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Abstract— This paper considers a stochastic model predictive
control of linear parameter-varying (LPV) systems described
by affine parameter dependent state-space representations
with additive stochastic uncertainties and probabilistic state
constraints. In computing the prediction dynamics for LPV
systems, the scheduling signal is given a stochastic description
during the prediction horizon, which aims to overcome the
shortcomings of the existing approaches where the scheduling
signal is assumed to be constant or allowed to vary in a convex
set. The above representation leads to LPV system dynamics
consisting of additive and multiplicative uncertain stochastic
terms up to second order. The prediction dynamics are reposed
in an augmented form, which facilitates the feasibility of prob-
abilistic constraints and closed-loop stability in the presence of
stochastic uncertainties.

I. INTRODUCTION

Linear parameter-varying (LPV) system representations
offer an alternative for modeling and control of nonlinear sys-
tems. Basically, in the LPV framework, the dynamics depend
linearly on the state and the control input of the system, while
the nonlinearities are embedded via the scheduling signal.
Hence, a significant advantage of LPV system models is to
enable the application of powerful linear control synthesis
techniques to a wide range of practical applications. LPV
systems have been extensively studied in modeling and
control of nonlinear or time/space dependent systems with
many applied studies (see, e.g., [1], [17], [19], [21], [22],
[24] among many other references).

On the other-hand, model predictive control (MPC) has
been established as an effective control algorithm that deals
with constraints. Various MPC approaches for LPV systems
described by state-space representations have been addressed
in [6], [7], [10], [13], largely in a deterministic setting. In
MPC framework, the major difficulty for LPV systems is
that the scheduling signal can be measured only at current
time instant, but unknown during the prediction horizon,
which makes obtaining precisely the prediction dynamics
intractable. One way to handle this issue is to assume that the
scheduling signal is constant during the prediction horizon
[9], which is quite unrealistic. Another way is to assume
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that the variation of the scheduling signal is confined to a
convex set [7], [6], [10], [13], which falls under the robust
setting, and is often too conservative, as the synthesis of
the control law is based on all variations of the scheduling
signal in the convex set during the prediction horizon. In
practice, especially for slowly-varying systems, like process
control applications, during the prediction horizon, variations
of the scheduling signal may be limited to a much smaller set
often evolving around a predefined reference trajectory with
variations due to disturbances and noise. Thus, during the
prediction horizon, the scheduling signal can be modelled
to vary stochastically in a tube, where the probability of
future evolutions of the scheduling signal determines the
likely variations of the predicted dynamics, in contrast to a
worst case approach resulting from the robust setting where
unlikely extremes of the variations are equally possible.
Hence, our representation aims at striking a balance between
the previous two situations: being realistic and at the same
time less conservative.

We use the stochastic MPC framework in this paper, which
is suitable to address MPC problems with stochastic objec-
tive function and/or stochastic constraints, see [14] for more
details. In relation to our approach, stochastic MPC of LPV
systems is addressed using a scenario-based approach in [2],
where the scheduling signal is given a stochastic description,
by which randomly extracted scenarios of the scheduling
signal are used in the prediction dynamics. Although this
approach covers stochastic uncertainties of arbitrary distribu-
tions, the on-line computation increases considerably as the
scenarios increase. Further, even the soft constraints, with
given probability of satisfaction, can only be satisfied with
a confidence level. This implies that may be a possibility of
constraint violation as time progresses, which may make the
controlled system unstable.

In this paper, a stochastic MPC of LPV system subject
to additive stochastic uncertainties is considered, where
system matrices depend affinely on the scheduling signal.
Due to stochastic disturbances, probabilistic constraints are
considered, which means that occasional constraint violations
are allowed, depending on the probability of constraint
satisfaction. Due to the above considerations, the overall
LPV plant consists of additive and multiplicative stochastic
disturbances up to second order. To the best of authors’
knowledge, stochastic MPC of LPV systems with the above
considerations has not been addressed before.

To realize our objective we will make use of the stochastic
MPC framework for linear systems with multiplicative and/or
additive stochastic uncertainties [3], [4], [5], where the
augmented formulation of the prediction dynamics has been
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introduced to handle feasibility and stability at the beginning
of the prediction horizon via one-step ahead invariance
conditions. The main advantage of this approach is that it
alleviates the propagation of uncertainties during the predic-
tion horizon, which is difficult to handle in general. Overall,
an on-line MPC algorithm is derived, whose design requires
off-line parameter computations. A numerical example is
provided for an illustration.

