 is known
a priori. Therefore, the RIV estimation normally in-
volves an iterative (or relaxation) algorithm in which,
at each iteration, an ‘auxiliary model’ is used to gen-
erate the instrumental variables (which guarantees
C2), as well as the associated prefilters. This auxiliary
model is based on the parameter estimates obtained
at the previous iteration. Consequently, if convergence
occurs, C4 and C6 are fulfilled.

• Convergence of the iterative RIV algorithm has not
been proved so far and is only empirically assumed
[23].

• The considered LPV model can be reformulated in
a LTI-MISO form only under the condition that the
noise-free output terms are a priori known (see Sec-
tion 3.3). Therefore, even if the presented method con-
siderably lowers the variance in the estimated param-
eters, the optimality cannot be guaranteed.

4.4 Iterative LPV-RIV Algorithm

Based on the previous considerations, the iterative
scheme of the RIV algorithm can be extended to the
LPV case as follows.

Algorithm 2 (LPV-RIV)

Step 1 Assume that as an initialization, an ARX esti-

mate of Mθ is available by the LS approach, i.e. θ̂(0) =

[ (ρ̂(0))⊤ (η̂(0))⊤ ]⊤ is given. Set τ = 0.

Step 2 Compute an estimate of χ(tk) via

A(pk, q−1, ρ̂(τ))χ̂(tk) = B(pk, q−1, ρ̂(τ))u(tk−d),

where ρ̂(τ) is estimated in the previous iteration. Based
on Mθ̂(τ) , deduce {χ̂i,l(tk)}

na,nα

i=1,l=0 as given in (33).
According to Assumption A5 each χ̂i,l is bounded.

Step 3 Compute the estimated filter:

Q̂(q−1, θ̂(τ)) =
D(q−1, η̂(τ))

C(q−1, η̂(τ))F (q−1, ρ̂(τ))

and the associated filtered signals {uf
j,l(tk)}

nb,nβ

j=0,l=0,

yf(tk) and {χf
i,l(tk)}na,nα

i=1,l=0.

Step 4 Build the filtered estimated regressor ϕ̂f(tk) and

in terms of C4 the filtered instrument ζ̂f(tk) as:

ϕ̂f(tk) =
[

−yf(tk−1) . . . −yf(tk−na
) −χ̂f

1,1(tk)

. . . −χ̂f
na,nα

(tk) uf
0,0(tk) . . . uf

nb,nβ
(tk)

]⊤

ζ̂f(tk) =
[

−χ̂f(tk−1) . . . −χ̂f(tk−na
) −χ̂f

1,1(tk)

. . . −χ̂f
na,nα

(tk) uf
0,0(tk) . . . uf

nb,nβ
(tk)

]⊤

Step 5 The IV optimization problem can now be stated in
the form

ρ̂(τ+1)(N) = arg min
ρ∈R

nρ

∥
∥
∥
∥
∥

[

1

N

N∑

k=1

ζ̂f(tk)ϕ̂⊤
f (tk)

]

ρ

−

[

1

N

N∑

k=1

ζ̂f(tk)yf(tk)

]∥
∥
∥
∥
∥

2

(41)

where the solution is obtained as

ρ̂(τ+1)(N)=

[
N∑

k=1

ζ̂f(tk)ϕ̂⊤
f (tk)

]−1N∑

k=1

ζ̂f(tk)yf(tk).

The resulting ρ̂(τ+1)(N) is the IV estimate of the pro-
cess model associated parameter vector at iteration
τ + 1 based on the prefiltered input/output data.

Step 6 An estimate of the noise signal v is obtained as

v̂(tk) = y(tk) − χ̂(tk, ρ̂(τ)). (42)

Based on v̂, the estimation of the noise model param-
eter vector η̂(τ+1) follows, using in this case the ARMA

estimation algorithm of the MATLAB identification tool-
box (an IV approach can also be used for this purpose,
see [23]).

Step 7 If θ(τ+1) has converged or the maximum number
of iterations is reached, then stop, else increase τ by 1
and go to Step 2.

Based on a similar concept, the so-called simplified LPV-
RIV (LPV-SRIV) method, can also be developed for the
estimation of LPV-OE models. This method is based on
a model structure (11) with C(q−1, η) = D(q−1, η) = 1
and consequently, Step 6 of Algorithm 2 can be skipped.
Naturally, the LPV-SRIV does not minimize statistically
optimal PEM for LPV-BJ models, however it still has a
certain degree of robustness as it is shown in Section 5.

5 Simulation Example

As a next step, the performance of the proposed and
of the existing methods in the literature are compared
based on a representative simulation example.

