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Abstract

A global model structure is developed for parametrization and identification of a general class of Linear Parameter-Varying
(LPV) systems. By using a fixed orthonormal basis functions (OBFs) structure, a linearly parameterized model structure
follows for which the coefficients are dependent on a scheduling signal. An optimal set of OBFs for this model structure is
selected on the basis of local linear dynamic properties of the LPV system (system poles) that occur for different constant
scheduling signals. The selected OBF set guarantees in an asymptotic sense the least worst-case modeling error for any local
model of the LPV system. Through the fusion of the Kolmogorov n-width theory and Fuzzy c-Means clustering, an approach
is developed to solve the OBF-selection problem for discrete-time LPV systems, based on the clustering of observed sample
system poles.
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1 Introduction

In general, many physical systems and control problems
exhibit parameter variations due to non-stationary or
nonlinear behavior or dependence on external variables,
such as space coordinates, in particular found in servo-
mechanical applications. These systems vary in size and
complexity, but they share the common need for accu-
rate and efficient control of the relevant process vari-
ables. However, accurate modeling of such systems is in
general a complex and tedious task, involving the use of
non-linear differential equations, leading to models with
many parameters and high computational complexity.
For processes with mild non-linearities or dependence
on external variables, the theory of Linear Parameter-
Varying (LPV) systems offers an attractive modeling
framework [26]. Discrete-time LPV systems are gener-
ally described in either a State-Space (SS) or an In-
put/Output (I/O) representation [32], where the param-
eters are functions of a time-varying scheduling signal
p(k) : Z→ P, that schedules between local Linear Time
Invariant (LTI) behaviors of the system. The compact
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set P ⊂ Rnp denotes the scheduling space. Practical use
of the LPV framework is stimulated by the fact that
control design for LPV systems is well worked out. For
this class of systems, application of LTI control theory
via gain scheduling [26] and LPV control synthesis tech-
niques like µ-synthesis [42] or Linear Matrix Inequalities
(LMIs) based optimal control [27] offer fast and reliable
controller design, proved by a wide range of applied LPV
control solutions from aerospace applications [18] to CD
players [5]. However, it still remains a problem how to
develop LPV models in a systematic fashion.

Recently several methods have been worked out, aiming
at global identification of discrete-time LPV models from
given measured data. This comprises methods based on
multiple-model approaches [39,29,21], set-membership
methods [20,19], subspace techniques [8,6,7,37], basis
functions [35], LMIs based optimization [31], simple
Least Mean Squares (LMS) approaches [40,9], and pa-
rameter estimation based gradient searches [36,14].
Most of these approaches build on the fact that an
LPV system S can always be viewed as a collection of
“local” behaviors and p-dependent weighting functions,
i.e. scheduling functions that schedule between them
[26,35]. For any constant scheduling signal: p(k) = p̄ for
all k ∈ Z where p̄ ∈ P, the LPV system S is identical
to an LTI system Fp̄. Thus, the set of local behaviors of
S is given as FP = {Fp̄}p̄∈P. The p-dependent schedul-
ing function set, that schedules on FP, is denoted by
HP =

{
hp̄ (¦)

}
p̄∈P.
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Identification of FP is commonly accomplished in a sam-
pled sense by LTI identification of S for a set of constant
scheduling signals, associated with (for instance equidis-
tant) points in the scheduling space P. Then, assum-
ing that the scheduling functions {hp̄} have a particular
structure of dependence, like polynomial, an interpola-
tion problem is formulated on P to give a global approxi-
mation of S. Recently it was exposed that this approach
should be handled with care for several reasons [35,32].
In [32] it was shown that for general discrete-time LPV
systems each hp̄ is a function of time-shifted versions
of p (dynamic dependence). Then, if the particular in-
terpolation structure of {hp̄} is chosen to be too simple
(dependence only on p(k) (static dependence), linear de-
pendence, etc.) the interpolation based on state-space
or I/O model parametrization can result in significantly
different models [32]. An additional concern of interpo-
lation is that the McMillan degree of the local systems
{Fp̄} may vary for different values of p̄ ∈ P. This shows
that the choice of an easily interpolatable model struc-
ture which can incorporate aspects of dynamical depen-
dence and local order changes is a crucial point of this
identification approach.

The Orthonormal Basis Functions (OBFs)-based model
representation offers such a structure with a well worked-
out theory in the context of LTI system approximation
and identification [10]. The basis functions, that provide
bases for the system space H2 (Hilbert space of complex
functions that are squared integrable on the unit circle),
are generated by a cascaded network of stable all-pass fil-
ters, whose pole locations represent the prior knowledge
about the system at hand. This approach characterizes
the transfer function of a strictly proper LTI system as

F (z) =
∞∑

i=1

wiφi (z) , (1)

where {wi}∞i=1 is the set of coefficients and Φ∞ =
{φi}∞i=1 represents the sequence of OBFs. This implies
that every Fp̄ ∈ FP can be represented as a linear
combination of a given Φ∞, i. e. FP ⊂ span {Φ∞}. In
practice, only a finite number of terms is used in (1),
like in Finite Impulse Response (FIR) models. In con-
trast with FIR structures, the OBF parametrization
can achieve almost zero modeling error with a relatively
small number of parameters, due to the infinite impulse
response characteristics of the basis functions. In this
way, it is always possible to find a finite Φn ⊂ Φ∞,
with a relatively small number of functions n ∈ N, such
that the representation error for all Fp̄ is negligible.
Using this idea in the time-domain (substitution of z
with the forward time-shift operator q), it is possible to
prove that LPV systems also have a series expansion
representation in terms of LTI basis functions, but with
coefficients {wi}∞i=1 dependent on p. Thus in terms of a
finite OBF set Φn ⊂ Φ∞, the following approximation
of the I/O map of S can be introduced:

y ≈
n∑

i=1

wi(p)φi (q)u, (2)

where {wi}n
i=1 is a set of coefficient functions, with dy-

namic dependence on p. Note that in this structure, Φn

gives the basis set used to approximate each element of
FP while {wi}n

i=1 describes the scheduling functions HP.
Thus for a given Φn = {φi}, identification of the LPV
system based on (2) simplifies to the identification of
the scheduling functions. Assuming static dependence of
{wi}n

i=1, such a task can be accomplished via two ap-
proaches:

• Local approach: Identify some Fp̄ ∈ FP for constant
p(t) = p̄ with the LTI OBF model structure

ŷ =
n∑

i=1

rp̄,iφi (q)u. (3)

Based on a chosen functional dependence, e.g. poly-
nomial, interpolate the resulting {rp̄,i} for an estimate
of {wi}n

i=1 in (2), such that wi(p̄) = rp̄,i.

• Global approach: Parameterize the functional de-
pendence of {wi}n

i=1 linearly (e.g. polynomial). Then
for a data record with varying p, the estimation of
the parameters of {wi}n

i=1 reduces to linear regression
based on (2) in a least-squares prediction error set-
ting.

There are many beneficial properties of the structure
(2). For instance, the obtained model simplifies control
design (see Section 6) and this parametrization is not af-
fected by local order changes. The problem that remains
to be solved with the proposed OBFs based identifica-
tion approaches is to choose the set of OBFs Φn, “suf-
ficiently rich” to describe FP with a predefined number
of functions. Seeking the solution for this problem is the
purpose of the present paper.

