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Abstract— This paper examines a new event-triggered control
design approach for discrete-time linear parameter-varying
(LPV) systems to reduce the data transmission of the scheduling
variables and states to the controller. A parameter dependent
state-feedback controller and an event-triggering condition are
designed jointly to stabilize the closed-loop system. Then,
a procedure is proposed to obtain an event-based reference
tracking controller for the LPV systems such that the steady-
state response of the system output tends to a desired reference
signal and the required tracking performance specifications
are satisfied. Sufficient conditions for the design of the event-
triggered controller are obtained in the form of linear matrix
inequalities (LMI). Simulation results are presented to demon-
strate the effectiveness of the proposed control design approach.

Index Terms— Linear parameter-varying systems; Event-
triggered control; Input-to-state stable; Linear-matrix inequal-
ity; Output tracking.

I. INTRODUCTION

The paradigm of periodic control has been presented as the
ubiquitous choice for implementing feedback controller laws
on digital platforms. However, when a system is operating
desirably, it is less preferred to control it periodically which
can lead to unnecessarily use of communication resources.
Recently, a new approach called event-triggered control has
been proposed where the sensing and actuation are done only
when they are necessary to maintain the desired operation.
The original idea of event-based control proposed in [1], [2]
can be used to reduce the communication among the sensors,
the controller and the actuators and to reduce the usage of
communication resources significantly compared to periodic
control. In [3], an introduction to event and self-triggered
control systems is presented and event-triggered control as a
reactive approach has been distinguished from self-triggered
control as a proactive approach where the next sampling
or the actuation instance can be computed in advance.
The existing approaches can be divided into two general
categories, namely, emulation based [4] and co-design based
[5], [6] approaches. In the co-design approach, the feedback
law and the event-generator are designed jointly whereas
in the emulation-based approach, the controller is designed
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without considering the event-triggered nature of the control
system [7]. In the literature, several different event-triggering
mechanisms and control strategies are presented (see, e.g.,
[7]–[18]). However, most of the prior results on the event-
based control have been obtained for linear and nonlinear
systems and only a few studies have been done for the linear
parameter-varying (LPV) systems.

LPV dynamic systems are able to take advantage of the
simplicity of linear time-invariant (LTI) control synthesis
methods and, at the same time, accurately capture the dy-
namics of even nonlinear systems over a large operating
regime [19]. Yet, a few studies have been done on event-
triggered control of LPV systems [20], [21]. In [20], the co-
design problem of the event generator and the controller has
been addressed where the scheduling variables are assumed
to be not exactly known but their estimates satisfy known
uncertainty levels which causes some conservatisms. In [21],
an event-triggered H∞ control is proposed for discrete-
time linear parameter-varying systems by jointly designing a
mixed event-triggering mechanism. A mixed event-triggering
mechanism invokes the events when the norm of the dif-
ference between the current value and the last transmitted
one is larger than the sum of a proportional threshold
times the norm of current value and an additional threshold.
Compared to the previous works, a novel event-triggering
framework is introduced for LPV systems in this paper. In
addition, the problem of tracking control is investigated. It
should be noted that there are very few studies concerning
the tracking control design in event-triggered control [22]–
[24]. Particularly, to the best of our knowledge, there is no
study in the event-triggered tracking control of LPV systems,
although it is an important aspect for practical applications,
e.g., in robotic servo and missile flight path control.

In this study, we consider the problem of the co-design
of the event-triggering condition and the state-feedback con-
troller for discrete-time LPV systems by applying an input-
to-state stable Lyapunov function. Moreover, the algorithm is
developed to address event-based reference tracking control
in the LPV case, such that the steady-state response of the
output tends to a desired reference signal and meets the
required tracking performance. To this aim, based on event-
triggering conditions, an event generator sends information
on states and scheduling variables simultaneously to the
controller only when it is needed.

This paper is organized as follows. The problem statement
is presented in Section II. The main results are given in
Section III, where first, the co-design of the event-triggering
condition and the state-feedback controller to stabilize the
closed-loop discrete-time LPV system are presented. In the
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second part of this section, a procedure for reference tracking
state-based event-triggered control is addressed. In Section
IV, properties and performance of the proposed design ap-
proaches are studied through numerical simulations. The
concluding remarks are given in Section V.

