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Abstract—In high performance motion systems, the ever
increasing demand for high accelerations and tracking accu-
racy necessitates the explicit incorporation of the parameter-
dependent dynamics in the control design. For feedforward
control, this can be achieved via the application of the Linear
Parameter-Varying (LPV) framework or by including the
measured parameters into the nonlinear control framework.
Through simulation studies it is shown that addressing position-
dependent dynamics with an LPV or nonlinear feedforward
design increases the performance of motion systems compared
to traditional linear time-invariant and nonlinear methods. Fur-
thermore, similarities and advantages among the feedforward
methods are investigated.

I. INTRODUCTION

Feedback and feedforward control plays an important role
in position control of motion systems. In general, feedback
is used to stabilize the system, reject disturbances and to
account for model uncertainties or unmodeled dynamics,
whereas feedforward is used to realize a desired nominal
behavior such that the output response of the nominal plant
model follows a desired and known reference trajectory. In
case the disturbances are known or measurable, one can
utilize this knowledge to compensate for undesired behavior
through feedforward actions as well.

In high performance motion systems, position-dependent
dynamics become non-negligible towards the increasing de-
mands on performance. This often comes from an intrinsic
property in multi-degree of freedom motion systems, e.g.,
through the variations of actuator and/or sensor positioning.
An example can be given by wafer stage control in the
lithographic industry [1]. In contrast to position-dependent
dynamics, control hereof is commonly treated by utilizing the
Linear Time-Invariant (LTI) framework. Strategies such as
acceleration, jerk or snap feedforward (see, e.g., [1]-[4]) or
more advanced feedforward strategies as in [5] are typically
used to compensate for undesired plant dynamics. In this
context, a comprehensive survey of LTI feedforward methods
can be found in [6].

The Linear Parameter-Varying (LPV) framework is an
attractive alternative to cope with position-dependent dy-
namics. LPV systems are characterized by a linear input-
output (I0) mapping, while this mapping depends on the
so-called scheduling variables. These scheduling variables
have to be available (measurable) in real-time and are used
to capture the position-dependent behavior (in the context
of motion applications). LPV control strategies benefit from
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the availability of the scheduling variable to increase the
control performance. In the past, research was aimed towards
norm-based synthesis approaches for the LPV feedforward
control problem (see, e.g., [7], [8]). These approaches rely
on a weighted optimization problem where one can specify
e.g., the frequency region of interest. Although [9] studies
inversion of time-varying characteristics of motion systems
due to flexible behavior, it turns out that position-dependent
effects can be found much alike when embedded in an LPV
structure. The same holds true from a nonlinear perspective
as shown in [10].

This paper investigates model-based analytic methodolo-
gies to incorporate position-dependent behavior in the feed-
forward control design. These techniques are extensions of
well-studied LTI feedforward methodologies which utilize
concepts of nonlinear control. Furthermore, we also employ
the LPV framework to address the position-dependent be-
havior and compare it to LTI and nonlinear techniques. The
methods presented here are considered for motion systems
subject to position-dependent or time-varying nonlinear be-
havior under the assumption that the position-dependency is
a tractable signal in real-time. The benefit of incorporating
position-dependent behavior into the feedforward controller
is shown through two simulation studies, from which it
is further demonstrated that LPV and parameter-dependent
nonlinear techniques provide similar results.

The paper is organized in the following manner: in Section
II, the considered class of rigid-body motion systems is
introduced. Next in Section III, the feedforward method-
ologies are discussed: namely, A) nonlinear feedforward,
B) the incorporation of the measured parameter into the
nonlinear feedforward and C) LPV feedforward through
inversion. This is followed by simulation studies on (i) a
high-accuracy position-dependent motion system and (ii) a
DC motor with mass imbalance in Section IV. Here, the
developed nonlinear and LPV feedforward strategies are
compared with a conventional LTT acceleration feedforward.
Finally in Section V conclusions are given.

