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Abstract— This paper considers a general approach for the
identification of partial differential equation-governed spatially-
distributed systems. Spatial discretization virtually divides a
system into spatially-interconnected subsystems, which allows
to define the identification problem at the subsystem level.
Here we focus on such a distributed identification of spatially-
interconnected systems with temporal/spatial varying proper-
ties, whose dynamics can be captured by temporal/spatial linear
parameter-varying (LPV) models. Inaccurate selection of the
functional dependencies of the model parameters on scheduling
variables may lead to bias in the identified models. Hence, we
propose a non-parametric identification approach via a least-
squares support vector machine (LS-SVM)—’non-parametric’
estimation is in the sense that the model dependence on
the scheduling variables is not explicitly parametrized. The
performance of the proposed approach is evaluated on an Euler-
Bernoulli beam with varying thickness.

I. INTRODUCTION

Spatially-distributed systems, whose underlying dynamics

are multidimensional with respect to time and space –

typically governed by partial differential equations (PDEs)

– arise in various engineering problems. Examples include

paper production [1], environmental systems [2], canal reg-

ulation [3], vibration of flexible structures [4], etc.

Among the existing works on identification of this type

of systems, the vast majority of the approaches assumes

that the order of the underlying PDE is known and only its

coefficients need to be estimated, due to limited knowledge

on the actual physical properties, nonlinearities, etc. The

resulting parameter estimation problem is often nonlinear,

even if the PDE itself is linear (see [5] and [6]).

Instead of directly handling PDEs, here we focus on

a framework, where spatial discretization (induced by

the attached actuator and sensor pairs) allows to treat a

spatially-distributed system as a physical interaction between

spatially-discretized subsystems on one or multidimensional

discrete lattices, where each subsystem exchanges infor-

mation with its neighbouring subsystems [7]. A spatially-

interconnected system of one spatial dimension is shown in

Fig. 1. Compared to a centralized scheme, dynamics defined
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Roland Tóth is with the Control Systems Group, Dept. of Electrical
Engineering, Eindhoven University of Technology, P.O.Box 513, 5600 MB
Eindhoven, The Netherlands, email: r.toth@tue.nl

Nader Meskin is with the Dept. of Electrical Engineering, Qatar Univer-
sity, Doha, Qatar, email: nader.meskin@qu.edu.qa

at the subsystem level have smaller order, and hence are

much easier to handle in terms of both identification and

control.

Fig. 1. Spatially-interconnected system comprised of an array of spatially-
discretized subsystems.

This paper studies identification of spatially-

interconnected systems whose subsystems exhibit linear

time- and/or space-varying (LTSV) dynamics, due to finite

length, nonlinearity, boundary conditions, non-uniform

physical properties, etc. We consider systems whose

temporally-/spatially-varying dynamics can be captured by

temporal/spatial linear parameter-varying (LPV) models.

The LPV framework, which was first introduced in [8]

to handle time-varying and nonlinear systems using a linear

structure, has been extended to solve analogous problems

in spatio-temporal systems with varying properties [9] [10].

Least-squares based LPV identification techniques, originally

developed for linear time-varying (LTV) systems in [11],

has been extended to LTSV models for the identification of

temporal/spatial LPV models in [12], with the experimental

validation reported in [13]. Provided the finite element (FE)

model of a spatio-temporal system, [14] fills the gap between

FE modelling and distributed identification by extracting a

distributed LPV model from a centralized FE model. A local

approach, using a multimodel method, has been employed

for the subspace LPV identification of canal systems in

[15]. An LPV approximation of spatially-varying systems

in environmental modelling has been studied in [2].

The aforementioned works deal with parametric iden-

tification of temporal/spatial LPV models, assuming that

model parameters depend on the scheduling parameters in

a rational way. Based on heuristic selection of scheduling

policies, model parameters are estimated, so that a good

match between the identified model and the true system

is achieved. However, an a priori selection of rational

dependence functions often introduces structural restrictions

in the identified model which are often not respected by the

true underlying system. The underlying dependence function

can in theory be any function, including non-smooth and

discontinuous functions.