Notation: In this paper, R, R+ and Z+ denote the field
of real numbers, the set of nonnegative reals and the set of
nonnegative integers, respectively. The ith element of a real
vector x is denoted by xi (subscripts are used for denoting
discrete-time dependence). We denote by ||x||=

√
x>x the

Euclidean norm of x ∈ Rn. When a matrix P is positive
definite (including symmetry), we write P > 0. If it is
positive semi-definite, we use P ≥ 0. Similarly, for negative
definiteness and negative semi definiteness, we write P < 0
and P ≤ 0. By 0 and I , we denote the zero and the identity
matrix of appropriate dimensions. A star (?) in a matrix
indicates a transposed quantity in the symmetric position.
A function β : R+ → R+ belongs to class K, if it is
continuous, strictly increasing and β(0) = 0 and to class
K∞, if additionally β(k)→ 0 as k →∞.

II. PROBLEM STATEMENT

Consider the discrete-time LPV system in the form of

x(k + 1) = A(θk)x(k) +B(θk)u(k) + E(θk)ω(k),

y(k) = C(θk)x(k), (1)
z(k) = Cz(θk)x(k),

with state x(k) ∈ Rnx , output y(k) ∈ Rny , input u(k) ∈
Rnu , disturbance ω(k) ∈ Rnω , θk ∈ Rnθ being the vector
of scheduling variables and z(k) ∈ Rnz is the vector of
controlled output signals. The variable θk lies in a set Θ ⊂
Rnθ for all k ∈ Z+. All the system matrices A(θk) ∈
Rnx×nx , B(θk) ∈ Rnx×nu , C(θk) ∈ Rny×nx , Cz(θk) ∈
Rnz×nx and E(θk) ∈ Rnx×nω , are assumed to depend on
θk and can be written in the polytopic form A(θk) B(θk) E(θk)

C(θk) 0 0
Cz(θk) 0 0

 =

n∑
i=1

ηi(θk)

 Ai Bi Ei

Ci 0 0
Czi 0 0

 , (2)

where ηi : Θ → R and the mapping η : Θ → Rn given by
η := [η1 ... ηn]

> is such that η(Θ) ∈ S with

S = {µ ∈ Rn|µi ≥ 0, i = 1, ..., n and
n∑

i=1

µi = 1}. (3)

Hence, for instance A(θk) lies for each θk ∈ Θ in the convex
hull Co{A1, ..., An} with n vertices. Note that, in this paper,
we use the short hand ηi(θk) := ηi(k).

The main concept of the proposed control structure is
depicted in Figure 1. In this setting, to control the discrete-
time linear parameter-varying plant, event generators are
employed to determine time instants ki ∈ Z+ with (i =
0, 1, 2, ...) at which information regarding the state sequences
x(k) and the scheduling variables θk of the system are
transmitted to a remote controller. This is intended to reduce
communication between the sensors and the control system.

LPV System

θk

Event Detector
x(k)

Controller
θki , xkiu(k)

Fig. 1: Event-triggering mechanism for an LPV system.

III. MAIN RESULTS

In this section, first a procedure is proposed to derive
an event-triggering condition and a parameter dependent
state-feedback controller simultaneously that can stabilize
the closed-loop system. Then, the procedure is extended
to design the event-based tracking controller for the LPV
system represented by (1).

A. State-based event-triggered control

Here, an approach is presented for the problem of the
co-design of an event generator and a state-feedback con-
troller for the undisturbed discrete-time LPV system (1)
(i.e., ω(k) ≡ 0). Consider the parameter-dependent event-
triggered controller as

u(k) = K(θki)x(ki), k ∈ [ki, ki+1). (4)

Then, the closed-loop system can be written as

x(k + 1) = A(θk)x(k) +B(θk)K(θki)x(ki). (5)

Define the state measurement error in the interval of
[ki, ki+1) as e(k) = x(ki) − x(k) and the controller gain
error as ∆K(θki , θk) = K(θki) − K(θk). The closed-loop
system (5) can be written as follows

x(k + 1) = A (θk)x(k) + v(k), (6)

where v(k) = B(θk)K(θk)e(k) + B(θk)∆K(θki , θk)x(ki)
and A (θk) = A(θk) + B(θk)K(θk). In the following the
main results for designing an event-based controller for LPV
systems in the form of (1) is given. However, first, the
concept of input-to-state stable (ISS)-Lyapunov function is
presented for (6). A function V : Rnx × Rnθ → R+ is ISS-
Lyapunov function [25] of (6) if there exist K∞ functions
α1 and α2 such that for any θk, θk+1 ∈ Θ and k ∈ Z+