Even in the case of LTI systems, the choice of OBFs
to approximate a given system F in an “optimal” sense
(based on some error measure) is a highly non-trivial
task [10]. For the LTI case, already quite some effort
has been put into tackling the basis function selection
problem resulting in methods of nonlinear optimization
[10] and iterative search [2]. One of the concepts used for
this purpose is the Kolmogorov n-width (KnW) theory
for OBFs [24], which establishes optimality in the sense
of the worst-case modeling error for any LTI system with
pole locations in a given region of the complex plane.
Denote by

ΩP = {λ ∈ C | λ is a pole of Fp̄ ∈ FP for p̄ ∈ P},

the collection of all pole locations belonging to the lo-
cal behaviors of the LPV system S. Then, based on ΩP,
the KnW theory can be evidently applied (e.g. by the
approach of [10]) to solve the optimal selection of OBFs
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with respect to FP. However, this approach is not appli-
cable if FP is unknown. This underlines the need for a
mechanism that guarantees optimality of the OBF selec-
tion (selection of Φn) based on the available information.

In this paper, we assume as a starting point that we have
available a collection of pole locations, some samples of
ΩP, that are obtained from local linear behaviors of the
LPV system S. This set of pole samples Ω̄ ⊂ ΩP can
result - but not necessarily - from identification of the
related local linear models. Based on Ω̄, we aim at the
derivation of a basis function selection mechanism, that
is capable to accomplish the following objectives:

• Reconstruction of ΩP from Ω̄.
• Determination of the set of OBFs functions, which has

the least possible worst-case modeling error for any
LTI system with pole locations in ΩP, therefore for all
Fp̄ ∈ FP.

This choice of model structure leads to the local and
global identification methods. The proposed method is
the joint application of the KnW theory and Fuzzy c-
Means (FcM) clustering [12]. The contribution of this
method is to provide a practical model structure se-
lection tool for the local and global LPV identification
methods based on globally fixed OBFs. Earlier work
along this line is proposed in [33], [34], and [38].

The paper is organized as follows: Section 2 introduces
the description and properties of OBFs while Section 3
describes the n-width result with respect to these func-
tions; in Section 4, the mechanism of the KnW-based
FcM pole clustering is given that solves simultaneously
the determination of ΩP from sampled poles and the se-
lection of optimal OBFs with respect to ΩP; in Section
5, the OBFs based LPV system identification scheme is
specified to provide a brief description how the selected
basis functions are used in an identification scenario; in
Section 6, the applicability of the introduced method is
shown through an example; and finally, in Section 7, the
main results of the paper are discussed.

2 Orthonormal basis functions

We consider only the case of real rational (finite-
dimensional) discrete-time, SISO transfer functions. For
details see [10,11,23]. Let G0 ≡ 1 and {Gi}∞i=1 be a se-
quence of inner functions (i.e. stable transfer functions
with Gi(z)Gi( 1

z ) = 1), and let {Ai, Bi, Ci, Di} be mini-
mal balanced SS representations of Gi. Let {ξ1, ξ2, . . .}
denote the collection of all poles of the inner functions
G1, G2, · · · . Under the (completeness) condition that∑∞

i=1(1− |ξi|) = ∞, the scalar elements of the sequence
of vector functions

Vn(z) = (zI −An)−1Bn

n−1∏

i=0

Gi(z), (4)
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Fig. 1. I/O Signal flow graph of the OBF model structure
described by (6) for a finite ne number of extensions of Gb

and with Wi = [wi1, . . . winb ].

constitute a basis for H2− (E), the Hardy space of func-
tions, which are 0 for z = ∞, analytic on E, the exterior
of the unit diskD, and squared integrable on the unit cir-
cleTwith norm ‖.‖H2

. In this wayH2− (E) is the space of
all stable strictly proper transfer functions. These func-
tions (4) are often referred to as the Takenaka-Malmquist
functions. The special cases when all Gi are equal, i.e.
Gi(z) = Gb(z), ∀i > 0, where Gb has McMillan degree
nb > 0, are known as Hambo functions or generalized
orthonormal basis functions (GOBFs) for arbitrary nb,
2-parameter Kautz functions for nb = 2, and as Laguerre
functions for nb = 1. Note that for these cases the com-
pleteness condition is always fulfilled. In the remainder
we will only consider the set of Hambo functions. Let Gb

be an inner function with McMillan degree nb > 0 and
minimal balanced SS representation {Ab, Bb, Cb, Db}.
Define V1(z) = (zI −Ab)−1Bb and φj = [V1]j , j ∈ Inb

1 ,
where Is2

s1
= {s1, s1 + 1, · · · , s2} ⊂ Z is the index set.

The Hambo basis then consists of the functions Φ∞nb
=

{φjG
i
b}i=0,··· ,∞

j=1,··· ,nb
. An important aspect of these bases is

that the inner function Gb is, modulo the sign, com-
pletely determined by its poles Ξnb := {ξ1, · · · , ξnb}:

Gb(z) = ±
nb∏

j=1

1− zξ∗j
z − ξj

, (5)

where ∗ denotes complex conjugation, and it is immedi-
ate that the function V1 has the same poles. Any F ∈
H2− (E) can be decomposed as

F (z) =
∞∑

i=0

nb∑

j=1

wijφj(z)Gi
b(z), (6)

and it can be shown that the rate of convergence of this
series expansion is bounded by ρ = maxk |Gb(λ−1

k )|,
called the decay rate, where {λk} are the poles of F (z).
In the “best” case, where the poles of F are the same
(with multiplicity) as the poles of Gb, only the terms
with i = 0 in (6) are non-zero. The I/O relation of the
OBF parametrization (6) is illustrated in Figure 1.

In practice, only a finite number of terms Φne
nb

=
{φj(z)Gi

b}i=0,··· ,ne
j=1,··· ,nb

with ne ≥ 0 is used in (6), like in
Finite Impulse Response (FIR) models. In contrast with
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FIR structures, which are described by (6) as a finite
linear combination of pulse basis functions φ1(z) = z−1

with nb = 1 and Gi
b(z) = z−i, the OBF parametrization

uses a broad class of basis functions with infinite impulse
responses. Therefore, OBF parametrization can achieve
almost zero modeling error with a relatively small num-
ber of parameters due to the faster convergence of the
series representation than in the FIR case. Moreover,
the reduced number of parameters in the structure re-
sults in decreased variance of the final model estimate.

Identification of any F ∈ H2− (E) based on a predefined
set of OBFs Φne

nb
consisting of n = (ne + 1) nb basis func-

tions, is performed as a linear regression with respect
to the basis coefficients Wne

nb
= [wij ]

i=0,··· ,ne
j=1,··· ,nb

due to the
linear parametrization of (6). The OBFs-based identifi-
cation has valuable properties. Non-asymptotic variance
bounds of the estimates are computable through repro-
ducing kernels and the identified models are unbiased if
the input signal is uncorrelated to the noise. This is ex-
plained by the Output Error (OE) like structure of the
OBF parametrization [10]. However, selection of the ba-
sis function set has a major impact on the outcome of
the identification process as the distance between basis
poles and the original system poles determines the con-
vergence rate of the coefficients, meaning that with a
“better” basis function set a better approximation can
be achieved.

As discussed, OBFs-based parametrization can be effec-
tively used for LTI system representation and in this way
to describe each Fp̄ ∈ FP of an LPV system S. However,
if the same OBFs are used to compose each Fp̄, then it is
required that the basis function set is “well chosen” with
respect to the entire FP. In the next section, the concept
of optimality of an OBF set with respect to FP is estab-
lished, giving the key theorem to solve the basis function
selection problem of the proposed identification scheme.