Notation: The set N denotes the set of positive integers
including 0. Let Ek [z] denote the expectation of a random
variable z conditional on the information up to time k. The
predicted value of y at k + i, for k ∈ N and i ≥ 0, is
denoted by y(i|k) , y(k + i|k). For i, j ∈ N, Iji denotes
the set {i, i + 1, · · · , j}. Given real matrices L and M ,
(L � M ) L � M and (L � M ) L ≺ M denote that
the matrix L −M is positive (semi) definite and negative
(semi) definite respectively. I and 0 denote the identity and
zero matrices of appropriate dimensions respectively. In a
block matrix, symmetric terms are denoted by ∗. For given
matrices A and P of suitable dimensions, APA> is shortly
denoted by AP? if required. The acronym cdf stands for
cumulative distribution function; i.i.d. stands for independent
and identically distributed.

II. PROBLEM DESCRIPTION

Consider a discrete-time LPV system with the following
affine parameter dependent state-space representation:

x(k + 1) = A(p(k))x(k) +B(p(k))u(k) + δ(k), (1a)
y(k) = C(p(k))x(k), (1b)

where k ∈ N, x(k) ∈ Rnx is the state variable, u(k) ∈
Rnu is the control input, y(k) ∈ Rny is the output,
p(k) := [p1(k) · · · pnp(k)]> ∈ Rnp is the scheduling signal,
and δ(k) ∈ Rnx is an i.i.d. noise process with zero mean and
covariance matrix Σδ ∈ Rnx×nx . In (1b), no direct feed-
through term is considered for simplicity. All the matrix
functions A(p(k)), B(p(k)) and C(p(k)) are assumed to
have an affine dependency: L(p(k)) = L0 +

∑np

j=1 pj(k)Lj .
The state variable x(k) is assumed to be perfectly available
at each k ∈ N, thus, it is not necessary to consider any noise
in (1b). We make the following assumption.

Assumption 1: We consider that the scheduling signal
p(k) can be measured at each k∈N and vary in a hyper-
rectangle P,

{
[p11, p21], · · · , [p1np

, p2np
]
}
⊂ Rnp for some

finite scalars p1j , p2j with p1j < p2j , for j = Inp

1 .
To obtain prediction equations for (1) in an MPC frame-

work, a characterization of predicted values of the scheduling
signal is provided in the following. Given p(k), the values
p(i|k), for i ≥ 0, are assumed to be not known a priori,
but are allowed to vary in a tube as the convex polytopic
set Ω , {ζ ∈ Rnp | G (ζ − p(k)) ≤ H}, with Ω ⊂ P ,
probabilistically:

Pr {G (p(i|k)− p(k)) ≤ H | p(k)} ≥ ξ, i ≥ 0, (2)

where G ∈ R·×np , H ∈ R·, while ξ ∈ (0, 1) denotes the
probability level of evolution of future scheduling signals in
Ω. Further, the tube Ω is considered to be centered at p(k).

Observe the different representations of P and Ω, viz. the
representation of P as a hyper rectangle and Ω as a polytope,
which are taken to obtain convenient off-line parameters in
Section IV and a tractable representation (3).

A characterization of the scheduling trajectory p(i|k)
satisfying the probabilistic constraint (2) is given as follows:

p(i|k) = p(k) + βw(k + i), i ≥ 0, (3)

where w(.) ∈ Rnp are i.i.d. normal random vectors and
β ∈ Rnp×np is considered to be a diagonal matrix for the
simplicity of the exposition.

Remark 1: Notice that the realization of the scheduling
signal p(k) is finitely supported, where as the predicted
values of the scheduling signal p(i|k) are modelled to be
affected by a Gaussian noise in (3), which is not finitely
supported. A further explanation of representation (3) and
why it has no contradiction with Assumption 1 is given in
the sequel. It is an over-approximation of the region P in a
stochastic manner to meet with the objectives of the paper.

Observe that, in (3), it is important to choose β such that
the probabilistic constraint (2) is satisfied. To proceed, we
consider two cases.