5.1 Data generating system

The system taken into consideration is inspired by the
example in [4] and is mathematically described as

So







Ao(q, pk) = 1 + ao
1(pk)q−1 + ao

2(pk)q−2

Bo(q, pk) = bo
0(pk)q−1 + bo

1(pk)q−2

Ho(q) =
1

1 − q−1 + 0.2q−2

(43)
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where v(tk) = Ho(q)e(tk) and

ao
1(pk) = 1 − 0.5pk − 0.1p2

k, (44a)

ao
2(pk) = 0.5 − 0.7pk − 0.1p2

k, (44b)

bo
0(pk) = 0.5 − 0.4pk + 0.01p2

k, (44c)

bo
1(pk) = 0.2 − 0.3pk − 0.02p2

k. (44d)

In the upcoming examples, the scheduling signal p
is considered as a periodic function of time: pk =
0.5 sin(0.35πk)+0.5. The input u(tk) is taken as a white
noise with a uniform distribution U(−1, 1) and with
length N = 4000 to generate data sets DN of So.

5.2 Model structures

In the sequel, the One Step Instrumental Variable
(OSIV) method presented in [4] and the conventional
Least Square (LS) method such as the one used in [3]
are compared to the proposed IV approaches. Both
methods assume the following model structure:

MLS,OSIV
θ







A(pk, q−1, ρ) = 1 + a1(pk)q−1 + a2(pk)q−2

B(pk, q−1, ρ) = b0(pk)q−1 + b1(pk)q−2

H(pk, q, ρ) = A†(pk, q−1, ρ)

where

a1(pk) = a1,0 + a1,1pk + a1,2p
2
k (45a)

a2(pk) = a2,0 + a2,1pk + a2,2p
2
k (45b)

b0(pk) = b0,0 + b0,1pk + b0,2p
2
k (45c)

b1(pk) = b1,0 + b1,1pk + b1,2p
2
k (45d)

In contrast with these model structures, the proposed
LPV Refined Instrumental Variable method (LPV-RIV)
represents the situation So ∈ M and assumes the follow-
ing LPV-BJ model:

MLPV−RIV

θ







A(pk, q−1, ρ) = 1 + a1(pk)q−1 + a2(pk)q−2

B(pk, q−1, ρ) = b0(pk)q−1 + b1(pk)q−2

H(pk, q, η) =
1

1 + d1q−1 + d2q−2

with a1(pk), a2(pk), b0(pk), b1(pk) as given in (45a-d),
while the LPV Simplified Refined Instrumental Variable
method (LPV-SRIV) represents the case when Go ∈ G,
Ho /∈ H and assumes the following LPV-OE model:

MLPV−SRIV

θ







A(pk, q−1, ρ) = 1 + a1(pk)q−1 + a2(pk)q−2

B(pk, q−1, ρ) = b0(pk)q−1 + b1(pk)q−2

H(pk, q, η) = 1

The robustness of the proposed and existing algorithms
are investigated with respect to different signal-to-noise

ratios SNR = 10 log
Pχo

Peo
, where Pχo

and Peo
are the av-

erage power of signals χo and eo respectively. To pro-
vide representative results, a Monte-Carlo simulation of
NMC = 100 runs with new noise realization is accom-
plished at different noise levels: 15dB, 10dB, 5dB and
0dB. For the Monte-Carlo simulation at SNR = 15dB,

Table 1 and 2 show the detailed results about mean and
standard deviation of the estimated parameters. In some
practical application, only one realization is accessible
and therefore it is not possible to compute the uncer-
tainty through Monte-Carlo simulation (MCS). In this
latter case it is important to be able to determine the
standard error (SE) on the estimated parameters with a
single realization (SR). Therefore the results of SR are
also given in these tables. Note that it is possible to
compute the SR standard error SE = diag(P̂ρ)

1/2 from

the covariance matrix P̂ρ = σ̂2
e(

∑N
k=1 ζ̂f(tk)ζ̂⊤f (tk))−1.

With respect to the considered methods, Table 3 shows
the norm of the bias (BN) ||ρo − Ē(ρ̂)||2 and variance
(VN) of the estimated parameter vector ||Ē(ρ̂ − Ē(ρ̂))||2,
where Ē is the mean operator over the Monte-Carlo sim-
ulation and ||.||2 is the L2 norm. The table also dis-
plays the mean number of iterations (Nit) the algorithms
needed to converge to the estimated parameter vector.
It can be seen from Table 3 that the IV methods are
unbiased according to the theoretical results. It might
not appear clearly for the OSIV method when using SNR
under 10dB but considering the variances induced, the
bias is only due to the relatively low number of simu-
lation runs. Under 10dB, the results of the OSIV can-
not be considered as relevant as they induce such large
variances. In the present BJ system, the OSIV method
does not lead to satisfying results and cannot be used
in practical applications. It can be seen that for SNR
down to 5dB, the LPV-RIV produces variance in the es-
timated parameters which are very close to the one ob-
tained with the LS method, not mentioning that the bias
has been completely suppressed. Although the statisti-
cal optimality of the algorithm cannot be proved, this
latter result shows on this example, that the LPV-RIV
algorithm dramatically improves the accuracy of the es-
timates. The suboptimal LPV-SRIV method offers satis-
fying results, considering that the noise model is not cor-
rectly assumed. The variance in the estimated parame-
ters is twice as much as in the LPV-RIV case and it is
close to the variance of the LS method. Finally, it can be
pointed out that the number of iterations is high in com-
parison to the linear case for RIV methods (typically, 4
iterations are needed in a second order linear case). Ta-
bles 1 and 2 show that detailed results lead to the same
conclusion as when looking at Table 3. It can be finally
seen from 2 that the LPV-RIV method estimates accu-
rately the noise model and that the standard error ob-
tained from a single realization is well correlated to the
standard deviation obtained through Monte-Carlo sim-
ulation.