3 Kolmogorov n-width for OBFs

In the proposed LPV identification approach, it is cru-
cial to find an appropriate model set, i.e. set of basis
functions Φne

nb
for the local behaviors FP, in the sense

that Φne
nb

is sufficiently rich to describe the systems be-
longing to FP, with a relatively small number of statis-
tically meaningful parameters. In LTI system identifi-
cation, one approach to find appropriate model sets is
based on the n-width concept [25], which was shown to
result in appropriate model sets for robust modeling of
linear systems [17]. Using this concept, Oliveira e Silva
[24], [10, Ch. 11] showed that OBF model structures are
optimal in the n-width sense for specific subsets of sys-
tems. In the following, the basic ingredients of this theory
for discrete-time, stable, SISO systems are described.

Let F denote a set of systems with transfer functions
{F} = T ⊆ H2− (E), that we want to approximate with

the linear combination of n elements of H2− (E). Let
Φn = {φi}n

i=1 be a sequence of n linearly independent
elements of H2− (E), and let Ψn = span(Φn). The dis-
tance dH2− (F, Ψn) between F ∈ H2− (E) and Ψn is de-
fined as

dH2− (F , Ψn) = inf
G∈Ψn

‖F−G‖H2
. (7)

If Mn is the collection of all n-dimensional subspaces of
H2− (E), then the Kolmogorov n-width of T in H2− (E)
is

πn (T,H2− (E)) = inf
Ψn∈Mn

sup
F∈T

dH2− (F, Ψn) , (8)

which means the smallest possible approximation error
for the worst-case F in T. The subspace Ψ̆n ∈ Mn, for
which πn is minimal, is called the optimal subspace in
the KnW sense. Now we can formulate this concept for
OBFs:

Proposition 1 (Oliveira e Silva, 1996) Let Gb be
an inner function with McMillan degree nb > 0,
with poles Ξnb and ne ∈ N. Consider the subspace
Ψn = span{φj (z)Gi

b (z)}i=0,...,ne
j=1,...,nb

. Then the subspace
Ψn is optimal in the Kolmogorov n-width sense, with
n = (ne + 1) nb, for the set of systems with transfer
functions analytic in the complement of the region

Ω(Ξnb , ρ) = {z ∈ C,
∣∣Gb

(
z−1

)∣∣ ≤ ρ}, (9)

and squared integrable on its boundary. The worst-case
approximation error is proportional to ρne+1.

This remarkable result shows that for the specified re-
gion (9) one can not improve on the worst-case error by
adding new poles to the nb basis poles. It also gener-
alizes the well-know fact that the set of pulse functions
{z−i}n

i=1 is optimal for the class of stable systems ana-
lytical outside the circular region Ω (0, ρ) = {|z| ≤ ρ},
ρ > 0. The boundary of Ω (0, ρ) is given in Figure 2a as
a function of the decay rate ρ. For a given ρ > 0, the
boundary of the region results as the level set of this
function, like the contour lines at the bottom of the fig-
ure. The worst-case approximation error in this case is
proportional to ρn. This implies the optimality of FIR
model structures with respect to the identification of
such systems. However in case of arbitrary regions, like
the regions in Figure 2b, the level sets are commonly
non-circular containing separate regions that merge for
increasing values of ρ. For these regions, the optimal
choice of a basis has to be found among general basis
functions (OBF model structures).

In the LPV identification scenario we are dealing with
the opposite problem, referred to as the inverse Kol-
mogorov problem, where we are given a region of non-
analyticity ΩP ⊂ D and we want to find an inner func-
tion Gb to describe/approximate this region in the form
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(a) Gb(z) = z−1, pole at the origin. (b) Gb(z) with poles 0.5 and −0.5± 0.5i.

Fig. 2. The plot of the function
∣∣Gb

(
z−1

)∣∣ for different choices of the inner function Gb and the decay rate ρ (in dB). Level

sets of
∣∣Gb

(
z−1

)∣∣ give the boundaries of the regions {z ∈ C,
∣∣Gb

(
z−1

)∣∣ ≤ ρ}. Optimality of the Gb generated basis is ensured

with a worst-case decay rate ρne+1 for systems with pole locations inside the regions defined by the level set boundaries.

Ω(Ξnb , ρ) with ρ as small as possible. The reason is that
in terms of Proposition 1, the inner function Gb, asso-
ciated with the best fitting Ω (Ξnb , ρ), generates the n-
width optimal basis functions with respect to ΩP. For a
given number of poles nb, this comes down to the fol-
lowing min-max problem:

min
ξ1,··· ,ξnb

max
z∈ΩP

nb∏

j=1

∣∣∣∣∣
z − ξj

1− zξ∗j

∣∣∣∣∣ . (10)

See [10, Chapters 10 and 11] for details on this non-linear
optimization problem and solution methods.

The previous shows that the Kolmogorov n-width the-
ory for OBFs provides an effective way to choose appro-
priate basis functions for the description 2 of FP based
on ΩP. However, in an identification scenario we are fac-
ing the situation where ΩP is unknown. Thus, to enable
the application of this theory, we will focus on the prob-
lem of reconstruction of ΩP based on some sample pole
locations of this set. As we will see, the joint solution of
this reconstruction problem and the optimization (10)
can be found through a clustering approach.

4 Fuzzy-Kolmogorov c-Max clustering

4.1 The pole clustering algorithm

In the following we propose a particular data clustering
algorithm, which by weighting function based separa-
tion, so called fuzzy clustering of sampled pole locations

2 Note that FP is a set of LTI systems which can be repre-
sented in the frequency domain. However, it must be clear
that the global LPV system S is not described in frequency
domain terms.

Ω̄ of the LPV system, can effectively handle the recon-
struction of ΩP jointly with the solution of (10).

Objective-function-based fuzzy clustering algorithms,
such as the Fuzzy c-Means (FcM), have been used in a
wide collection of applications like pattern recognition,
data analysis, image processing and fuzzy modeling
[1,13]. Generally, FcM partitions the data into overlap-
ping groups so called clusters, where each data element
is associated with a set of membership levels with re-
spect to these clusters. These indicate the strength of
the association between that data element and a partic-
ular cluster. In this way, fuzzy clustering is a process of
assigning these membership levels such that the result-
ing clusters describe the underlying structure within
the data [12]. This enables the determination of the re-
gion ΩP on the basis of the observed poles by exploring
the underlying data coherency. To exploit this fruitful
property, in the following such a Fuzzy-Kolmogorov c-
Max (FKcM) algorithm is presented, which provides an
effective OBF selection approach based on the fusion of
the KnW theory and the FcM technique.

Let c > 1 be the number of clusters or data groups and
let Z = [zk]Nk=1 ∈ DN , be the set of N ∈ N observed
poles for clustering. A cluster is represented by its center
(or prototype) vi ∈ D, i ∈ Ic1. Furthermore, membership
functions µi : D→ [0, 1] determine the “degree of mem-
bership” to the cluster for all z ∈ D. By using a threshold
value ε, we obtain a set

Ωε = {z ∈ D | ∃i ∈ Ic1, µi(z) ≥ ε}. (11)

We can now formulate the problem we will consider.

Problem 2 For a set of sampled pole locations Z and for
a given number of clusters c, find a set of cluster centers

5



{vi}c
i=1, a set of membership functions {µi}c

i=1, and the
maximum of ε, such that
• Ωε contains Z.
• With respect to Ωε, the OBFs, with poles Ξc in the

cluster centers {vi}c
i=1, are optimal in the KnW sense,

where n = c.