Case 1: Scalar valued p(k): Since the tube Ω centered at
p(k), constraint (2) can be rewritten as

Pr{−$ ≤ (p(i|k)− p(k)) ≤ $ | p(k)} ≥ ξ, (4)

where G = [ 1 −1 ]> and H = [ $ $ ]> for some
scalar $ > 0. Using (3), it can be shown that (4) is equivalent
to $

β ≥ F
−1
w

(
ξ+1
2

)
, where F−1w (.) is the inverse cdf of the

normal random variable.
Case 2: Vector valued p(k): By using the arguments in

[23], a sufficient condition to satisfy (2) is given as

e>j δ
2Gββ>G>ej ≤

(
e>j H

)2
=⇒ Pr{G(p(k + i)− p(k)) ≤ H | p(k)} ≥ ξ, (5)

where ej denotes the jth column of I·×· and δ is√
F−1np,Chi(ξ), where F−1np,Chi(.) is the inverse Chi-square cdf

with np degrees of freedom.
For the predictor of p(i|k) in (3), it is natural to expect

p(0|k) to be equal to p(k). However using p(0|k) = p(k) in
(3) introduces a substantial notational complexity, because,
this would result in two state prediction equations: one for
i = 0, and another one for i ≥ 1, which is apparent from the
state prediction equations given in the next section. On the
other hand, p(k) may not be measured accurately in practice.
For instance, in LPV modeling of high purity distillation
columns, the scheduling signal is chosen as the bottom and
top product composition, where measurement errors in p(k)
exist [16]. Thus, additional observers would be required to
estimate the scheduling signal. So, while dealing with MPC
design for such systems, a possible strategy would be to
consider p(k) to be uncertain at k, for instance as in (3).
This can be viewed as a way to approach the entire problem,
instead of a limitation, as including p(0|k) = p(k) would
only increase the technical clutter of the paper. The following

5655



assumption is also made.

Assumption 2: The elements of the vector w(k) are as-
sumed to be independent of the elements of δ(k),∀k ∈ N.
If this assumption is relaxed, then the results of this paper
can be obtained by moderate extensions if the probability
distribution of δ(k) is assumed to be known.

In our approach, during the prediction horizon, the
scheduling variables are given a stochastic description. In
the LPV MPC literature, while computing the predicted state
and/or control inputs during the prediction horizon, either
the scheduling signal is assumed to be constant [9] or its
variations are assumed to belong to P [6], [7], [10], where
the latter refers to a robust but conservative approach to
handle future variations of the system dynamics. As given
in Section I, our representation (3) offers a balance between
these two situations: being realistic and less conservative.

The probabilistic state constraints are considered as:

Pr{|x(k) |≤ h} ≥ α, α ∈ (0, 1), (6)

where h , [h1 · · ·hnx
]>∈Rnx and hi > 0 for i = Inx

1 , and α
is the level of constraint satisfaction. It means that the state
variable is probabilistically constrained at each time k.

Consider x(i|k) and u(i|k) as the predicted state and the
predicted control input of (1) at time k+i, respectively, which
are to be computed at time instant k. Then, the objective of
the current MPC strategy is:

min
{u(i|k)}i≥0

Jk ,
∞∑
i=0

Ek
[
x>(i|k)Q ?+u>(i|k)R ?

]
subject to (1), (2), (6),

where the weighting matrices Q � 0 and R � 0, and
x(0|k) = x(k).

To address the above MPC problem in a tractable man-
ner, the closed-loop dual mode paradigm [8], [18] with
a parameter-dependent state-feedback is employed. In this
case, the control input is considered as

u(i|k)=

{
K(p(i|k))x(i|k)+c(i|k), if i = IN−10

K(p(i|k))x(i|k), if i ≥ N
(7)

where N is a finite control horizon, c(i|k) ∈ Rnu

are optimization variables and the parameter-dependent
state-feedback gains are given by K(p(i|k)) = K0 +∑np

j=1 pj(i|k)Kj , with Kl ∈ Rnu×nx for l = Inp

0 , and
pj(i|k) is given by (3). Though u(i|k) is given in the
state-feedback form (7), we assume that it belongs to a
compact set U . In practice, the set U denotes the limitations
of the actuator equipment. For instance, in process control
applications, input denotes the opening of a valve which
is inherently bounded and also results in a bounded flow
rate of substance (inputs or outputs). The similar kind of
probabilistic state and hard input constraints for MPC of LTI
systems in process control applications has been addressed
in [12].