6 Conclusion

This paper highlighted the lack of efficient methods in
the literature to handle the estimation of LPV Box-
Jenkins models. It has been shown that the conventional
formulation of least squares estimation cannot lead to
statistically optimal parameter estimates. As a solution,
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Table 1
Mean and standard deviation of the estimated A polynomial parameters at SNR = 15dB

a1,0 a1,1 a1,2 a2,0 a2,1 a2,2

method true value 1 -0.5 -0.1 0.5 -0.7 -0.1
LS mean -0.3794 2.2373 -2.0584 -0.1085 -0.0755 -0.4786

std 0.0219 0.0663 0.0591 0.0125 0.0600 0.0558

OSIV mean 1.0259 -0.6161 0.0205 0.5092 -0.7510 -0.0377
std 0.3023 1.0330 0.8605 0.1227 0.4348 0.3986

LPV-SRIV mean 1.0003 -0.5013 -0.0971 0.5007 -0.7047 -0.0943
MCS std 0.0313 0.1022 0.0893 0.0106 0.0650 0.074

LPV-SRIV ρ̂ 0.9801 -0.3743 -0.2120 0.4978 -0.7154 -0.0736
SR SE 0.0377 0.1567 0.1486 0.0171 0.1010 0.1099

LPV-RIV mean 0.9999 -0.5020 -0.0989 0.5005 -0.7050 -0.0962
MCS std 0.0170 0.0589 0.0610 0.0084 0.0488 0.0523

LPV-RIV ρ̂ 0.9947 -0.5053 -0.0506 0.4981 -0.7303 -0.0350
SR SE 0.0120 0.0479 0.0435 0.0050 0.0330 0.0368

Table 2
Mean and standard deviation of the estimated B and D polynomial parameters at SNR = 15dB

b0,0 b0,1 b0,2 b1,0 b1,2 b2,2 d1 d2

method true value 0.5 -0.4 0.01 0.2 -0.3 -0.02 -1 0.2
LS mean 0.5043 -0.4045 0.0085 -0.3201 0.7890 -0.7335 X X

std 0.0039 0.0233 0.0219 0.0097 0.0284 0.0238 X X

OSIV mean 0.4986 -0.3991 0.0110 0.2096 -0.3409 0.0181 X X
std 0.0115 0.0564 0.0503 0.1151 0.3731 0.2922 X X

LPV-SRIV mean 0.4996 -0.3998 0.0101 0.1997 -0.3004 -0.0190 X X
MCS std 0.0038 0.0183 0.0171 0.0104 0.0367 0.0300 X X

LPV-SRIV ρ̂ 0.4998 -0.3783 -0.0108 0.1996 -0.2885 -0.0273 X X
SR SE 0.0044 0.0221 0.0216 0.0138 0.0561 0.0493 X X

LPV-RIV mean 0.4998 -0.3993 0.0092 0.1998 -0.3008 -0.0194 -1.003 0.2042
MCS std 0.0020 0.0106 0.0106 0.0055 0.0228 0.0214 0.0171 0.0172

LPV-RIV ρ̂ 0.5020 -0.4142 0.0245 0.1971 -0.2889 -0.0219 X X
SR SE 0.0016 0.0075 0.0072 0.0042 0.0165 0.0141 X X

Table 3
Estimator bias and variance norm at different SNR

Method 15dB 10dB 5dB 0dB
LS BN 2.9107 3.2897 3.0007 2.8050

VN 0.0074 0.0151 0.0215 0.0326

OSIV BN 0.1961 1.8265 6.9337 10.85
VN 1.3353 179.42 590.78 11782

LPV BN 0.0072 0.0426 0.1775 0.2988
-SRIV VN 0.0149 0.0537 0.4425 0.4781

Nit 22 22 25 30

LPV BN 0.0068 0.0184 0.0408 0.1649
-RIV VN 0.0063 0.0219 0.0696 0.2214

Nit 31 30 30 32

the LPV identification problem is reformulated and a
method to estimate efficiently LPV-BJ models with p-
independent noise process was proposed. The introduced
method has been compared to the existing methods of
the literature both in terms of theoretical analysis and
in terms of a representative numerical example. The pre-
sented example has shown that the proposed procedure
is robust to noise and outperforms the existing meth-
ods. Even if RIV based methods are in theory unbiased
for p-dependant noise models, the case was not studied
in the present paper and will be considered in further
development of this approach. As continuation of the

presented work, extensions of the method to closed-loop
and continuous-time LPV system identification are also
intended.
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