The solution is based on finding clusters in accordance
with the KnW concept and subsequently finding a max-
imal value for ε, such that all sampled poles are inside
Ωε. The latter is equivalent to minimizing ρ in the op-
timization problem of (10). Note that optimality of the
OBFs is sought as ne = 0. According to the principle
of KnW theory, this might result in repetitive optimal
poles and therefore similar clusters. In the following we
will focus on finding n-width-based clusters.

Denote V = [vi]
c
i=1 and introduce the membership ma-

trix U = [µik]c×N , where µik is the degree of member-
ship of zk to cluster i. To constrain the clustering it is
required that U ∈ UN

c , where

UN
c =

{
U ∈ [0, 1]c×N |

c∑

i=1

µik = 1 for ∀k ∈ IN1 , (12)

0 <

N∑

k=1

µik for ∀i ∈ Ic1
}

characterizes the fuzzy constraints.

Furthermore, distances dik are introduced between vi

and zk to measure dissimilarity of Z with respect to each
candidate cluster. To derive an algorithmic solution of
Problem 2, the Kolmogorov metric 3 (KM) of D:

κ(x, y) :=
∣∣∣∣

x− y

1− xy∗

∣∣∣∣ : D× D→ R+
0 , (13)

with R+
0 = {r ∈ R | r ≥ 0} is used, which is the 1-

width version of the cost function of (10). As a notation,
dik = κ(vi, zk) is introduced. It will be shown that KM
relates the FcM asymptotically to the KnW theory and
to the solution of Problem 2.

Fuzzy clustering can be defined as the minimization of
the FcM-functional [1], Jm (U, V ) : UN

c ×Dc → R+
0 . For

Problem 2, Jm is formulated as

Jm(U, V ) = max
k∈IN1

c∑

i=1

µm
ikdik. (14)

3 Note that KM is not a distance inD, only arctanh (κ(x, y)),
called the Poincaré distance, bears this property [3]. However
in fuzzy clustering, the dissimilarity measure does not need
to qualify as a distance.

Here, the design parameter m ∈ (1,∞) determines the
fuzziness of the resulting partition. It can be observed,
that (14) corresponds to a worst-case (max) sum-of-error
criterion, contrary to the mean-squared-error criterion of
the original FcM, see [1]. The exact relation of (14) with
the KnW optimality of the partition (U, V ) is explained
later. The following theorem yields the ingredients for
the approach to solve Problem 2:

Theorem 3 (Optimal Partition) Let m > 1, a data set
Z ∈ DN , and a fuzzy partition (U, V ) ∈ UN

c × Dc be
given. Denote [V ]i = vi and [U ]ij = µij. Define γi(ν, U)
as the minimal value of γ ∈ [0, 1] fulfilling the quadratic
constraints:

[
|1− z∗kν|2 µm

ik(zk − ν)

µm
ik(zk − ν)∗ γ2

]
º 0, ∀k ∈ IN1 , (15)

where ν ∈ D. Additionally, let dik = κ(vi, zk) be the
dissimilarity measure of zk with respect to V and I(k)

s =
{i ∈ Ic1 | dik = 0} be the singularity set of zk with n

(k)
s =

card(I(k)
s ) (number of elements). Then (U, V ) is a local

minimum of Jm, if for any (i, k) ∈ Ic1 × IN1 :

µik =





[
c∑

j=1

(
dik

djk

) 1
m−1

]−1

if I(k)
s = ∅,

1

n
(k)
s

if i ∈ I(k)
s ,

0 if i /∈ I(k)
s 6= ∅,

(16)

and vi = arg min
ν∈D

γi(ν, U). (17)

The proof is given in the appendix. In the FcM case,
minimization of (14) subject to (12) is usually tackled by
alternating optimization (Picard iteration) [1], steering
the solution towards a settling partition in the sense
of Theorem 3. For the FKcM this yields Algorithm 1,
formulated next, where Vl and Ul denote the actual fuzzy
partition in iteration step l. In the following part, we will
discuss the main properties of this algorithm and clarify
each step in detail.

Algorithm 1. Fuzzy-Kolmogorov c-Max

(1) Initialization
Fix c and m; and initialize V0 ∈ Dc, l = 0.

(2) Membership update
With (16), solve Ul+1 = arg min

U∈UN
c

Jm (U, Vl).

(3) Cluster center update
With (17), solve Vl+1 = arg min

V ∈Dc
Jm (Ul+1, V ).

(4) Check of convergence
If Jm (Ul+1, Vl+1) has converged, then stop, else l =
l + 1 and goto Step 2.
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4.2 Properties of the FKcM

In order to explain the specific choices for the fuzzy func-
tional (14) and the dissimilarity measure (13), we use
the following theorem.

Theorem 4 (Limiting property of Jm) Given a data set
Z ∈ DN , N > 0, and a set of cluster centers V ∈ Dc,
c > 0, such that dik = κ(vi, zk) 6= 0 for all (i, k) ∈ IN1 ×Ic1
(no singularity). Define Um as a membership matrix of
V satisfying (16) for m > 1. Then

a. lim
m→1

Jm(Um, V ) = max
k∈IN1

min
i∈Ic1

{dik}, which corresponds

to the hard partitioning of Z, i.e. µik ∈ {0, 1}, ∀ (i, k) ∈
Ic1 × IN1 . Here, the optimal partition corresponds to a
collection of 1-width optimal basis functions with re-
spect to each reconstructed pole region.

b. J2(U2, V ) = max
k∈IN1

[
∑c

i=1 dik]−1, which is the maximum

of the harmonic-means-based distance of each zk with
respect to the clusters.

c. Jm(Um, V ) = c1−mmax
k∈IN1

[
∏c

i=1 dik]1/c +O(e−m). Fur-

thermore, Jm(Um, V ) decreases monotonically with m,
and J∞(U∞, V ) = 0.

The proof is presented in the appendix. Based on The-
orem 4, the minimization of Jm corresponds to a close
approximation of (10) for large m, enabling the FKcM to
solve Problem 2 directly. However, if m →∞, then in the
optimal partition µik → 1/c for all (i, k) ∈ Ic1×IN1 , which
can cause numerical problems in the minimization of
(17). Therefore, to obtain a well approximating solution
of Problem 2, an appropriately large value of m ∈ (1,∞)
should be used. Based on experience, m ∈ [5, 10] usually
yields satisfactory results.

For m > 1, the FKcM-functional (14) is a bounded
(0 ≤ Jm ≤ 1) monotonically descending function both
in {dik} and U , which allows Algorithm 1 to converge in
practice. The convergence point, which is directly depen-
dent on the initial V 0, can either be a local minimum or
a saddle point of Jm, fulfilling Theorem 3. Therefore, it
is advisable to repeat the algorithm multiple times with
different initial choices for V 0 and then select the best
resulting set of OBFs by comparison of the achieved de-
cay rate

ρ̄ = max
z∈Z

c∏

i=1

∣∣∣∣
z − vi

1− zv∗i

∣∣∣∣ , (18)

and by visual inspection of the region Ω(Ξc = V, ρ̄) with
respect to Z. In practice, uniformly random choices for
V 0 are suggested.