III. AUGMENTED REPRESENTATION

The state dynamics of the LPV system (1) under (3) and
(7) can be given by

x(i+ 1|k) =
(

Φk +

np∑
j=1

Φ̃kjwj(k + i)

+

np∑
j,m=1

Bβj K
β
mwj(k + i)wm(k + i)

)
x(i|k)

+
(
B̄k +

np∑
j=1

Bβj wj(k + i)
)
c(i|k) +δ(k + i), (8)

where Φk = Āk+B̄kK̄k, Φ̃kj = βj
(
Aj +BjK̄k + B̄kKj

)
,

Āk = A0 +
∑np

j=1 pj(k)Aj , B̄k = B0 +
∑np

j=1 pj(k)Bj ,

K̄k = K0+
∑np

j=1 pj(k)Kj , B
β
j = βjBj and Kβ

m = βmKm.
Remark 2: Observe that, the dynamics of (8) contain

multiplicative noise terms, which resemble the setting treated
in [4], [5] for a case of stabilizing MPC controller, where
the multiplicative noise terms are of first order. However,
the dynamics (8) consists of additional multiplicative noise
terms of second order also. Hence, we will examine how the
techniques presented in [3], [4], [5] can be extended in the
sequel to address the current MPC problem.

To ensure feasibility of constraints and closed-loop sta-
bility in the MPC framework, the terminal constraints are
usually enforced at the end of the prediction horizon [15].
However, in the presence of uncertainties, the same approach
may be difficult to apply due to the propagation of uncertain-
ties. In this context, an alternative, computationally efficient
method has been addressed in [4], [11], where the augmented
formulation of the prediction dynamics has been employed
to handle feasibility and stability at the beginning of the
prediction horizon via one-step ahead invariance conditions.
Thus, as a first step, an augmented representation of (8) is
formulated, where the augmented state consists of the state
and the optimization variables.

Let

z(i|k) =
[
x>(i|k) f>(i|k)

]>
,

where f(i|k) = [c>(i|k) · · · c>(i + N − 1|k)]>. Then, the
augmented representation for (8) is given by

z(i+ 1|k) = Ψ̄i|k(w)z(i|k) + ν(k + i), (9)
with

Ψ̄i|k(w) = Ψk+

np∑
j=1

Ψ̃kjwj(k+i)+

np∑
j,m=1

Ψ̂jmwj(k+i)wm(k+i),

where

Ψk =

[
Φk B̄kΓ>u
0 M

]
, Ψ̃kj =

[
Φ̃kj Bβj Γ>u
0 0

]
,

Ψ̂jm =

[
Bβj K

β
m 0

0 0

]
,M =


0 I 0 · · · 0
0 0 I · · · 0
...

...
. . . . . .

...
0 0 · · · 0 I
0 0 · · · · · · 0

 ,

Γu =
[
I 0 · · · 0

]
, ν(k + i)=

[
δ>(k + i) 0>

]>
.
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IV. MPC SCHEME WITH CONSTRAINTS

In this section, first, we address the satisfaction of the
probabilistic constraints (6) via one-step ahead probabilistic
invariance [4], [20]. Then, we present an MPC algorithm,
which ensures closed-loop system stability, by rewriting the
cost Jk in terms of of the augmented state variable z.

A. Addressing the constraints

The constraints (6), for i = 0 are rewritten as

Pr{|x(0|k)| ≤ h} ≥ α⇔ Pr{G>z(0|k) ≤ ĥ} ≥ α, (10)

where G=
[

Γx −Γx
]
, Γ>x =

[
I 0

]
, and ĥ=

[
h> h>

]>
.

In (10), the augmented state at the beginning of the pre-
diction horizon is confined to an ellipsoidal set that leads
to satisfaction of the constraints (10) via the machinery of
probabilistic invariance. Thus, our objective is to construct
an ellipsoid Ez ⊂ Rnx+Nnu , such that

z(0|k) ∈ Ez =⇒ Pr{G>z(1|k) ≤ ĥ} ≥ α, (11)

implies that the constraint (10) will be ensured at each k. It
is intuitively clear from (11) that, to achieve such a property,
set Ez needs to be invariant in a probabilistic sense.

Definition 1: (Probabilistic invariance [4], [20]) For the
augmented representation (9), a set Ez is said to be invariant
with probability α, if for every z(0|k) ∈ Ez, the next state
z(1|k) belongs to Ez with probability α.

Consider Ez =
{
z : z>Pzz ≤ 1

}
, where it is appar-

ent that, for every Ez , there exists an ellipsoid Ex ={
x : x>Pxx ≤ 1

}
⊂ Rnx with Px =

(
Γ>x P

−1
z Γx

)−1
. Here

Ex is essentially a projection of Ez onto the Rnx -dimensional
space.