α1(||x(k)||) ≤ V (x(k), θk) ≤ α2(||x(k)||), (7)

and there exists a K∞ function α and a K function γ which
satisfy

V (x(k + 1), θk+1)− V (x(k), θk) ≤
−α(||x(k)||) + γ(||v(k)||). (8)

If such an ISS-Lyapunov function exists, then the system
represented by (5) is asymptotically stable for any v(k) that
satisfies

γ(||v(k)||) < α(||x(k)||), ∀k ∈ Z+. (9)
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This provides the basic idea that the data (x(k) and θk)
should be sent to the controller whenever the above inequal-
ity is violated. The event instants, when such a violation
happens, are defined iteratively by

ki+1 = min {k > ki | γ(||v(k)||) > α(||x(k)||)} . (10)

The goal is to find the parameter dependent controller K(θk)
such that the closed-loop system (5) is ISS with respect
to signal v(k). The following theorem gives conditions to
obtain the parameter dependent state-feedback controller (4)
and event-triggering condition (9) to stabilize the closed loop
system (6).

Theorem 1. The closed-loop LPV system resulting from
the interconnection depicted in Figure 1 with an LPV plant
(1), event triggered controller (4) and event detector (10) is
asymptotically stable if there exist symmetric positive definite
matrices Si ∈ Rn×n, matrices Gi ∈ Rnx×nx , Fi ∈ Rnu×nx

and a positive scalar σx such that Gi +G>i − Si 0 GiA
>
i + F>i B

>
i Gi

? I I 0
? ? Sj 0
? ? ? σxI

 > 0,

(11)
∀i, j = 1, . . . , n.

Moreover, the controller is given by as K(θk) =∑n
i=1 ηi(k)Ki where Ki = Fi

(
G−1i

)>
, i = 1, . . . , n

and the event generator law is given as the violation of
||v(k)||2≤ σ||x(k)||2 where σ = σ−1x .

Proof. Assume that V (x(k), θk) = x>(k)P (θk)x(k),
α(||x(k)||) = σx(k)x>(k) and γ(||v(k)||) = v>(k)v(k),
then the inequality (8) can be written as

x>(k + 1)P (θk+1)x(k + 1)− x>(k)P (θk)x(k) < (12)

−σx>(k)x(k) + v>(k)v(k),

and it follows from (6) that

(A (θk)x(k) + v(k))
>
P (θk+1) (A (θk)x(k) + v(k))

−x>(k)P (θk)x(k) < −σx>(k)x(k) + v>(k)v(k),

which can be written as[
x>(k) v>(k)

]
M(θk, ϑk)

[
x(k)
v(k)

]
> 0, (13)

where ϑk = θk+1 and η(ϑk) ∈ S in (3) and

M(θk, ϑk) =

 −σI + P (θk)
−A >(θk)P (ϑk)A (θk)

−A >(θk)P (ϑk)

? −P (ϑk) + I

 .
The inequality (13) is equivalent to M(θk, ϑk) > 0 and
hence[

P (θk) 0
0 I

]
−
[

A >(θk) I
I 0

]
[
P (ϑk) 0

0 σI

] [
A (θk) I
I 0

]
> 0,

which can be rewritten as[
P (θk) 0

0 I

]
−
[
A >(θk)P (ϑk) σI

P (ϑk) 0

] [
P (ϑk) 0

0 σI

]−1
[
P (ϑk)A (θk) P (ϑk)

σI 0

]
> 0,

and by using Schur complement, it follows that
P (θk) 0 A >(θk)P (ϑk) σI
? I P (ϑk) 0
? ? P (ϑk) 0
? ? ? σI

 > 0. (14)

Multiplying (14) from left and right by
diag

(
G(θk), I, P−1(ϑk), σ−1

)
, where G(θk) is an

invertible matrix with appropriate dimension, represented in
the polytopic form as

G(θk) =

n∑
i=1

ηi(k)Gi,

and by making a change of variables as S(θk) = P−1(θk)
and S(ϑk) = P−1(ϑk), it follows that

G(θk)S−1(θk)G>(θk) 0G(θk)A >(θk)G(θk)
0 I I 0

A (θk)G(θk) I S(ϑk) 0
G>(θk) 0 0 σ−1I

 > 0.