4.3 Optimization and numerical conditioning

While the membership update step in Algorithm 1 can
be analytically computed through (16), the cluster cen-
ter update step requires the solution of (17) which is
a Quadratic Constraints (QCs) constrained minimiza-
tion problem where γ is the optimization variable and
ν is the decision variable. Based on [28], it is possible
to derive Sum-of-Squares (SoS) relaxations of such con-
straints, through which (15) is turned into LMIs. The
resulting LMIs constrained convex minimization of γ is
a Linear Semi Definite Programming (LSDP) problem
that can be efficiently solved by a variety of (interior-
point-based) solvers like SeDuMi [30] or CSDP etc. Al-
ternatively, bisection-based recursive search can also be
utilized to obtain the minimization of γ in (17). In each
step of this bisection-based minimization, the QCs with
a fixed γ are rewritten as LMI constraints. Checking fea-
sibility of the constraints indicates how to proceed with
the minimization of γ.

For high values of m, the QCs (15) become numerically
ill-conditioned which can be overcome by the normaliza-
tion of {µm

ik}N
k=1:

µ̄ik =
µm

ik

µ̆i
, with µ̆i =

∑N

k=1
µm

ik. (19)

4.4 Termination criterion

In Algorithm 1, the cost function Jm flattens when m
increases. This yields that for high values of m, Jm dras-
tically drops in a local minimum, while Jm is almost
constant for other points. To avoid unnecessary termina-
tion, the relative evolution of Jm, in each iteration step
l, has to be checked in a windowed sense:

1− maxk [Jm (Uk, Vk)− Jm (Uk−1, Vk−1)]
maxk Jm (Uk, Vk)

< εt (20)

where k ∈ Ill−nw
, nw ∈ N is the length of the window,

and 0 ¿ εt < 1 is a user defined termination constant.
For m ∈ [5, 10], εt = 0.99 with nw = 3 usually works
well.

4.5 Cluster merging

The determination of the number of “natural” groups
in Z, i.e. the best suitable c for clustering, is impor-
tant for the successful application of the FKcM method.
Similarity-based adaptive cluster merging (ACM) is fre-
quently used for this purpose [13], but other strategies
exist also. ACM is suitable for problems where little is
known about the statistical properties of the data, like
in the pole clustering case. The basic idea is the follow-
ing: a measure of similarity is introduced with respect to
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cluster pairs. A cluster pair is merged when its similarity
does not decrease between iterations and if also this pair
is the most similar of all cluster pairs. However, merging
is only applied if the similarity measure exceeds a cer-
tain threshold value, εa ∈ [0, 1] arbitrary chosen by the
user. In FcM clustering, most commonly the following
similarity measure is applied:

Definition 5 (Inclusion similarity measure [13]) The
fuzzy-inclusion-similarity measure (given point-wise on
Z) for two fuzzy clusters i and j is defined as

sij =

N∑
k=1

min (µik, µjk)

min
(

N∑
k=1

µik,
N∑

k=1

µjk

) . (21)

This measure takes into account the contribution to sim-
ilarity from all {zk}N

k=1. For the theoretical details see
[13]. Then, in the lth iteration of Algorithm 1, the most
similar cluster pair can be selected as

(̂ı, ̂) = arg max
(i,j)∈Ic1×Ic1,i>j

{s(l)
ij }. (22)

Merging is applied if |s(l−1)
ı̂̂ −s

(l)
ı̂̂ | < εs, where 0 < εs ¿ 1

is a threshold value to judge the significance of decrease
of cluster similarity between iterations. However as the
partition converges, similarity changes a little between
iterations, therefore merging is only applied if s

(l)
ı̂̂ > ε

(l)
a

where ε
(l)
a ∈ [0, 1] is an adaptive threshold. In [13], it is

suggested to use ε
(l)
a = (c(l) − 1)−1 which is observed

empirically to work well if the initial number of clusters
c0 satisfy c0 < 1

2N .

In this way, the FKcM algorithm with ACM provides
the possibility to automatically choose the number of
required OBFs for the model structure based on Z. So
by starting from a large c, the algorithm converges to
a partition which contains only the necessary number
of clusters representing the data. However in terms of
Proposition 1, the setting of Problem (2) implies that
repetitive basis poles can be part of the optimal solu-
tion. With the ACM, these solutions are not accessible as
repetitive poles result in perfectly similar clusters which
are immediately joined. Therefore, ACM only provides
convergence to partitions with distinct cluster centers.

5 LPV system identification

In the previous section, an OBF selection algorithm has
been proposed to obtain an adequate selection of the
model structure (2) with respect to an unknown LPV
system S. The fact that an LPV system can be viewed a

u(k)
Φ
n b

y01(k)

y
n n

(k)b W(p)

p(k)
y(k)

0I
BbAb

n e
e

Scheduling
dependency

LTI
system

Fig. 3. I/O signal flow graph of the W-LPV OBF model
structure.

set of local LTI behaviors FP which are combined by a set
of scheduling functions HP is the motivation to select the
optimal model structure based on FP. In the following,
according to the LPV system identification approach of
Section 1, it is briefly shown how these OBFs can be used
for identifying a discrete-time S efficiently, i.e. how the
scheduling functions can be estimated. Based on (2), we
introduce a model structure presented in Figure 3, where
the selected OBFs are set up as a filter bank followed
by a p-dependent weighting function [35]. Due to the
similarity of this model structure to Wiener models we
will call it a Wiener-LPV (W-LPV) OBF model.

Let Φne
nb

be a set of OBFs in H2− (E). Denote by
{Ab, Bb, Cb, Db} a minimal balanced SS realization of
Gne

b , where Gb is the inner function associated with Φ0
nb

.
Let S be a data generating SISO LPV system without a
feedthrough term. By applying the W-LPV model of S
in an OE setting and with static coefficient dependence,
leads to the following 1-step ahead predicted output

ŷ (k) =
ne∑

i=0

nb∑

j=1

wij (p (k)) φj(q)Gi
b(q)u (k)︸ ︷︷ ︸

y̆ij(k)

, (23)

where q denotes the forward time-shift operator and
{wij} is a set of functions. The SS equivalent represen-
tation of (23), is defined as

x (k + 1) = Abx (k) + Bbu (k) , (24a)
ŷ (k) = W (p (k)) x (k) , (24b)

where xT = [ y̆01 . . . y̆nenb
] and W (p) = [ w01 (p) . . .

wnenb(p)]. Note that using the model structure (23) in an
OE setting has many attractive properties. For instance,
it is linear in the coefficient functions {wij}, the noise
model is independently parameterized from the process
part, and this model structure has a direct state-space
realization via (24a-b) where only the output equation
has dependence on p. The latter implies that LPV con-
trol design simplifies for the obtained model estimate.
Furthermore, it can be shown based on series expan-
sion representation of LPV systems, that the W-LPV
OBF structure can represent the general class of LPV
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systems with arbitrary precision in case the weighting
functions W have dynamic dependence (dependence on
the past/future of p) [35]. In case of static dependence,
i.e. dependence on p(k) (the instantaneous value of p),
approximation of a wide class of LPV systems is avail-
able by this model structure. This class however is hard
to characterize as the approximation error results both
from the finite number/quality of the chosen OBFs and
the assumption of static dependence. Identification of an
LPV system S by this model class can be accomplished
through the local and global approach presented in Sec-
tion 1. The schematic view of these approaches is given
in Figure 4.