Assumption 3: For wl(k), l = Inp

1 and δ(k), it is possible
to have confidence regions Qw and Qv with probability α
∀k. This means that, for l = Inp

1 , for k ∈ N,

Pr {wl(k) ∈ Qw} ≥ α and Pr {δ(k) ∈ Qv} ≥ α. (12)
For each l = Inp

1 , wl(k) is a scalar, and thus without loss of
generality, let Qw be a symmetric interval around the origin
with extremes denoted by wv1 for v1 = 1, 2. Further, notice
that δ(k) is a multidimensional signal, and hence we let Qv
be a convex polytope with vertices denoted by δv2 for v2 =
InQv

1 . Also, let χv3 for v3 = 1, 2, denote an interval vertex
representation with extremes χ1 = 0 and χ2 = F−1χ (α),
where F−1χ (.) is the inverse cdf of a Chi-square distribution
with 1 degree of freedom. Let

νv2 =
[

(δv2)> 0>
]>
, (13)

Ψ̄k(wv1 , χv3)=Ψk+

np∑
j=1

Ψ̃kjw
v1 +

np∑
j,m=1

Ψ̂jmχ
v3 . (14)

In (14), the variable χv3 can be understood as a vertex repre-
sentation of the second order noise terms of Ψ̄i|k(w) in (9),
that have Chi-square distribution. The following proposition
is given to address the feasibility of the constraints (6).

Proposition 1: The probabilistic constraints (6) can be
satisfied by the control law (7), if there exist a scalar λ ∈

[0, 1] and P−1z � 0 such that −λP−1z 0 P−1z Ψ̄>k (wv1 , χv3)

∗ λ− 1 (νv2)
>

∗ ∗ −P−1z

 � 0, (15)

[
−(e>j ĥ)2 e>j G>P−1z

∗ −P−1z

]
� 0, (16)

for v1 = 1, 2, v2 = InQv

1 , and v3 = 1, 2, where νv2 and
Ψ̄k(wv1 , χv3) are given by (13) and (14), respectively, and
ej denotes the jth column of I2nu×2nu

.
The proof of Proposition 1 can be obtained by extending the
approach of [5, Lemma 3], which is avoided here for brevity.

B. Reformulation of the cost function

We rewrite the cost function Jk in Section II as
Jk =

∑∞
i=0 Si|k and Si|k = Ek

[
x>(i|k)Q ? +u>(i|k)R ?

]
where u(i|k)=K̄kx(i|k)+

∑np

j=1 βjwj(k+i)Kjx(i|k)+c(i|k)
and Si|k denotes a stage cost. Since x(i|k) is independent
of wj(k + i), we obtain Ek[u>(i|k)Ru(i|k)] =
Ek
[
x>(i|k)

(
K̄>k RK̄k +

∑np

j=1β
2
jK
>
j RKj

)
?

+x>(i|k)K̄>k Rc(i|k) +c>(i|k)RK̄kx(i|k) + c>(i|k)R ?
]
.

Thus, the cost Jk given above is rewritten as
Jk =

∑∞
i=0 Ek

[
z>(i|k)Q̃k?

]
, where

Q̃k=

[
Q+K̄>kR ?+

∑np

j=1β
2
jK
>
j RKj K̄>k RΓ>u

∗ ΓuR?

]
. (17)

Before proceeding, we introduce an operator

Lk(M) , Ψ>kM ?+
∑np

j=1Ψ
>
kMΨ̂jj+

∑np

j=1

(
Ψ>kMΨ̂jj

)>
+∑np

j=1Ψ̃
>
kjM ? +3

(∑np

j,l=1Ψ̂
>
jjMΨ̂ll +

∑np

j,m=1Ψ̂
>
jmM ?

+
∑np

j,m=1Ψ̂
>
jmMΨ̂mj

)
, where M is a matrix of appropriate

dimensions and the remaining matrices are described in (9).
Now, for P � 0, if it can be guaranteed that Lk(P ) ≺ P ,
then, for any k ∈ N, it can be shown that

lim
i→+∞

Ek [z(i|k)] = 0 (18)
and

lim
i→+∞

Ek
[
z(i|k)z>(i|k)

]
= Ωk, (19)

where Ωk is given by the solution of L>k (Ωk) + Σ̃δ = Ωk,
with Σ̃δ = diag{Σδ, 0}. One can arrive at (18) and (19)
by splitting the augmented state z(i|k) into deterministic
and stochastic part and addressing the asymptotic values of
Ek [z(i|k)] and Ek

[
z(i|k)z>(i|k)

]
as i→ +∞.