Recently, support vector machines (SVMs), originally de-

veloped for classification tasks in [16], have been employed

for non-parametric (i.e., non-a-priori parametrized) identifi-
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cation of LPV models. In classification tasks, a data set may

not be linearly separable in the original space. The appli-

cation of the SVM maps the data into a higher dimensional

space—the so-called feature space, so that the data in feature

space are linearly classifiable by a hyperplane. This concept

has been taken in [17] for LPV model identification, where

a least-squares SVM (LS-SVM) approach [18] has been

proposed for the non-parametric consistent reconstruction of

the dependency functions. Without explicitly parametrizing

the dependence functions, kernel functions are employed to

characterize the dot product of two mapped dependence func-

tions in the feature space. An instrumental-variable based

extension of the LS-SVM method has been developed in

[19] to account for general noise conditions. In the presence

of noisy scheduling parameters, the LS-SVM approach has

been accordingly adapted in [20].

Inspired by the work in [17], this paper explores the appli-

cation of machine learning based identification to parameter-

varying spatially-interconnected systems. The framework

considered here is rather general, in the sense that it is

applicable both to the parameter estimation of a given

PDE, and to systems whose governing PDEs are unknown,

due to profile complexity, operational environment, etc.

Provided properly selected excitation and system response,

the proposed non-parametric data-driven approach captures

the temporal/spatial varying properties of subsystems using

a distributed LPV model in the form of two-dimensional

difference equation.

This paper is organized as follows: Section II introduces

the considered model structure in the form of a two-

dimensional difference equation. In Section III, an algorithm

is proposed for the non-parametric identification of tempo-

ral/spatial LPV models based on the LS-SVM approach.

Simulation results using an Euler-Bernoulli beam with vary-

ing thickness are given in Section IV to demonstrate the

performance of the proposed method. Finally, conclusions

are drawn in Section V.

II. MODEL STRUCTURE

In this paper, we consider spatially-interconnected systems

which consist of a network of subsystems. The very same

framework has been considered in [12], where least-squares

(LS)-based black-box identification techniques have been

applied for the parametric identification of LTSV systems.

The framework employed here can be applied to problems

of an arbitrary number of spatial dimensions. For the sake

of presentation simplicity, in this paper systems of a single

spatial dimension are considered.

A two-dimensional ARX (autoregressive with exogenous

input) data-generating system representing a subsystem is

shown in Fig. 2. The input/output dynamics of the scheduling

dependent plant model G(θk, δs, qt, qs) and noise model

H(θk, δs, qt, qs) take the form

A(θk, δs, qt, qs)y0(k, s) = B(θk, δs, qt, qs)u(k, s), (1a)

A(θk, δs, qt, qs)v(k, s) = e(k, s), (1b)

where θk := θ(k) ∈ R
nθk and δs := δ(s) ∈ R

nδs are (pos-

sibly coupled) temporal and spatial scheduling parameters,

respectively, and all involved signals are two-dimensional

with respect to discrete time instant k and discrete space s.

Signal e(k, s) represents a two-dimensional Gaussian white

noise with zero mean, and v(k, s) denotes the filtered noise

according to Fig. 2. qt and qs are the temporal- and spatial-

shift operators, respectively, e.g., q−1
t q2su(k, s) = u(k−1, s+

2). For the sake of brevity, we consider here single-input

and single-output (SISO) subsystems, whereas the proposed

approach is rather general and can be adapted to multiple-

input and multiple-output (MIMO) subsystems.

u(k, s) G(θk, δs, qt, qs)
y0(k, s)

e(k, s)

H(θk, δs, qt, qs)

v(k, s)

y(k, s)

Fig. 2. Two-dimensional ARX model structure varying with respect to
time and/or space.