5.1 Local approach

In this method, the identification is based on data
records Dl = {y(k), u(k), p̄l}Nd

k=1 gathered from S for
constant scheduling points Pn = {p̄1, . . . , p̄n} with per-
sistently exciting (in the LTI sense) u. Then local LTI
models of S

ŷ(k) =
ne∑

i=0

nb∑

j=1

rp̄l,i,jφj(q)Gi
b (q)u(k), (25)

in terms of the OBFs Φne
nb

with rp̄l,i,j ∈ R are estimated,
e.g. by linear regression, based on Dl. The obtained co-
efficients {r̂p̄l,i,j} are the estimated samples of {wij} in
(23) for the applied constant scheduling functions, i.e.
wij(p̄l) ≈ r̂p̄l,i,j . Then by choosing a particular structure
of the static functional dependence of each wij , inter-
polation (by arbitrary method) of {r̂p̄l,i,j} gives an esti-
mate {ŵij} of {wij} for which ŵij(p̄l) = r̂p̄l,i,j . In this

way, the local approach simply provides an extension of
the classical LTI OBF identification approaches with all
their beneficial properties to the LPV case.

Note that an adequate choice of Pn is required for an ef-
ficient model estimate and adequateness of Pn depends
on the variation of the dynamical properties in FP (see
[22] for more on this issue). Furthermore, in case of sys-
tems where p cannot be held constant, the local approach
is hardly applicable. This approach also estimates the
global behavior of S based only on samples of FP which
cannot describe the transient behavior imposed in the
scheduling functions. These disadvantages motivate the
following alternative:

5.2 Global approach

In the global case, identification is based on a single data
record D = {y(k), u(k), p(k)}Nd

k=1 of S with a varying p.
If each wij in (23) is parameterized linearly:

wij(p(k)) =
nϕ∑

l=0

rlijϕl(p(k)), (26)

where ϕl are arbitrary chosen functions, e.g. polynomi-
als, and rlij ∈ R, then (23) becomes linear in the un-
known parameters {rlij}. This implies that estimation of
{wij} based on (26) and D can be accomplished through
linear regression. Consistency of the parameter estima-
tion can be shown under minor conditions [35] together
with the extension of some classical results on the vari-
ance, bias, etc. of OBF model estimates.
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6 Results of application

As an example, an asymptotically stable discrete-time
LPV system S is considered, in an I/O representation:

5∑

i=0

ai (p (k)) y (k − i) = b1 (p (k)) u (k − 1) , (27)

where p : Z → P is the discrete time scheduling signal
with P = [0.6, 0.8] and a0 (p) = 0.58 − 0.1p, a1 (p) =
− 511

860 − 48
215p2 + 0.3(cos(p) − sin (p)), a2 (p) = 61

110 −
0.2 sin (p), a3 (p) = − 23

85 + 0.2 sin (p), a4 (p) = 12
125 −

0.1 sin (p), a5 (p) = −0.003, b1 (p) = cos(p). In Figure
5a, the local pole set ΩP of S is presented, while in Figure
5b the impulse responses of the local subsystem set FP
is given. By these pictures, it can be concluded that the
dynamic changes of S are quite heavy between different
constant scheduling points.

6.1 OBF selection by FKcM clustering

By using constant scheduling signals with values
{0.6; 0.6 + τ ; . . . ; 0.8}, where τ = 0.02, 11 local LTI
representations of S are obtained, whose pole locations
are samples of ΩP (see Figure 5a). In our basis function
selection approach, these LTI systems represent the re-
sults of local identification. With the obtained N = 11 ·5
pole locations, the FKcM algorithm has been applied
with different values of m and both with fixed number
of clusters c = 8 (denoted by m2 c8 for m = 2) and also
with the application of ACM starting from c(0) = N/2
(denoted by m8ad11 for m = 8 resulting in c = 11 clus-
ters). The number of clusters 8 agrees with the number
of sets by visual inspection (two times 3 sets for the
complex and 2 sets for the real poles) and as will follow,
also with the number of clusters selected by ACM. The
results of the algorithm are presented in Table 1 and
in Figure 6. The comparison in Table 1 is presented in
terms of Nav, the average number of iterations based
on 10 runs of the algorithm starting from random V0;
c, the number of obtained clusters; Hp, the Normal-
ized Entropy 4 ; χ, the Xie-Beni validity index 5 ; ρ̄, the
achieved decay rate; and εne

max, the worst-case absolute
representation error of the local impulse responses with
ne extension of the cluster centers generated OBFs. By
using the cluster centers as basis poles, Ξnb=c = V , the
resulting Kolmogorov region Ω (Ξc, ρ̄) is also given in
Figure 6. Based on these, the following observations can
be made:

4 Normalized Entropy [1] describes the separation of clus-
ters. The smaller Hp is, the more valid the hypothesis is that
the clusters match with naturally separated data groups.
5 The Xie-Beni validity index χ [41] gives a common ground
of comparison between different FcM partitions. The smaller
χ is, the better the corresponding fit is to the data.

Table 1
Comparison of algorithmic results

m2 c8 m8ad8 m8ad11 m25 c8

Nav 21 37 65 56

c 8 8 11 8

χ (dB) −17.488 −12.42 −8.44 −13.203

ρ̄ (dB) −55.857 −58.38 −83.11 −61.359

Hp 1.79 2.41 2.94 2.43

εne=1
max (dB) −43.73 −46.9 −77.33 −45.34

εne=3
max (dB) −146.61 −171.41 −249.63 −168.83

• The FKcM with ACM (εs = −15dB) converges to a 8-
cluster-based partition for low m, but in case of higher
values of m, the merging, starting from c0 = 1

2N , will
have different attractive solutions, like the m8ad8 and
m8ad11 cases. Here both the 8 and the 11 cluster-
based partitions are attractive, depending on the ini-
tial position of the cluster centers. However, m8ad8
achieves a lower entropy Hp than m8ad11, suggesting
that m8ad8 corresponds better to the natural data
structure. As different initial conditions can drive the
FKcM with ACM to converge to partitions with dif-
ferent c, it is suggested to the user to choose the one
with the lowest Hp, as it most likely yields the “best”
partition.

• χ is small in all cases, showing that each partition rep-
resents the underlying structure well. However, χ is
not comparable for different m. χ has a decreasing ten-
dency with growing c and an increasing tendency for
growing m, therefore the fact that χm25c8 < χm8ad8

supports that m25 c8 corresponds better to the under-
lying data structure in the KnW sense than m8ad8.

• The resulting Kolmogorov region Ω (Ξc, ρ̄) is relatively
tight in all cases except for m2 c8. ρ̄ is also acceptable,
which means small modeling error if the correspond-
ing OBFs are used for identification. In the m8ad11 -
case, ρ̄ is the best, which is the consequence of the
larger (c = 11) number of OBFs only. By using ex-
tension of the derived poles associated inner functions
such that the number of generated basis function is
equal, comparison of the KnW performance of these
cases becomes available. Based on such a comparison,
it follows that m25 c8 is better in the KnW sense,
which is in agreement with Theorem 4. The partition
m2 c8 is the worst among these results which suggests
that only larger values of m can ensure the quality of
the obtained solution.

• Figure 7 and Table 1 show the representation errors of
the local impulse responses of FP by the selected OBFs
with poles in the obtained cluster centers. From these
results it follows that the obtained OBFs result in neg-
ligible representation error with respect to FP, which
is our main objective to achieve with the presented ba-
sis function selection approach (see Section 1). Among
the solutions with 8 basis functions, surprisingly m8 c8
has the lowest representation error instead of m25 c8.
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Fig. 5. (a) The local pole set ΩP (solid line) of the LPV system S. Sampled pole locations are denoted by ?. (b) Impulse
responses of the local subsystem set FP of S associated with constant scheduling signals p(k) ≡ p̄ ∈ P.
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Fig. 6. Results of FKcM clustering: sampled poles (o), resulting cluster centers (?), and Kolmogorov boundaries (bold lines).