(15)

Since
(
S−1/2(θk)G>(θk)− S−1/2(θk)

)>(
S−1/2(θk)G>(θk)− S−1/2(θk)

)
≥ 0, it follows that

G(θk)S−1(θk)G>(θk) ≥ G(θk) +G>(θk)− S(θk). (16)

Therefore, the inequality (15) is equivalent to
G(θk) +G>(θk)− S(θk) 0 G(θk)A >(θk) G(θk)

0 I I 0
A (θk)G>(θk) I S(ϑk) 0

G>(θk) 0 0 σxI

 > 0,

(17)

where σx = σ−1. Now, from (2) and (3), the LMI (11) is
concluded from (17) and the proof is completed.

Here, a procedure was proposed for the co-design of a
parameter dependent state-feedback controller and an event-
triggering condition for the corresponding LPV control prob-
lem. In the next section, the procedure is extended for
the problem of reference tracking with state-based event-
triggered control in the LPV context.

B. Reference tracking with state-based event-triggered con-
trol

In this section, a procedure for event-based tracking con-
trol of LPV systems is proposed so that the steady-state
response of the output y(k) tends to a desired reference
signal r(k) and meets the required tracking performance.
The schematic of the proposed control structure is shown in
Figure 2. There are only a few studies on event-triggered
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1

1− z−1
K2 A(θk), B(θk)

θk

u(k)
C(θk)

Cz(θk)

K1

Event Detector

r(k)

xq(k)

+ y(k)

z(k)

− +

x(k), θk

x(ki), θki

xq(ki), θki

Fig. 2: Event-triggering mechanism for tracking of a refer-
ence signal.

tracking control design and specially, to the best of our
knowledge, this problem has never been considered for the
LPV case. Here, a discrete-time compensator is used for the
tracking where the integral action of the tracking error can
be represented as follows

xq(k + 1) = xq(k) + (y(k)− r(k)) , (18)
y(k) = C(θk)x(k),

where r(k) is the reference signal and xq(k) is the in-
tegrator state. By defining the augmented vector ψ(k) =[
x>(k) x>q (k)

]>
and considering (1), the following aug-

mented LPV system representation is obtained

ψ(k + 1) = Ă(θk)ψ(k) + B̆(θk)u(k) + Ĕ(θk)$(k),

z(k) = C̆z(θk)ψ(k), (19)

where $(k) =
[
ω>(k) r>(k)

]>
, and

Ă(θk) =

[
A(θk) 0
C(θk) I

]
, B̆(θk) =

[
B(θk)

0

]
, (20)

Ĕ(θk) =

[
E(θk) 0

0 −I

]
, C̆z(θk) =

[
Cz(θk) 0

]
.

The objective is to design an event-triggered controller such
that the measured output y(k) tracks a reference signal r(k)
and the effect of the disturbance $(k) is attenuated on
the regulated output z(k). So, to ensure the induced `2-
gain performance relating $(k) to regulated output z(k),
the following inequality needs to be satisfied

∞∑
k=0

z>(k)z(k) < γ2
∞∑
k=0

$>(k)$(k), (21)

where γ is the level of attenuation.
The event-triggered controller is considered in the form of

u(k) = K̆(θki)ψ(ki), k ∈ [ki, ki+1). (22)

Therefore, based on (19) and (22), the following representa-
tion of the augmented closed-loop system is obtained

ψ(k + 1) = Ă(θk)ψ(k) + B̆(θk)K̆(θki)ψ(ki) + Ĕ(θk)$(k),

z(k) = C̆z(θk)ψ(k). (23)

Define the state measurement error in the interval of

[ki, ki+1) as e(k) = ψ(ki) − ψ(k) and the controller gain
error as ∆K̆(θki , θk) = K̆(θki) − K̆(θk). Therefore, the
augmented closed-loop system (23) can be rewritten as
follow

ψ(k + 1) = Ă (θk)ψ(k) + Ĕ(θk)$(k) + v(k), (24)

z(k) = C̆z(θk)ψ(k),

where v(k) = B̆(θk)K̆(θk)e(k) + B̆(θk)∆K̆(θki , θk)ψ(ki)
and Ă (θk) = Ă(θk)+B̆(θk)K̆(θk). The triggering condition
is chosen as

||v(k)||2≤ σ||ψ(k)||2, k ∈ Z+, (25)

and the triggering times ki can now be defined as the times
when the above inequality is violated.