The time/space-scheduled polynomials A and B are de-

fined as

A(θk, δs, qt, qs) = 1 +
∑

(ik,is)∈My

a(ik,is)(θk, δs)q
−ik
t q−is

s , (2a)

B(θk, δs, qt, qs) =
∑

(jk,js)∈Mu

b(jk,js)(θk, δs)q
−jk
t q−js

s , (2b)

where Mu and My are input and output masks, respectively,

determining how temporally- and spatially-shifted inputs and

outputs contribute to the dynamics of subsystem s [21],

a(ik,is)(θk, δs) and b(jk,js)(θk, δs) are the corresponding

coefficient functions, varying with respect to θk and δs
according to certain scheduling policies (the policies indicate

their change for each subsystem), while (ik, is) and (jk, js)
indicate which coefficients describe the relation of the con-

tributing shifted outputs and inputs, respectively.

According to (1)-(2), the output of subsystem s at time

instant k, i.e., y(k, s), is determined by a two-dimensional

difference equation

y(k, s) = −
∑

(ik,is)∈My

a(ik,is)(θk, δs)y(k − ik, s− is)

+
∑

(jk,js)∈Mu

b(jk,js)(θk, δs)u(k − jk, s− js) + e(k, s). (3)

An example is shown in Fig. 3 to illustrate the model struc-

ture, where black dots indicate contributing time and space

samples. The output of subsystem s is directly determined

by the past input and output of itself, and the past output of

its neighbouring subsystems s− 1 and s+ 1, i.e.,

y(k, s) =− a(1,1)y(k − 1, s− 1)− a(1,0)y(k − 1, s)

− a(1,−1)y(k − 1, s+ 1) + b(1,0)u(k − 1, s). (4)

4593



The input and output masks can also be represented as

sets with (jk, js) ∈ Mu and (ik, is) ∈ My. Take Fig. 3 as

an example. The input and output sets are

Mu = {(jk, js)|(1, 0)}, (5a)

My = {(ik, is)|(1, 1), (1, 0), (1,−1)}. (5b)

Mu js

jk

is

ik

My

Fig. 3. Input and output masks as an example.

III. TWO-DIMENSIONAL LS-SVM

Compared to black-box identification of (3) in [12], no

assumption or prior knowledge of the functional dependence

on the coefficients a(ik,is) and b(jk,js) on θk and δs is

required here. And (3) can be rewritten as

y(k, s) =
∑

(ik,is)∈My

ωT
(ik,is)

φ(ik,is)(θk, δs)y(k − ik, s− is)

+
∑

(jk,js)∈Mu

ωT
(jk,js)

φ(jk,js)(θk, δs)u(k − jk, s− js) + ǫ(k, s), (6)

where φ(ik,is)(θk, δs), φ(jk,js)(θk, δs) : Rnθk
+nδs → R

nH

are unknown functions that map the scheduling parameters

to a vector in the feature space of potentially infinite di-

mensions, ω(ik,is) and ω(jk,js) ∈ R
nH are corresponding

weighting parameters, and ǫ(k, s) is the residual.

The difference equation (6) can be further rewritten in a

regressor form as

y(k, s) = ωTψ(k, s) + ǫ(k, s), (7)

where

ω =

[

catikcatisω(ik,is)

catjkcatjsω(jk,js)

]

(8a)

and

ψ(k, s) =

[

catikcatisφ(ik ,is)(θk, δs)y(k − ik, s− is)
catjkcatjsφ(jk,js)(θk, δs)u(k − jk, s− js)

]

, (8b)

with (ik, is) ∈ My and (jk, js) ∈ Mu. The symbol cat•
means the concatenation of variables to create a vector. For

example,

catikcatisy(k − ik, s− is) =





y(k − 1, s− 1)
y(k − 1, s)

y(k − 1, s+ 1)



 , (9)

given (ik, is) ∈My defined as in (5b).

The estimation of (6) based on a data set D = {(u(k, s),
y(k, s))}, k = 1, . . . , Nt, s = 1, . . . , Ns can be formulated

as:

min
ω,ǫ

J (ω, ǫ) =
1

2
||ω||2l2 +

γ

2

Ns
∑

s=1

Nt
∑

k=1

ǫ2(k, s), (10a)

s.t. (7) holds, (10b)

where the scalar γ is the regularization parameter, Nt is

the size of measurements in time, and Ns is the number

of spatially-discretized subsystems.