Based on the previous, one would expect, that the
representation error drops for OBFs generated with
higher m, however this is not the case here, due to
the fact that ΩP is sampled. Even if m25 c8 delivers
a better choice with respect to the sampled pole lo-
cations, it is not guaranteed that the reconstruction
of ΩP, based on the available information, resulted in
a better estimate than in the other case. By compar-
ing the results of Hp of these cases, such a phenom-
ena is clearly indicated. The quality of the information
with respect to the pole samples is highly significant
in establishing optimality between the sampled-poles-
based OBFs and the original system.

In conclusion, the FKcM solutions for the considered ex-
ample are converging relatively fast to optimal partitions
in terms of Theorem 3. In accordance with Theorem 4,
as m increases, these partitions give better solutions of
Problem 2. ACM also ensures proper selection of an effi-
cient number of OBFs in the KnW sense, if the different

settling partitions are compared in terms of Hp. Fur-
thermore, validity of the derived partitions is supported
by low χ in all cases.

Comparison of results to solutions provided by the gra-
dient search method [10, Ch. 11], is only possible if the
number of available samples of ΩP is so high that there
is no need for the reconstruction of ΩP. Thus an advan-
tage of the FKcM approach is that it provides a solu-
tion for the practical case when only few samples of ΩP
are available. In the unrealistic case, when ΩP is known,
the algorithms converge to similar solutions, but with a
lower computational time in the FKcM case. The two
algorithms also have similar properties in the sense that
they only provide convergence to local minima. As on-
line selection of the efficient number of OBFs is very
difficult to implement into the gradient search method,
the FKcM approach, with strategies like the ACM, has
a second advantage over the gradient method.
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Fig. 7. Representation error of the local impulse responses with the FKcM clustering obtained OBFs.

6.2 Identification by the W-LPV OBF model structure

Using the basis functions of the m8 c8 case, identifica-
tion of S with the W-LPV OBF structure has been ac-
complished by the global approach with a 500 sample
long data record D. D was generated by uniform noise
u ∈ U(−1, 1), p ∈ U(0.6, 0.8) and with additive, white
output noise: e ∈ N (0, 0.5). For the estimation of W (p),
2nd-order polynomial parametrization has been used. In
Figure 8, the (in)validation result of the model estimate
is shown with an MSE 6 of 0.0572, BFT 7 of 83.69%, and
VAF 8 equals to 97.34%. For the (in)validation of the ob-
tained model, signals u ∈ U(−1, 1) and p ∈ U(0.6, 0.8)

6 Mean Squared Error, the expected value of the squared
estimation error [15], often computed in a sampled form:

M̂SE = 1
N

∑N−1
k=0 (y (k)− ŷ (k))2.

7 Best Fit percentage, the percentage of the output vari-
ation that is explained by the model [16]. BFT = 100% ·
max

(
1− ‖y−ŷ‖2

‖y−ȳ‖2 , 0
)

where ȳ is the mean of y.
8 Variance Accounted For percentage is defined as VAF =

100% ·max
(
1− var(y−ŷ)

var(y)
, 0

)
and computed on noise free y.
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Fig. 8. Comparison of the identified (dotted line) and the true
model (solid line) of S by their responses for u ∈ U(−1, 1)
and p ∈ U(0.6, 0.8).

have been used that are different from the signals applied
for model estimation. Due to the absence of dynamic de-
pendence in the parametrization of W (p), the W-LPV
OBF structure could not cope fully with the variations
in the {al}5l=0 parameters, but for such a heavy nonlin-
ear system, the method provided quite acceptable result
in terms of the investigated error measures.
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7 Conclusions

In this paper, an OBFs-based model structure selec-
tion algorithm has been proposed for the identification
of LPV systems. The fact that any LPV system can
be viewed as a set of local LTI behaviors combined by
a scheduling function set, motivated to formulate the
OBF selection algorithm based on the local behavior set.
For this set of LTI systems, an optimality condition for
OBFs is expressed in the KnW sense, which requires
the knowledge of the complex regions where the local
pole locations of the system lie. In an identification sce-
nario, such knowledge is often only available in a sam-
pled sense, e.g. in the form of poles of some local LTI
systems. To overcome this problem, a pole clustering al-
gorithm, the FKcM method, is introduced which offers
an attractive procedure to determine the pole regions of
an unknown system and the associated asymptotically
optimal OBFs in the KnW sense, based on the available
information. This contribution enables the direct use of
the KnW result for the OBFs based model structure se-
lection in an LPV identification scenario. As a next step
of the research, we will focus on the robust extension of
the algorithm in order to attenuate the effects of uncer-
tainty in the pole samples.

The authors thank Carsten Scherer and Sjoerd G. Dietz
for their contribution to constraint relaxations and for
many fruitful discussions. Also special thanks to Niels
Vergeer for his help in the early development of the
FKcM mechanism.

8 Appendix

Proof (Theorem 3) The proof is given in an alternat-
ing minimization sense. First, fix V and define Ĵm (U) =
Jm(U, V ), for U ∈ UN

c . Since the membership values
[µik]ci=1of zk to the fixed clusters are not depending on
the memberships of other data points, the columns of
U are degenerate to each other (decoupled) in the min-
imization of Ĵm (U), therefore:

min
U∈UN

c

Ĵm (U) = min
U∈UN

c

max
k∈IN1

c∑

i=1

µm
ikdik = max

k∈IN1
min

U∈UN
c

c∑

i=1

µm
ikdik.

Denote Ĵ
(k)
m (U) =

∑c
i=1 µm

ikdik. To introduce the con-
straints UN

c , the Lagrangian Λk (λk, U) of Ĵ
(k)
m (U) is de-

fined for each k ∈ IN1 as

Λk (λk, U) =
c∑

i=1

µm
ikdik − λk

[(
c∑

i=1

µik

)
− 1

]
. (28)

Assume that I(k)
s = ∅, then (λk, U) is a stationary point

for Λk, only if 5λ,UΛk (λk, U) =
(
0N , 0c×N

)
for all k ∈

IN1 . Setting all of these gradients equal to zero yields that

∂Λk (λk, U)
∂λk

=
c∑

i=1

µik − 1 = 0, (29a)

∂Λk (λk, U)
∂µik

= mµm−1
ik dik − λk = 0, (29b)

for every k ∈ IN1 and i ∈ Ic1. From (29b), it follows that

µik =
(

λk

mdik

) 1
m−1

. (30)

Moreover, by substitution of (30) into (29a):

0 =
c∑

l=1

(
λk

m

) 1
m−1

(
1

dlk

) 1
m−1

− 1 (31a)

(
λk

m

) 1
m−1

=

[
c∑

l=1

(
1

dlk

) 1
m−1

]−1

. (31b)

If (31b) is substituted back into (30), it follows that

µik =

(
1

dik

) 1
m−1

c∑
l=1

(
1

dlk

) 1
m−1

=
1

c∑
l=1

(
dik

dlk

) 1
m−1

. (32)

In this way we have proved that in a local minimum of
Jm(U, V ), all µik have to satisfy (16). If I(k)

s 6= ∅, then
(32) is singular. In this situation, choosing µik as given
by (16) results in Ĵ

(k)
m (U) = 0, because the non-zero

weights are placed on zero distances, while positive dis-
tances with nonzero weights would increase Ĵ

(k)
m (U),

contradicting minimality. As the zero-distances can
have arbitrary weights, for the shake of simplicity equal
weights are considered fulfilling (16). Note, that such
a singularity hardly occurs in reality, since machine
round-off prevents its encounter.