Again, our objective is to obtain gains K̆(θki) and an event
detection parameter σ such that the augmented closed-loop
system (23) with $(k) = 0 remains ISS with respect to the
signal v(k). The following theorem achieves this objective.

Theorem 2. The output of the LPV system described by (19)
with θk ∈ Θ for each k ∈ Z+ tracks the output reference
r(k) and the `2-gain in (21) is satisfied with the event-
triggered controller (22) under event condition ||v(k)||2≤
σ||ψ(k)||2 if there exist symmetric positive definite matrices
Si ∈ Rn×n, matrices Gi ∈ Rn×n, Fi ∈ Rr×n and positive
scalars σx and γ such that
Gi +G>i − Si 0 0 GiĂ

>
i + F>i B̆

>
i Gi GiC̆z

>
i

? I 0 I 0 0

? ? γ2I Ĕ>i 0 0
? ? ? Sj 0 0
? ? ? ? σxI 0
? ? ? ? ? I

 > 0,

(26)
∀i, j = 1, . . . , n.

Moreover, the vertices of the controller gain are given by
K̆i = Fi

(
G−1i

)>
, i = 1, . . . , n and σ = σ−1x .

Proof. Consider the Lyapunov function as V (ψ(k), θk) =
ψ>(k)P (θk)ψ(k). To ensure the induced `2-gain (21) and
the ISS condition w.r.t. v(k) the following inequality should
be satisfied

ψ>(k + 1)P (θk+1)ψ(k + 1)− ψ>(k)P (θk)ψ(k) ≤
− σψ>(k)ψ(k)− z>(k)z(k)+

γ2$>(k)$(k) + v>(k)v(k). (27)

Substituting (24) into (27) gives(
Ă (θk)ψ(k) + Ĕ(θk)$(k) + v(k)

)>
P (θk+1)

(
Ă (θk)ψ(k) + Ĕ(θk)$(k) + v(k)

)
−

ψ>(k)P (θk)ψ(k) < −σψ>(k)ψ(k)−

ψ>(k)C̆z
>

(θk)C̆z(θk)ψ(k)+γ2$>(k)$(k)+v>(k)v(k),
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which can be written as

[
ψ>(k) v>(k) $>(k)

]
M(θk, ϑk)

 ψ(k)
v(k)
$(k)

 > 0, (28)

where ϑk = θk+1 and η(ϑk) ∈ S in (3) and

M(θk, ϑk) =

 M11 M12 M13

? M22 M23

? ? M33

 , (29)

where

M11 = P (θk)− σI − Ă >(θk)P (ϑk)Ă (θk)

− C̆>z (θk)C̆z(θk),

M12 = −A >(θk)P (ϑk),

M13 = −Ă >(θk)P (ϑk)Ĕ(θk),

M22 = −P (ϑk) + I,

M23 = −P (ϑk)Ĕ(θk),

M33 = γ2I − Ĕ>(θk)P (ϑk)Ĕ(θk).

The inequality (28) is equivalent to P (θk) 0 0
0 I 0
0 0 γ2I

−
 Ă >(θk) I C̆>z (θk)

I 0 0

Ĕ>(θk) 0 0


 P (ϑk) 0 0

0 σI 0
0 0 I

 Ă (θk) I Ĕ(θk)
I 0 0

C̆z(θk) 0 0

 > 0, (30)

which can be written as P (θk) 0 0
0 I 0
0 0 γ2I

−
Ă >(θk)P (ϑk) σI C̆>z (θk)

P (ϑk) 0 0

Ĕ>(θk)P (ϑ) 0 0


P (ϑk) 0 0

0 σI 0
0 0 I

−1 P (ϑk)Ă (θk)P (ϑk)P (ϑ)Ĕ(θk)
σI 0 0

C̆z(θk) 0 0

 > 0,

(31)

and by using Schur complement it follows that (30) is
satisfied if
P (θk) 0 0 Ă >(θk)P (ϑk) σI C̆>z (θk)
? I 0 P (ϑk) 0 0

? ? γ2I Ĕ>(θk)P (ϑk) 0 0
? ? ? P (ϑk) 0 0
? ? ? ? σI 0
? ? ? ? ? I

 > 0.