To solve the minimization problem (10), the method of

Lagrange multipliers [22] can be employed. Introducing ma-

trix valued variables κ ∈ R
Nt×Ns – the so-called Lagrangian

multipliers – the Lagrangian is defined as

Λ(ω, ǫ, κ) =−

Ns
∑

s=1

Nt
∑

k=1

κ(k, s)[ωTψ(k, s) + ǫ(k, s)− y(k, s)]

+ J (ω, ǫ). (11)

Since J is quadratic and the constraint (7) is convex, solv-

ing for the global minima results in the following conditions:

∂Λ

∂ǫ(k, s)
= 0 → κ(k, s) = γǫ(k, s), (12a)

∂Λ

∂ω
= 0 → ω =

Ns
∑

s=1

Nt
∑

k=1

κ(k, s)ψ(k, s). (12b)

The dual problem can then be constructed by substituting

ǫ(k, s) and ω in (7) with (12). The resulting difference

equation is given as (13).

By stacking up the outputs of all Ns subsystems at all Nt

time instants in one vector, the output vector Y ∈ R
NtNs is

denoted as

Y =
[

y(1, 1) . . . y(1, Ns) . . . y(Nt, 1) . . . y(Nt, Ns)
]T
.

The Lagrangian multiplier matrix κ can be rearranged as

a vector K ∈ R
NtNs in the same way as Y , i.e.,

K =
[

κ(1, 1) . . . κ(1, Ns) . . . κ(Nt, 1) . . . κ(Nt, Ns)
]T
.

The dual problem solution (13) can then be written in a

compact form as

Y = (Ω + γ−1INtNs
)K, (14)

where Ω = Ωy +Ωu, with Ωy , Ωu ∈ R
NtNs×NtNs and

Ωy =
∑

(ik,is)∈My

Ωy

(ik,is)
, Ωu =

∑

(jk,js)∈Mu

Ωu
(jk,js)

, (15a)

where

Ωy

(ik,is)
(p, q) = y(m− ik, n− is)φ

T
(ik,is)

(θm, δn)

φ(ik,is)(θk, δs)y(k − ik, s− is), (15b)

Ωu
(jk,js)

(p, q) = u(m− jk, n− js)φ
T
(jk,js)

(θm, δn)

φ(jk,js)(θk, δs)u(k − jk, s− js), (15c)

with p = (k − 1)Ns + s and q = (m− 1)Ns + n.

In (15b) and (15c), the functions φ(⋆,⋆)(θ⋆, δ⋆) map the

scheduling variables to a feature space of higher dimension.

The underlying assumption of the SVM is that the exact

transformation into the feature space is unknown, and it does

not need to be known. Instead, a properly selected kernel

function – a function of all involved temporal and spatial
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y(k, s) =
∑

(ik,is)∈My

{ Ns
∑

n=1

Nt
∑

m=1

κ(m,n)y(m− ik, n− is)φ
T
(ik,is)

(θm, δn)φ(ik,is)(θk, δs)y(k − ik, s− is)

}

+
∑

(jk,js)∈Mu

{ Ns
∑

n=1

Nt
∑

m=1

κ(m,n)u(m− jk, n− js)φ
T
(jk ,js)

(θm, δn)φ(jk ,js)(θk, δs)u(k − jk, s− js)

}

+
κ(k, s)

γ
. (13)

scheduling parameters – is used to characterize the inner

product of two mapped functions in the feature space as

F(ik,is)(θm, δn, θk, δs) := φT(ik,is)(θm, δn)φ(ik ,is)(θk, δs),

F(jk,js)(θm, δn, θk, δs) := φT(jk,js)(θm, δn)φ(jk,js)(θk, δs),

without actually defining the scheduling dependence

φ(⋆,⋆)(θ⋆, δ⋆) directly. In case of SISO subsystems, the kernel

function is a scalar function which significantly simplifies the

computation.

