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Abstract— Identification of Linear Parameter-Varying (LPV)
systems is often accomplished via Input-Output (IO) model
structures in discrete-time. This approach is common because of
its simplicity and the possibility to extend identification methods
for Linear Time-Invariant (LTI) systems. However, a realization
of LPV-IO models as State-Space (SS) representations, often
required for control synthesis, is complicated due to the phe-
nomenon of dynamic dependence (dependence of the resulting
representation on time-shifted versions of the scheduling signal).
This conversion problem is revisited and practically applicable
approaches are suggested which result in SS representations
that have only static dependence (dependence on the instanta-
neous value of the scheduling signal). To reduce complexity, a
criterion is established to decide when an LTI type of realization
can be used without introducing significant error. To reduce the
order of the resulting SS realization, a LPV Ho-Kalman type
of model reduction approach is introduced, which is capable
of reducing even unstable models. The proposed methods are
illustrated by application oriented examples.

I. INTRODUCTION

In the Linear Parameter-Varying (LPV) control literature,

a discrete-time LPV system is commonly described in a

State-Space (SS) representation:

qx = A(p)x + B(p)u, (1a)

y = C(p)x + D(p)u, (1b)

where u : Z → R
nu , y : Z → R

ny and x : Z → R
nx are the

input, output and state signals of the system respectively, q is

the forward time-shift operator, i.e. qx(k) = x(k+1) and the

system matrices A, B,C, D, with appropriate dimensions,

are rational matrix functions of the scheduling signal p :
Z → P, nonsingular on P, where P ⊆ R

np is the scheduling

space. It is assumed that p is unknown in advance but online

measurable during the operation of the system. Note, that

all matrices in the representation (1a-b) are dependent on

the instantaneous value of the scheduling variable, which is

called static dependence.

In LPV identification, where models are determined from

measured data, often LPV Input-Output (IO) representation

based techniques, e.g. [2], are favored as they are based on

the extension of the classical Linear Time-Invariant (LTI)

prediction error framework. The strength of these approaches

lies in the simplicity of the model structures, the convexity

of the associated optimization problem, and the statistical

interpretation of parameter estimation in this context. Thus,
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in the LPV identification literature, the deterministic part

of the data generating system is commonly described in an

LPV-IO filter form:

y = −
na
∑

i=1

ai(p)q−iy +

nb
∑

j=0

bj(p)q−ju, (2)

where ai : P → R
ny×ny and bj : P → R

ny×nu are rational

matrix functions of p with no singularity on P and na ≥
nb ≥ 0, na > 0.

It has been recently observed that representations (1a-b)

and (2) are not equivalent in terms of IO-behavior, i.e. in

general, an LPV-IO representation (2) cannot be transformed

to (1a-b) without deforming the dynamical relation of y and u

[8]. This problem, which has been overlooked before, caused

performance loss and significant difficulties in applications

(e.g. see [10], [4]) as LPV-IO models had been thought to

be realizable as LPV-SS models according to the classical

rules of the LTI realization theory. In the air charge control

problem of a Spark Ignition (SI) gasoline engine, used in

this paper for illustration, LPV controllers designed on the

SS realization of an identified high validity LPV-IO model

show a significant performance loss if the SS realization is

obtained according to the LTI rules (see Section V).

Since main-stream LPV controller synthesis approaches

are based on state-space representations, obtaining a state-

space realization of the identified LPV-IO models has be-

come an essential task to be solved in practice. According

to a recently developed algebraic framework to solve such

transformation problems, see [7], it has been proved that for

obtaining equivalence between SS and IO representations, it

is necessary to allow for a dynamic mapping between the

scheduling signals and the system matrices (dynamic depen-

dence). This means that if a LPV-IO representation is given

in a filter form (2), then the equivalent SS representation is

qx = (A ⋄ p)x + (B ⋄ p)u, (3a)

y = (C ⋄ p)x + (D ⋄ p)u, (3b)

where A,B,C, D are matrix (real meromorphic) func-

tions depending on p and its finite many shifted versions:

{qip}i∈Z, e.g. A(p, q−1p, q−2p). Furthermore, ⋄ denotes the

evaluation of such dynamic dependence over a trajectory of

p, i.e. A⋄p = A(p, qp, q−1p, q2p, . . .). This does increase the

complexity of the produced SS model, which may prevent

controller synthesis or further use.