II. PROBLEM FORMULATION

Consider the following dynamic model describing a
position-dependent rigid-body motion system denoted X,},:

M(q())§(t) + C(q(t), 4(1))q(t) + K(q(t)) = W(t) (1)
where ¢ € RY, g(t) € R" are the generalized coordinates
of the system, M(q) € R™*" is the mass-matrix which is
positive definite in the range of operation, C(q, ¢) € R™a*"a
is the Coriolis matrix and K € R™¢*™4 contains the stiffness
terms. W € R"» represents the generalized forces and



torques acting on the system.

The LPV framework stems from the observation that (1)
represents a linear structure that varies with ¢ and ¢ in
terms of the variation of M(q(t)), C(q(t),q(t)) and KC(g(1)).
Hence using measurements of ¢ and ¢, which are often
available in a motion system, we can capture the behavior
of (1) in terms of a linear model with varying parameters.
The linear structure of the resulting representation allows
to generalize powerful results of LTI control to address the
dynamics of (1). An LPV representation is obtained through
direct embedding of the nonlinear model (1) in a descriptor
state-space LPV representation

E(p))x(t) = A(p(t)=(t) + B(p(t))u(t)
y(t) = C(p(t))=(t) (2b)

where z(t) := [q747] € R" is the state variable,
u(t) == W(t) € R™ are the control inputs, y(t) € R™
are the outputs and p(t) := [p1(®) = pn, (0] € P C R™.
A descriptor form is used to avoid inversion of the mass-
matrix M(q) and therefore retain affine dependency of the
system matrices in p. Note that (2) describes a linear system
with respect to the IO partition (u, y). If p(t) is constant i.e.,
p(t) = p, Vt € R, then (2) becomes an LTI representation,
which is often referred to as the frozen dynamical aspect
of (2) for the constant p. If p(t) varies with time, the
model becomes a time-varying representation. The LPV
representation is said to be affine if

(2a)

Aw(®) = A0+ Y nih) A, ®

and similar decomposition holds for the matrices E(p(t)),
B(p(t)) and C(p(t)). For an LPV embedding (see, [11]) of
(1), the resulting system matrices are:
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and C(p(t)) is a parameter-dependent matrix depending on
the measurement system. The system representation (2) is a
global system description as it represents all possible behav-
iors of (1). Furthermore, it is rendered affine by appropriately
choosing the scheduling variables.

I1I. FEEDFORWARD STRATEGIES

This section focusses on the design aspects of the feed-
forward methods that are taken into consideration, namely
A) nonlinear feedforward, B) the incorporation of the mea-
sured parameter into the nonlinear feedforward and C) LPV
feedforward through inversion. Hereon, we will use p to
distinguish the measured signal (also the scheduling variable
in the LPV case) which is available in the feedforward.

A. Nonlinear feedforward

In this section, the feedforward input is computed based
upon a known reference trajectory and the nonlinear model
as shown in Figure 1 (see, e.g., [10]). Given the nonlinear

r(t) q(t)
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Fig. 1. Nonlinear feedforward block diagram where @ is the mapping
from r(t), 7(t) and #(t) to W (t), £,1, the rigid body motion system (1),
r(t) the reference signal, q(t) the output and p(¢) the scheduling variable.

system represented by (1) and a desired trajectory 7(¢) on
the generalized coordinate vector ¢(t), the inputs W (t) to
steer the system over the desired trajectory satisfy

W (t) = M(r(t))i(t) + C(r(t),7())7(t) + K(r(t)). (&)

The system achieves perfect tracking of the reference
trajectory under the following conditions:

o The trajectories r, 7 and # exist and are known.
o The model is perfectly accurate and if ¢(0) = r(0) and
q(0) = 7(0).

However, if the system deviates slightly from the desired tra-
jectory, the prediction of the system’s trajectory based upon
the reference may lead to a deviation of the desired reference
trajectory once disturbances are present. A refinement of this
feedforward controller would be to include the (measured)
position and velocity of the system, i.e., replacing r(¢) and
7(t) with ¢(¢) and ¢(t) respectively such that

W(t) = M(q(t))i(t) + C(q(t), 4(2))7(t) + K(q(t)). (5
B. LPV inversion

In this section, the objective is to find a feedforward
system g such that (1) tracks a desired reference signal
r(t) as depicted in Figure 2. To achieve this, we aim at

r(t) 1 a(t)