Thus, we modify Jk above as
∞∑
i=0

(
Ek
[
z>(i|k)Q̃k?

]
− lim
i→∞

Ek
[
z>(i|k)Q̃k?

])
=

∞∑
i=0

(
Ek
[
z>(i|k)Q̃k?

]
− tr

(
Q̃kΩk

))
:= Ĵk, (20)

where the modified cost Ĵk is now finite valued. From (18)
and (19), it is clear that Ek[z>(i|k)Q̃k?]→ tr(Q̃kΩk) as i→
+∞, which makes Ĵk finite. We give a following proposition
to compute the cost function Ĵk in a tractable way at each
time instant k ∈ N.

Proposition 2: The cost Ĵk in (20) is given by

Ĵk =
[
z>(0|k) 1>

]
Θk?, (21)
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Algorithm 1 Stochastic LPV MPC Algorithm
1: Data: %,K0 · · ·Knp

and Pz
2: Initialize: k ← 0
3: while k ≥ 0 do
4: if k = 0 with x(0) ∈ Ex then
5:

f∗(k) = arg min
f(0|k)

[
z>(0|k) 1>

]
Θk? (23)

s.t. z>(0|k)Pz? ≤ 1.

6: else if x(k) ∈ Ex then
7:

f∗(k) = arg min
f(0|k)

[
z>(0|k) 1>

]
Θk? (24)

s.t. z>(0|k)Pz? ≤ 1,[
z>(0|k) 1>

]
Θk? ≤

[
z∗>(k − 1) 1>

]
Θk−1?

− z∗>(k − 1)Q̃k−1 ?+%. (25)

8: else
9:

f∗(k) = arg min
f(0|k)

(
Γ>x

(
Ψk +

np∑
j=1

Ψ̂jj

)
z(0|k)

)>
Px?

s.t.
[
z>(0|k) 1>

]
Θk? ≤

[
z∗>(k − 1) 1>

]
Θk−1?

− z∗>(k − 1)Q̃k−1 ?+%. (26)

10: end if
11: Apply u(k) = K(p(0|k))x(k) + Γ>u f

∗(k). Let k ←
k + 1.

12: end while

where

Θk =

[
Θ11(k) Θ12(k)
Θ>12(k) Θ22(k)

]
(22)

=

[
Lk(Θ11(k))+Q̃k Ψ>k Θ12(k)+

∑np

j=1 Ψ̂>jjΘ12(k)

∗ −tr(Θ11(k)Ωk)

]
.

Proof: The proof can be obtained by extending [5, Theorem
2] to our approach, which is avoided here.

C. The stochastic LPV MPC law

Using the reformulated cost in the previous section, the
proposed MPC law is given by Algorithm 1. The objective
of the MPC algorithm is to minimize Ĵk in (20) at each
k ∈ N as provided in Step-5 and Step-7, given x(k) ∈ Ex,
where z∗(k− 1) ,

[
x>(k − 1) f∗>(k − 1)

]>
and f∗(k−

1) is the optimal control action obtained at time k − 1. It
ensures that z(0|k) ∈ Ez , which makes z(1|k) satisfy the
probabilistic constraints (6) via (11). If x(k) /∈ Ex, then the
state must be steered to Ex by driving Ek [x(1|k)] towards
Ex, i.e; by minimizing the objective function E>k [x(1|k)]Px?
(Step-9). This means, whenever infeasibility occurs at some
k ∈ N, the objective shifts to ensuring feasibility instead of
minimizing Ĵk. Let % ∈ R be finite but sufficiently large
such that the right hand terms of (25) and (26) are positive.
Then the optimization in (23), (24) and constraints (25), (26)
ensure closed-loop stability under Algorithm 1, which can be

shown by extending the approach given in [5].
In Algorithm 1, we require the values of K0,K1, · · ·Knp

,
Pz and Θk at each k ∈ N. In that direction, a lemma is pre-
sented in the sequel that is useful for off-line computations.