To establish (17), fix U ∈ UN
c and define J̌m (V ) =

Jm(U, V ). Minimization of J̌m (V ) is unconstrained on
Dc, and it is decoupled for each vi. Therefore

min
V ∈Dc

J̌m (V ) = min
V ∈Dc

max
k∈IN1

c∑

i=1

µm
ikdik =

c∑

i=1

min
V ∈Dc

J̌ (i)
m (V ) ,

where J̌
(i)
m (V ) = maxk∈IN1 µm

ikdik, depending only on vi.
This means that

vi = arg min
V ∈Dc

J̌ (i)
m (V ) = arg min

vi∈D
max
k∈IN1

µm
ikdik. (33)
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Optimization (33) can be formulated as a matrix in-
equalities constrained minimization problem. Denote

γi = J̌ (i)
m (V ) = max

k∈IN1
µm

ikdik, (34)

then the solution of (33) can be obtained by solving

minimize γi ≥ 0,

subject to µm
ik

∣∣∣ zk−v
1−z∗

k
v

∣∣∣ ≤ γi, ∀k ∈ IN1 ,

v ∈ D.

The constraints of this minimization can be written for
each k as

µm
ik

∣∣∣∣
zk − v

1− z∗kv

∣∣∣∣≤ γi, (35a)

µ2m
ik |zk − v|2 |1− z∗kv|−2 ≤ γ2

i . (35b)

From the Schur-complement of (35b) it follows that
(35a) holds iff

[
|1− z∗kv|2 µm

ik(zk − v)

µm
ik(zk − v)∗ γ2

i

]
º 0, ∀k ∈ IN1 , (36)

where v ∈ D. Then a sufficient but not necessary condi-
tion for (U, V ) being a local minimum of Jm is to sat-
isfy (32) and (33). This concludes the proof. It is im-
portant to remark that Jm (U, V ) has more stationary
points than what can be reached through alternating
minimization, however all points fulfilling Theorem 3 are
stationary points of Jm (U, V ). 2

Proof (Theorem 4) As the cluster centers of V are
assumed to be “nonsingular” with respect to Z, i.e. dik >
0 for all (i, k) ∈ Ic1 × IN1 , thus based on the optimality
of Um, substitution of (32) into (14) implies, that for
m > 1:

Jm(Um, V ) = max
k∈IN1

c∑

i=1

µm
ikdik = max

k∈IN1

c∑

i=1

µikµm−1
ik dik =

= max
k∈IN1

c∑

i=1

µik
dik

dik

[
c∑

l=1

(
1

dlk

) 1
m−1

]m−1 =

= max
k∈IN1

[
c∑

l=1

(dlk)
1

1−m

]1−m

,

holds as
∑c

i=1 µik = 1. Now introduce

J̄
(k)
t (V ) =

[
c∑

i=1

1
c

(dik)t

]1/t

, (37)

with t = 1
1−m . Then

Jm(Um, V ) = J t−1
t

(U t−1
t

, V ) = c1/tmax
k∈IN1

J̄
(k)
t (V ).

Equation (37) is called the Hölder or generalized mean
[4] of dik. Based on the properties of the generalized
mean in terms of t, the following hold:

Case m → 1 ⇔ t → −∞ ⇒ J̄
(k)
t (V ) → min

i∈Ic1
{dik} for

all k ∈ IN1 . Since c1−m → 1, the minimum over Ic1 is
unique for each k:

lim
m→1

Jm(Um, V ) = max
k∈IN1

min
i∈Ic1

{dik} . (38)

Case m = 2 ⇔ t = −1. Then J̄
(k)
−1 (V ) is the harmonic

mean of {dik}c
i=1 for each k ∈ IN1 , so

J2(U2, V ) =
1
c

max
k∈IN1

c∑c
i=1

1
dik

. (39)

Case m → ∞ ⇔ t → 0. Then, the asymptotic conver-
gence of the generalized mean to the geometric mean
yields: J̄

(k)
t (V ) = [

∏c
i=1 dik]1/c +O(e

1
t ), which gives

Jm(Um, V ) = c1−mmax
k∈IN1

[∏c

i=1
dik

] 1
c

+O(e−m),

and since c1−m → 0, therefore

lim
m→∞

Jm(Um, V ) = 0.

2

References

[1] J. C. Bezdek. Pattern Recognition with Fuzzy Objective
Function Algorithms. Plenum Press, 1981.

[2] P. Bodin, L. Villemoes, and B. Wahlberg. An algorithm
for selection of best orthonormal rational basis. In Proc. of
the 36th IEEE Conf. on Decision and Control, San Diego,
California, USA, Dec. 1997.

[3] D. A. Brannan, M. F. Esplen, and J. J. Gray. Geometry.
Cambridge university press, 1999.

[4] P. S. Bullen. Handbook of Means and Their Inequalities.
Kluwer Academic Publishers, 2003.

[5] M. Dettori and C. W. Scherer. LPV design for a CD player:
An experimental evaluation of performance. In Proc. of the
40th IEEE Conf. on Decision and Control, pages 4711–4716,
Orlando, Florida, USA, Dec. 2001.

[6] P. L. dos Santos, J. A. Ramos, and J. L. M. de Carvalho.
Identification of linear parameter varying systems using an
iterative deterministic-stochastic subspace approach. In Proc.
of the European Control Conf., pages 4867–4873, Kos, Greece,
July 2007.

14



[7] F. Felici, J. W. van Wingerden, and M. Verhaegen. Subspace
identification of MIMO LPV systems using a periodic
scheduling sequence. Automatica, 43(10):1684–1697, 2006.

[8] F. Felici, J. W. van Wingerden, and M. Verhaegen. Dedicated
periodic scheduling sequences for LPV system identification.
In Proc. of the European Control Conf., pages 4896–4902,
Kos, Greece, July 2007.

[9] L. Giarré, D. Bauso, P. Falugi, and B. Bamieh. LPV model
identification for gain scheduling control: An application to
rotating stall and surge control problem. Control Engineering
Practice, 14:351–361, 2006.

[10] P. S. C. Heuberger, P. M. J. Van den Hof, and Bo Wahlberg.
Modeling and Identification with Rational Orthonormal Basis
Functions. Springer-Verlag, 2005.

[11] P. S. C. Heuberger, P. M. J. Van den Hof, and O. H. Bosgra. A
generalized orthonormal basis for linear dynamical systems.
IEEE Trans. on Automatic Control, 40(3):451–465, 1995.

[12] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data.
Prentice Hall, 1988.

[13] U. Kaymak and M. Setnes. Fuzzy clustering with volume
prototypes and adaptive cluster merging. IEEE Trans. on
Fuzzy Systems, 10(6):705–711, 2002.

[14] L. H. Lee and K. R. Poolla. Identification of linear parameter-
varying systems via LFTs. In Proc. of the 35th IEEE Conf.
on Decision and Control, pages 1545–1550, Kobe, Japan,
Dec. 1996.

[15] L. Ljung. System Identification, theory for the user. Prentice
Hall, 1999.

[16] L. Ljung. System Identification Toolbox, for use with Matlab.
The Mathworks Inc., 2006.
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