Fig. 2. LPV feedforward block diagram where Xg is the LPV inversion
based feedforward controller, 3, the rigid body motion system (1), ()
the reference signal, g(t) the output and p(t) the scheduling variable.

finding the feedforward input ug(¢) through inversion of the
LPV embedding (2), e.g., find ug(¢) such that
E(p(t))dret(t) = A(p(t)) et (t) + B(p(t))us(t)  (6a)
Yre (1) = C(p(t))Trer (t) (6b)
where 2o (t) and y,e¢ (t) denote the desired compatible state
and output trajectory over time respectively and p(t) = ¢(t)
captures the position-dependency in the scheduling variable.
In obtaining an exact inverse of the plant, consider the
concept of relative degree, as introduced in [12], by which the
explicit influence of the input u(t) is observed through the
n-fold derivative of the output y(t). The concept presented in
[9] is used to recover dynamical relations between the desired
trajectory y,er, State trajectory x,er and feedforward input



ug and their time derivatives in the LPV descriptor state-
space setting for the case where the system matrices E(p(¢)),
A(p(t)), B(p(t)) and C(p(t)) have affine dependency on the
scheduling variables.
Define the n-th order time derivative of y as
m . 4"y
©odn

Given the state and output equations in (6), the n-th order
derivative of the output y,¢s satisfies:

TAEDY (Z) O (1) ayet )

k=0

where

f: ("‘1) U () M

(Z)A["’” (1)) (1) + B H (p()uie (1)

,.,,_
3 H

k=0
and (;) = ﬁlk), denotes the binomial coefficient. Let
Einy(p(t)) := E~1(p(t)) denote the inverse of E(p(t)). The
first derivative of the inverse of a matrix E(p(t)) is given as

[13]:

By (p(1)) = =B~ (p(t) E (p(1)) B~ (p(1))
and higher order derivatives of £~ (p(t)) can be recursively
computed. The system matrices are assumed to have affine

dependency on the scheduling variables, therefore the n-th
order derivatives are given as:

Z E'7 [”]

Collecting the terms in (7) dependent on the state x..f and
the input vector &.¢ results in a general representation:

yi:g :En(p(t)vp[l] (t)a s 7p[n] (t))mrcf + (8)

Eu(p(), p(t), ..., pl" (1) én,
with
-
&g = u;fr u;f—m u;fr["_l]} .
For compactness, we will abbrevi-
ate En(p(t),pM(t),...,pI" (1)) and

Fu(p(t), pM(#), ..., pl" (1) as E,(5(t)) and  Fy(5(t))
respectively. From (8) it can be derived that:

ug = Cég
= CFI0)) (shet — Balp0)rer)

where ' € R™«X""u jg a matrix that selects the feedforward
input ug:

(©))

C = [Ttnuxns) Omuxn-1ym.)] -
Here, F1i(j5(t)) denotes the point-wise pseudo inverse depen-
dent on the scheduling variable p(t) and its derivatives. If the

exact or right inverse of F,(j(t)) exists for all scheduling
variables p € P, then it is possible to find the ideal ug

that drives the system exactly according to yﬁ Utilizing
the system description (6) and (9), the LPV system inverse

Yg is given as:

Ba(p(t))iret () = Ag (p(t))zret (t) + Ba(p(t))ylet (£)  (102)
ug(t) = Car(p(t))wver (t) + Dae(p(t))yled(t)  (10b)
where
Eg(p(t)) = E(p(t))
Ag(p(t)) = A(p(t)) — B(p(t))CEL(5(t)) En(5(t))
By (p(t)) = B(p(t)) CE} (5(t))
Cre(p(t)) = —CF}(3() En (5(1))

Dg(p(t)) = CE(3(t)).

The system description (10) represents the inverse system of
(6) that takes yﬂ (t) as input and generates the feedforward
signal ug(t) as output along the corresponding reference
state trajectory xycf(t). This method holds under the follow-
ing conditions

« the relative degree n is known and it is the same for all
values p € P,

« y" € L, is known a priori with fo yrar = o,
resulting in a bounded feedforward input,

« FI(p(t)) is computable in the sense of least-norm
(right) or exact inverse for all values p € P and their
time derivatives pl*) € Pl withi=1,...,n

« p and the time derivatives pl’ are available in real time.

o E(p) is invertible for all values p € P.