Solving (14) for K gives

K = (Ω + γ−1INtNs
)−1Y, (16)

from which the matrix valued variable κ can be obtained. The

non-parametric estimate of the coefficient functions a(ik,is)
and b(jk,js) can then be computed as

a(ik,is) =

Ns
∑

n=1

Nt
∑

m=1

κ(m,n)y(m− ik, n− is)

F(ik,is)(θm, δn, θk, δs), (17a)

b(jk,js) =

Ns
∑

n=1

Nt
∑

m=1

κ(m,n)u(m− jk, n− js)

F(jk,js)(θm, δn, θk, δs). (17b)

Remarks:

• For a distributed system whose underlying PDE is

given, yet its parameters are not accurately known due

to nonlinearity, limited knowledge, etc, the identification

problem can be solved by first applying the finite

difference method to discretize the continuous PDE

into a two-dimensional difference equation (3), then

applying the proposed procedure to estimate coefficients

a(ik,is) and b(jk,js) with fixed input and output masks.

• In most cases, neither the order nor parameters of the

governing PDE are known a priori. The input and

output masks need to be selected before the implementa-

tion of the proposed approach for parameter estimation.

The choice of masks is updated after each trial until a

satisfactory accuracy is achieved.

• One potential drawback of the proposed identification

technique is that the computational complexity increases

with the number of discretized subsystems Ns and

the size of measurements in time Nt as O((NtNs)
3).

To alleviate the computational burden, one possible

approach has been discussed in [23] by avoiding over-

parametrization. Furthermore, singular value decompo-

sition for multidimensional measurements (in terms of

time and space) leaves room for further research.

• It is well known that the least-squares based identifi-

cation techniques can lead to bias in the presence of

colored process noise. The instrumental variable method

([20], [24]) can be adapted in the proposed method to

achieve unbiased estimation in these cases.

IV. SIMULATION RESULTS

The numerical example in [25] – a beam structure of

varying thickness as shown in Fig. 4 – is investigated here to

demonstrate the performance of the proposed identification

approach. The attachment of an array of equally distributed

actuator/sensor pairs induces spatial discretization of the

beam into an array of physically-interconnected subsystems.

Due to the non-uniform profile, subsystems exhibit varying

dynamics which can be captured by a spatial LPV model.

tmax
tmin

x

Fig. 4. Beam of varying thickness.

According to Euler-Bernoulli beam theory, the oscillatory

motion of a beam structure is governed by the PDE

∂2

∂x2
[EI(x)

∂2y(t, x)

∂x2
]+

∂2

∂t2
[ρA(x)y(t, x)] = f(t, x), (18)

where ρ is the density, A(x) is the area of the cross section,

E is the Young’s modulus, I(x) is the second moment of

inertia, y(t, x) is the transverse displacement, and f(t, x) is

the external force. The physical parameters of the studied

beam are given in Table I.

Description Value units

Length, L 508 mm

max. Thickness, tmax 0.8 mm

Thickness ratio, ct 0.75 -

Width, w 25.4 mm

Mass density, ρ 2710 Kg.m−3

Young’s modulus, E 72×10
9 Pa

TABLE I

PHYSICAL PARAMETERS OF THE FLEXIBLE BEAM.

The thickness of the beam changes linearly with x, and the

maximum thickness is tmax at one end, while the minimum

thickness is tmin at the other end. The ratio between the

maximum and the minimum thickness is defined as

ct =
tmin

tmax
. (19)
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The thickness at any location x is expressed as

t(x) = tmax(1− (1− ct)
x

L
). (20)

The area of the cross section and the second moment of

inertia can be computed as

A(x) = wt(x) = wtmax(1− (1− ct)
x

L
), (21a)

I(x) =
1

12
wt3(x) =

1

12
wt3max(1− (1 − ct)

x

L
)3. (21b)

Define the spatial scheduling parameter as δ = 2x
L
− 1 (so

that δ ranges from -1 to 1). Inserting (21) in (18) leads to

∂2y

∂t2
= α1

∂2y

∂x2
+ α2

∂3y

∂x3
+ α3

∂4y

∂x4
+ βf, (22)

where

α1 = −
Et2max

ρ

(1− ct)
2

2L2
,

α2 =
Et2max

ρ

(1 − ct)

4L
(1 + ct − (1− ct)δ),

α3 = −
Et2max

ρ

1

48
(1 + ct − (1− ct)δ)

2,

β =
2

ρwtmax(1 + ct − (1− ct)δ)
.