Lemma 1: Let the scheduling signal p(k) =
[ p1(k) · · · pnp(k) ]> be varying in a hyper-rectangle{

[ p11, p21 ], · · · , [ p1np
, p2np ]

}
. Let M12(k) =(

X0+
∑np

j=1pj(k)Xj

)(
Y0+
∑np

j=1pj(k)Yj
)
+Z0+

∑np

j=1pj(k)Zj .
Then, for suitable matrices M11, M22, X0, · · ·Xnp

,
Y0, · · ·Ynp

and Z0, · · ·Znp
,[

M11 M12(k)
∗ M22

]
� 0 (27)

is implied by F i,jm,n ,

[
1
n2
p
M11 M̃12

∗ 1
n2
p
M22

]
� 0,

where M̃12 = 1
n2
p

(X0Y0 + Z0) +
pmj

np
(X0Yj +XjY0 + Zj)

+pmjpniXiYj , for m = 1, 2, n = 1, 2, i = Inp

1 and j = Inp

1 .

Proof: Briefly, the proof is given as follows. Let pj(k)=
ε1j(k)p1j + ε2j(k)p2j , where ε1j(k) ≥ 0, ε2j(k) ≥ 0
and ε1j(k) + ε2j(k) = 1, ∀j = Inp

1 , ∀k ∈ N. Then∑np

i,j=1

∑2
m,n=1εmj(k)εni(k)F i,jm,n�0 implies (27).

Now, the state-feedback gains K0,K1, · · ·Knp
are

computed off-line as follows. A possible choice for
K0,K1, · · ·Knp

is by solving the unconstrained problem of
minimizing Jk since f(i|k) = 0 for i ≥ N . Thus, we pose
an LPV state-feedback synthesis problem as follows:

OP1 : max
W−1�0,Y0,··· ,Ynp

tr(W−1)

s.t. L̄k(W ) ≺W, (28)

where Yi=KiW
−1 and L̄k(W )=Φ>kW ?+

∑np

j=1Φ
>
kWBβj K

β
j

+
∑np

j=1

(
Φ>kWBβj K

β
j

)>
+
∑np

j=1 Φ̃>jkW ?+Ξk(W ), Ξk(W )=

3
[∑np

j,m=1

(
Bβj K

β
j

)>
W
(
BβmK

β
m

)
+
∑np

j,m=1

(
Bβj K

β
m

)>
W ?

+
∑np

j,m=1

(
Bβj K

β
m

)>
W
(
BβmK

β
j

) ]
, for i = Inp

0 . The con-
straint (28) in OP1 is obtained by applying the mean square
stabilizing condition (Lk(P ) ≺ P ) in the absence of additive
disturbances with c(i|k) = 0.

Observe that computation of K0,K1, · · ·Knp depends
on the scheduling signal p(k), which leads to an infinite
dimensional problem due to the need for verifying the LMI
(28) for all possible values of p(k). However, Lemma 1 can
be used to tractably compute K0,K1, · · ·Knp

for p(k) ∈ P
by solving a finite set of LMIs. Once K0,K1, · · ·Knp have
been computed, Θk can be obtained from Proposition 2.
Finally, Pz can be selected to maximize the volume of Ex
as follows

OP2 : max
P−1

z ,λ∈[0,1]
logdet

(
Γ>x P

−1
z ?

)
s.t. (15) and (16).

Remark 3: The computational complexity of LMIs in ob-
taining K0,K1, · · ·Knp

are of order O(n2xn
2
p). However, in

computing Pz , the LMIs in OP1 are of order O((nx+N)2).
This means that the number of computations for ensuring
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Fig. 1. Sample realizations of the control input and the state variable.

feasibility of constraints via obtaining Pz increases as N
increases, which is to be expected. For the optimizations in
Step-5, Step-7 and Step-9 in Algorithm, theoretically each
of them need roughly O((nx +N)3) iterations.