IV. SIMULATION STUDY

This section first introduces a high performance rigid-
body motion system subject to position-dependent dynamic
behavior. As a second simulation example, a DC motor
with a mass imbalance is introduced. A simulation study
is performed on both examples to assess the performance
of the feedforward strategies in comparison to acceleration
feedforward. Finally, the results are extensively discussed.

The feedforward controllers will be tested in a closed-
loop environment, for both example systems, according to
Figure 3 to assess the performance under stable closed-loop
conditions. The feedback controllers have the following PID
structure consisting of an integral action, a derivative action
and a lowpass filter

(8 4+ WhwTw; ) (S + WhwTwy)
5(5% + 2B1pWhwTan, s + Wiy 2, )
where for either of the considered examples corresponding

values of parameters will be given. The feedforward strate-
gies will be referred to as

C(s)=K

; (1)

1) LTI acceleration feedforward,

2) nonlinear feedforward based on (4),

3) parameter-dependent nonlinear feedforward (5),

4) LPV inversion feedforward of the system embedding

(2) as in III-B.

An condition mismatch, e.g., ¢(0) # r(0) between the initial
conditions and the reference, are simulated to mimic an
inaccurate position measurement at the start of the trajectory.
The /5 and /. ,-norms of the sampled error data will be
inspected to assess the performance.
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Fig. 3. Block diagram for the closed-loop simulation. Here the FF-block
represents the feedforward controller, the FB-block represents the feedback
controller, r is the reference signal and ¢ is the system output.

A. Example system 1: Magnetically levitated planar actuator

Magnetically levitated planar actuators are high-
performance positioning devices. A schematic diagram of
the translator is shown in Figure 4, where (Zm,¥Ym,2m)
denotes the global reference frame and (x4, y:, 2¢) denotes
the reference frame of the translator. Let the position of

Fig. 4. Schematic of the magnetically levitated planar actuator. The triplet
(m, Ym, 2m ) denotes the global reference frame and (x¢, y¢, z¢) denotes
the translators reference frame. Let the dashed plate denote another position
of the translator in the global reference frame.

the translator in the global reference frame be given by the
generalized coordinates ¢ € R™¢ defined as

q:= [xs Ys 2s Xs Us Cs}Ta (12)
where (xs,ys,2s) denote the translation of the Center of
Mass (CoM) of the translator with respect to the global
reference frame (z,,,Ym,2m) and the angles (xs, s, (s)
denote the rotation of the center of mass around the axes of
the global reference frame, defined under the Pitch-Yaw-Roll
representation [10]. In this representation, the three angles,
as in Figure 4, denote the successive rotation around the
three inertial frames: first a rotation x around the z-axis
(yaw), then a rotation v around the y-axis (pitch) and finally
a rotation ¢ around the z-axis (roll). Furthermore, the wrench
vector is defined as

W=[F, F, F. n 7 7] , (13)

and contains the generalized forces and torques acting on the
plate at the center of mass expressed in the global reference
frame (2, Ym, 2m ). The output of the system is equal to the
states e.g., y(t) = ¢(t). The solution to the Euler-Lagrange
equations lead to equations of motion of the form (1). The
matrices M (q), C(q,¢) and K(q) are given in Appendix I.

Throughout this example, we will consider the model in
the forms (1) and (2). In the LPV case (2) the scheduling
variables p(t) are chosen as the Christoffel symbols I';;xqx
(see Appendix I), thus being a function of the measured vari-

Fig. 5.

The DC motor with mass imbalance.

ables i.e., p(t) = f(q(t),¢(t)). One can also apply the LPV
inversion method on the local aspects of a model, which for
motion systems are often obtained through identification or
linearization techniques around a set of operating conditions
(see, e.g., [11], [14]), however due to lack of space this is not
explained in this paper, but, instead, can be found in [15].

The following parameters for the feedback controller (11)
are used: Wy = 327, 1o, = £, Ty = 1, 7w, =4, Bp =1
and K = diag(3.579,3.579, 3.579, 0.044, 0.044, 0.087)-107.
An initial condition mismatch of x(0) = 5 prad and no
mismatch for the other coordinates is used.