The sampling time is chosen to be T = 0.001 s. The beam

is (virtually) spatially discretized into Ns = 11 nodes. The

resulting sampling space is H = L
Ns−1 . The application of

the central finite difference method to (22) in both time and

space leads to a two-dimensional difference equation at the

subsystem level as

y(k, s) = a(1,2)y(k − 1, s− 2) + a(1,1)y(k − 1, s− 1)

+ a(1,0)y(k − 1, s) + a(1,−2)y(k − 1, s+ 2)

+ a(1,−1)y(k − 1, s+ 1) + a(2,0)y(k − 2, s)

+ b(1,0)f(k − 1, s),

with

a(1,2) = −
α2T

2

2H3
+
α3T

2

H4
,

a(1,1) =
α1T

2

H2
+
α2T

2

H3
−

4α3T
2

H4
,

a(1,0) = 2−
2α1T

2

H2
+

6α3T
2

H4
,

a(1,−1) =
α1T

2

H2
−
α2T

2

H3
−

4α3T
2

H4
,

a(1,−2) =
α2T

2

2H3
+
α3T

2

H4
,

a(2,0) = −1, b(1,0) = βT 2.

The temporal and spatial discretization results in the input

and output masks as shown in Fig. 5.

All subsystems are excited simultaneously with random

white noises with zero mean. Assume that the dependence

functions of coefficients a(ik,is) and b(jk,js) on δ are un-

known. Provided the generated input and output data D =
{(u(k, s), y(k, s))}, k = 1, . . . , Nt, s = 1, . . . , 11, the

Mu js

jk

is

ik

My

Fig. 5. Input and output masks of the Euler-Bernoulli equation.

proposed identification approach developed in Section III

has been implemented for non-parametric identification of

these coefficients. After testing various kernel functions, the

polynomial kernel turns out to be the most proper kernel for

this example, i.e.,

F(ik,is)(δn, δs) = (p(ik,is)δnδs + q(ik,is))
r(ik,is)

F(jk,js)(δn, δs) = (p(jk,js)δnδs + q(jk,js))
r(jk,js) .

A suitable choice of the tuning parameters has been found

by trial and error, i.e., p = q = 10 with r = 4.

Applying white noises as inputs, Fig. 6 shows a compari-

son of output of 3 selected subsystems between the original

and identified models, whereas Fig. 7 shows a comparison

between the true values and the estimated coefficients a(ik,is)
and b(jk,js). Note the scale of the plot for a(2,0), where

the deviation is within an insignificant range. To validate

the accuracy of the identified model, 11 out-of-phase chirp

signals up to 100 Hz, which cover the first 4 dominant modes,

are used as excitation signals. Fig. 8 shows a comparison

in frequency domain from 2 subsystem outputs to their

collocated inputs. The identified spatial LPV model well

captures the resonant behaviour at the modes, and thus

demonstrates a good match with the beam dynamics.

0

0.01

0.02

0

0.05

0 0.02 0.04 0.06 0.08 0.1
0

0.02

0.04

subsystem 3

subsystem 6

subsystem 9

time (s)

d
is

p
la

ce
m

en
t

(m
)

Fig. 6. Comparison of outputs at 3 selected subsystems between the original
(blue solid) and identified (red dashed) models, given 11 white noises as
inputs.

V. CONCLUSION

In this work, a non-parametric approach based on the LS-

SVM has been developed for the identification of spatially-
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interconnected systems with varying properties. A simulation

example has demonstrated that the proposed approach can

realize a distributed LPV model identification without a

prior knowledge of its dependence functions. Moreover,

the identified model can be directly employed for further

distributed controller design (see [7] [26]).
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