V. NUMERICAL EXAMPLE

Consider system (1) with x(k) ∈ R, p(k) = sin(0.1k),
A(p(k))=1+0.5p(k), B(p(k))=1+2p(k) and δ(k)∼N (0, 1).
Consider |u(k)| ≤ 1, the probabilistic constraints (6) are
given by h=1 and α=0.85. Let G=[1 − 1]>, H=[0.02 0.02]>

and ξ = 0.9 in (2), that leads to the value of β as 0.0122.
Using OP1 and Lemma 1, the state-feedback gains are
calculated as K0=−0.2557 and K1=0.0021. By OP2,

Pz=


0.0659 0.0242 0.0004 0 0 0
0.0242 0.8990 −0.0030 0.0012 0.0001 −0.0001
0.0004 −0.0030 0.0719 0.0016 −0.0027 0.0009

0 0.0012 0.0016 0.0052 0.0001 −0.0002
0 0.0001 −0.0027 0.0001 0.0008 −0.0001
0 −0.0001 0.0009 −0.0002 −0.0001 0.0002

,
thus Px=0.0659. Let x(0)=3, that belongs to Ex, which
is necessary from Step-4 of Algorithm 1. Let Q=1, R=1,
N=5 and %=500. By Algorithm 1, sample realizations of the
control input and the corresponding state variable are given
for 50 different realizations of the noise in Figure, where, one
can qualitatively observe the occasional constraint violations
of the state variable; the red colored lines denote the bound
h in (10). To examine the probabilistic invariance (11), 1000
different realizations of the noise and the initial state x(0)
that belongs to Ex are considered, and observe that x(1)
belongs to Ex 869 times (approximate probability is 0.869).

VI. CONCLUSIONS

In this paper, a stochastic model predictive control (MPC)
of linear parameter-varying systems with additive stochastic
uncertainties is considered. The assumptions on the sys-
tem structure and the scheduling signal result in a overall
plant consisting of additive and multiplicative noises up to
second order. Probabilistic invariance is used to handle the
probabilistic constraints in terms of sufficient linear matrix
inequality conditions. An affine state-feedback control is
considered, where the state feedback gains are computed off-
line to guarantee closed-loop system stability, while the affine
terms are computed on-line to solve the MPC problem. In
overall, an algorithm is given that solves the MPC problem
guaranteeing the closed-loop system stability.
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algorithm for LPV systems subject to bounded rates of change of
parameters. IEEE Transactions on Automatic Control, 47(7):1147–
1153, 2002.

[7] A. Casavola, M. Giannelli, and E. Mosca. Min–max predictive control
strategies for input-saturated polytopic uncertain systems. Automatica,
36(1):125–133, 2000.

[8] L. Chisci and G. Zappa. Dual mode predictive tracking of piecewise
constant references for constrained linear systems. International
Journal of Control, 76(1):61–72, 2003.

[9] M. Huzmezan and J. Maciejowski. Reconfiguration and scheduling
in flight using quasi-LPV high-fidelity models and MBPC control. In
Proceedings of the American Control Conference, volume 6, pages
3649–3653, 1998.

[10] M. Jungers, R. C. L. F. Oliveira, and P. L. D Peres. MPC for LPV
systems with bounded parameter variations. International Journal of
Control, 84(1):24–36, 2011.

[11] B. Kouvaritakis, J. A. Rossiter, and J. Schuurmans. Efficient ro-
bust predictive control. IEEE Transactions on Automatic Control,
45(8):1545–1549, 2000.

[12] P. Li, M. Wendt, and G. Wozny. A probabilistically constrained model
predictive controller. Automatica, 38(7):1171–1176, 2002.

[13] Y. Lu and Y. Arkun. Quasi-min-max MPC algorithms for LPV
systems. Automatica, 36(4):527–540, 2000.

[14] D. Q. Mayne. Model predictive control: Recent developments and
future promise. Automatica, 50(12):2967–2986, 2014.

[15] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert. Con-
strained model predictive control: stability and optimality. Automatica,
36(6):789–814, 2000.

[16] T. Mejdell and S. Skogestad. Estimation of distillation composi-
tions from multiple temperature measurements using partial-least-
squares regression. Industrial & Engineering Chemistry Research,
30(12):2543–2555, 1991.

[17] G. Papageorgiou, K. Glover, G. D’Mello, and Y. Patel. Taking robust
LPV control into flight on the VAAC harrier. In Proceedings of the
IEEE Conference on Decision and Control, pages 4558–4564, 2000.

[18] J. A. Rossiter, B. Kouvaritakis, and M. J. Rice. A numerically
robust state-space approach to stable-predictive control strategies.
Automatica, 34(1):65–73, 1998.

[19] C. W. Scherer. LPV control and full block multipliers. Automatica,
37(3):361–375, 2001.

[20] Y. Su, K. K. Tan, and T. H. Lee. Comments on “Model predictive
control for systems with stochastic multiplicative uncertainty and
probabilistic constraints”. Automatica, 47(2):427–428, 2011.
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