B. Example system 2: DC motor with mass imbalance

A DC motor with mass imbalance depicted in Figure 5,
which was introduced in [16], is used as a second example
system. The DC motor dynamics become position-varying
if an additional mass is mounted off-center to the rotation
disc. A mathematical description of the system is given in
form (1), where ¢(¢) is the rotation angle of the disc in [rad]
as well as the measured output y(t) = ¢(t) and W (¢) is
the input voltage in [V]. The Mass, Coriolis and Stiffness
matrices are

RJ
M) = 5 b+ 1)
—RMgl K
K(q(t)) = m sin(q(?))
and the parameters can be found in Table I.

TABLE I
PARAMETERS OF THE DC MOTOR.

Parameters | Value

K = 0.0536Nm/A

R = 9.50Q
L=084-10"3H
J=22-10"4Nm?2
b=6.6-10"3Nms/rad
M = 0.07kg

1 =0.042m

Motor torque constant
Motor resistance

Motor impedance

Disc inertia

Viscous friction

Additional mass

Mass - center disc distance

One can embed (1) in a global LPV embedding (2) by
choosing the scheduling variable as p(t) = %.

The following parameters for the feedback controller (11)
are used: Wiy = 107, 1oy, = 1, 7w, = £, 70y, =6, Bip = 0.8
and K = 8.0657 - 107. An initial condition mismatch of

q(0) = {5 rad is used.



C. Simulation results and discussion

This section provides simulation results of the feedforward
controllers, given in Section III, and are compared to an
acceleration feedforward, as described in [2]. Improvement
of feedforward control which explicitly incorporates position
dependent behavior is highlighted.

For example system 1, the reference trajectory with cor-
responding error signal is given in Figure 6. The ¢y and /.-
norms of the sampled error data are given in Table II. Note
that only the results for the angles (x,,() are shown as
the effects due to parameter-dependent behavior only affects
the angular rotations. The translations (z,y, z) are therefore
perfectly tracked using all the feedforward methods and do
not contain any relevant information for this example.

For example system 2, the reference trajectory and the
error trajectories can be found in Figure 7. The {5 and /.-
norms of the sampled error data are given in Table III.

A number of conclusions can be drawn regarding both
simulation examples. Firstly, The acceleration feedforward
does not take into account position dependent behavior. It is
outperformed by all other feedforward methods, but will be
used as a baseline for comparing the other methods.

Secondly, the nonlinear feedforward tries to cancel the
dynamics of the system based on the information from the
reference signal. As long as the system does not deviate from
the reference trajectory, this method achieves good results.
However, it is not very robust with respect to disturbances
or model uncertainties. For example, an initial condition
mismatch or disturbance has a direct effect on this method.
The further away the system is from the reference trajectory,
the worse the tracking performance becomes.

Thirdly, the parameter-dependent nonlinear feedforward is
an improvement over the nonlinear feedforward. The inclu-
sion of the measured position gives it the ability to slightly
correct for disturbances, e.g., when the system deviates from
the desired trajectory.

Fourthly, the LPV inversion based feedforward describes
the inverse dynamics of the nonlinear system in an LPV
setting. When disturbances or initial condition mismatches
are present, it can be seen that it is more robust than the
nonlinear feedforward as it takes the position-dependency of
the disturbed system into account by utilising the available
scheduling parameters instead of the prediction from the
reference signal.

Finally, an important observation to make is that the
parameter-dependent nonlinear feedforward and the LPV
inversion feedforward methods produce similar results. Both
have accurate tracking capabilities and give similar improve-
ments under disturbances compared to the other feedforward
methods. A possible drawback of the LPV inversion based
feedforward method is the computational cost. This method
first has to solve the system matrices (10) to get the inverse
system, after which (10) has to be solved over time. This
has to happen in real-time and adds significantly more
computation time compared to the parameter-dependent non-
linear feedforward, for which the input can be computed by
simple matrix multiplications. The LPV inversion method
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Fig. 6. Simulation results for on example system 1. The reference

trajectories are shown on the left hand side. The resulting error plots for
the four feedforward controllers are shown on the right hand side.
TABLE II
EXAMPLE SYSTEM 1 CLOSED-LOOP SIMULATION DATA. 2 AND
£56-NORMS OF THE SAMPLED ERROR SIGNAL WITH RESPECT TO THE X
1) AND ( ANGLES, USING A SAMPLING TIME T’s = 65 uSEC.