(32)

Multiplying (32) from left and right by
diag

(
G(θk), I, I, P−1(ϑk), σ−1I, I

)
, where G(θk) is

an invertible matrix with appropriate dimension and can be
written in the polytopic form as

G(θk) =

n∑
i=1

ηi(k)Gi,

and by making a change of variables as S(θk) = P−1(θk)

and S(ϑk) = P−1(ϑk), the inequality (32) can be written as
G11 0 0 G(θk)Ă >(θk) G(θk) G(θk)C̆>z (θk)
? I 0 I 0 0

? ? γ2I Ĕ>(θk) 0 0
? ? ? S(ϑk) 0 0
? ? ? ? σ−1I 0
? ? ? ? ? I

 > 0,

(33)

where G11 = G(θk)S−1(θk)G>(θk). Then, according to
(16), the inequality (33) can be written as
S11 0 0 G(θk)Ă >(θk) G(θk) G(θk)C̆>z (θk)
? I 0 I 0 0

? ? γ2I Ĕ>(θk) 0 0
? ? ? 0 0 0
? ? ? ? σxI 0
? ? ? ? ? I

 > 0,

(34)

where S11 = G(θk)+G>(θk)−S(θk) and σx = σ−1. Now,
using (2) and (3), inequality (26) can be directly obtained
from (34) to synthesize the event-based tracking controller
for an LPV system and hence the proof is completed.

IV. SIMULATION RESULTS

To illustrate the performance of the proposed method, a
numerical example is provided. We consider an LPV system
described by the following state-space matrices

A(θk) =

0.02 1 0
0 0.1 0
0 0 0.1 + θk

 , B =

 1
1
1

 , E =

 0
0

0.1

 ,
C =

[
1 0 0.2

]
, Cz =

[
0.5 0 0

]
,

and ω(k) = 0.2 sin(k), θk ∈ [0, 0.5] , k ∈ Z+. By mini-
mizing γ and σx (σ = σ−1x ) w.r.t. the LMI in Theorem 2,
K1,K2, γ and σ are obtained as follows

K1 = [−0.64 − 0.08 0.13 0.62] ,

K2 = [−0.65 − 0.08 0.20 0.63] ,

γ = 4.12, σ = 0.05.

If the value of σ is increased, then data is less frequently
transmitted. In the other words, for smaller values of σ,
better tracking is obtained because more data is sent to the
controller. In Figure 3, the output signal y(k) under the
proposed event-triggered control scheme and the reference
signal r(k) for two values of σ = 0.02, 0.05 are shown.
As it is displayed in this figure, for the smaller value of σ,
better tracking is obtained. Figure 4 shows the inter-event
interval of the event detector for both values of σ. The value
of each stem indicates the length of the time period between
that event and the previous one which shows a reduction
of data transmission to 59.8% for σ = 0.05 and to 91.7%
for σ = 0.02. As the figures confirm, more data is sent for
smaller σ.
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Fig. 3: The output signal y(k) and the reference signal r(k)
for σ = 0.05 and σ = 0.02.
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Fig. 4: Inter-event interval of the event detector for σ = 0.05
and σ = 0.02.

V. CONCLUSION

While there has been much work devoted to the event-
based control for linear time-invariant systems, LPV systems,
as an important class of dynamic systems which have the
advantages of linear control techniques has not been well in-
vestigated in this field. In this paper, a novel scheme of event-
based control for discrete-time LPV systems has been pro-
posed. The advantage of using event-triggered LPV control
is to reduce the data transmission (scheduling variables and
states information) between the system and the controller.
The parameter-dependent state feedback controller and the
event-triggering condition have been designed simultane-
ously to stabilize the resulting closed-loop system. Moreover,
the procedure has been extended for output tracking control
of LPV systems in an event-triggered scheme.
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