FF | £3-norm x10~4 | £oo-norm x1075

| x P ¢ | x ¥ ¢
1) | 07591 00811 0.0486 | 0.5000 00290 0.0219
2) | 07429 0.0002  0.0001 | 0.5000 0.0001  0.0000
3) | 07429 0.0000 00001 | 05000 0.0000 0.0000
4 | 07429 00000 0.0001 | 0.5000 0.0000 0.0000

requires the availability of the derivatives of the scheduling
variables which can be obtained either through estimation or
by placing extra sensors if these are not directly available.
Furthermore, the inclusion of the scheduling parameters in
the feedforward controller creates an additional feedback
loop which remains to be investigated.

TABLE III
EXAMPLE SYSTEM 2 CLOSED-LOOP SIMULATION DATA. £2 AND
£o0-NORMS OF THE SAMPLED ERROR SIGNAL WITH RESPECT TO THE
ANGLE g, USING A SAMPLING TIME Ts = 1 mSEC.

FF 1) 2) 3) )
fonorm | 5.5005 1.4407 1.4146 1.4146
loo-norm | 0.2790 0.2618 0.2618  0.2618

V. CONCLUSIONS
In this paper several methods were presented that incor-
porate parameter-dependent dynamic behavior in the design
of feedforward controllers by utilizing the nonlinear control
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Fig. 7. Simulation results for example system 2. The top figure displays

the reference trajectory. The bottom figure displays the error signal for the
four feedforward controllers.

represenation to incorporate parameter-dependency as well as
the Linear Parameter-Varying (LPV) framework. The perfor-
mance of the feedforward methodologies is assessed through
simulation studies on (i) a high-performance magnetically
levitated planar actuator and (ii) a DC motor with mass
imbalance. The feedforward methods investigated in this
paper are shown to be able to cope with position-dependent
dynamics and lead to an increase in performance compared
to LTI or nonlinear techniques investigated in the simulation
studies. The best and, most interestingly, similar results are
obtained by incorporating the measured parameter-variations
in the nonlinear feedforward as well as by the inversion
of the LPV embedding. Due to computational benefits the
parameter-dependent nonlinear feedforward is preferred over
the LPV inverse feedforward. Future work contains fur-
ther investigation and possibly a proof of the equivalence
of the parameter-dependent nonlinear feedforward and the
LPV inversion feedforward. Also the effect of noise on
the scheduling parameters will be investigated. Moreover,
experimental validation will provide additional insight on the
results.

APPENDIX I

Given the dynamics in summation form:

Z Mij QJ + Z Z Fz]ijQk + Z sz
J=1

J=1k=1
fori = 1,---,n and ¢, W € R", Where the mass-matrix

M(q) is given as

m 0 0 0 0 0
0O m 0 O 0 0
0 0 m O 0 0
M@ =19 o o 1, 0 s
0 0 0 0 Iycos®(x)+Iesin®(x) o
0 0 0 a9 a1 Qa3

with

o = (2x) cos w)” : K ey =—Lsin(y),

az = cos?(¥) (Ie cos?(x) + Iy sin®(x)) + I sin® ()
and

m = 10.137, I, =0.125, I, =0.125, I = 0.248.

Next, define the components of the Coriolis matrix C(q, §) €
RHXTL as

Zrljqu7 for 1 .] - 1
k=1
where I';;;; are called the Christoffel symbols corresponding
to the inertia matrix M (g) and are chosen as:
oot <8Mij(Q) IMir(q) 5Mkj(Q)>
ijk — + .
2 Oqr 9q; 0q;
The stiffness matrix X = 0. An LPV embedding (2) is
obtained by choosing the scheduling variables as p(t) =

I';j1qr and additionally the sin and cos terms in M(q).
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