In this paper we propose practical and systematic methods

to solve the problem of transforming LPV-IO to LPV-

SS models by avoiding such dynamic dependence on p.

This provides a way of closing the gap between LPV-IO

identification and control synthesis. Additionally, a criterion
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is presented to assess the transformation quality if it has

been carried out by using the simple rules of the LTI case.

To reduce the order of the resulting SS realization, a LPV

Ho-Kalman type of model reduction approach is introduced

as well, which is applicable even for non-stable plants. All

ideas are illustrated with practical examples.

II. CRITERION OF DYNAMIC DEPENDENCE

In the literature, the issue of dynamic-dependence of

equivalent LPV representations is often overlooked when a

LPV-IO model is transformed into LPV-SS form, e.g. [4].

Instead, usually LTI realization theory is used to convert (2)

into (1a-b) where the matrices have only static dependence.

Based on this, (2) is commonly “realized” in terms of

canonical forms, like the reachable (or so called companion

reachability) form, which in the SISO case is given as




















−a1(p) −a2(p) . . . −ana−1(p) −ana
(p) 1

1 0 . . . . . . 0 0

0
. . .

. . .
. . .

...
...

...
. . .

. . . 0
...

...

0 . . . 0 1 0 0

b̃1(p) . . . . . . . . . b̃na
(p) b0(p)





















where b̃j = bj − ajb0 and if nb < na, then bj = 0
for j > nb. In [8], [7], it has been shown that in the

equivalent reachable canonical form of (2), the coefficients

have dynamic dependence on p and they become rational

functions of the original ai and bj coefficients of (2). This

implies that the above given canonical form is at best an

approximation of the true canonical realization of the LPV-

IO model, and the introduced approximation error can indeed

be arbitrary large (see [8] for an example).

However, dynamic dependence associated with a SS repre-

sentation of the system commonly increases the complexity

of control synthesis. Thus, it becomes a relevant question

when the approximative realization can be used without

serious performance degradation of the designed controller.

A simple answer is to analyze the error between the true and

the approximative realization. Building upon the realization

theory derived in [7], it can be shown that the approximation

error depends on how the impulse-response (IR) coefficients

{gi}∞i=0 of the plant are approximated. Considering the IR

coefficients of (2) with na = nb = 1 and b0(p) 6= 0, it

follows that for a given trajectory of p

g0(p, k) = b0(pk),

g1(p, k) = −a1(pk)b0(pk−1) + b1(pk),

g2(p, k) = −a1(pk)
(

b1(pk−1) − a1(pk−1)b0(pk−2)
)

,

etc., where pk = p(k), and it holds true that all solution

trajectories of (2) satisfy

y(k) =
∞
∑

l=0

gl(p, k)u(k − l). (4)

However, if the LTI realization theory is used, it is basically

assumed that the IR coefficients are

ĝ0(p, k) = b0(pk),

ĝ1(p, k) = −a1(pk)b0(pk) + b1(pk),

ĝ2(p, k) = −a1(pk)
(

b1(pk) − a1(pk)b0(pk)
)

,

etc. Note the difference of time dependence for each IR

coefficient gi and ĝi. As for order na, the first na + 1 IR

coefficients completely characterize the system dynamics in

a functional sense, thus if

J = sup
p∈PZ

∥

∥[g0(p, k) . . . gna
(p, k)]⊤−

[ĝ0(p, k) . . . ĝna
(p, k)]⊤

∥

∥

∞
(5)

with X
Z : Z → X is small, e.g. J < J̄ where

J̄ =
1

Υ
sup
p∈PZ

∥

∥[g0(p, k) . . . gna
(p, k)]⊤

∥

∥

∞
, (6)

and ‖ ¦ ‖∞ denotes the ℓ∞ norm, then the worst-case

difference between the IO behavior of the approximative

and the true realization can be considered negligible. Υ
is a constant which can be arbitrary chosen by the user

according to the desired accuracy of the approximation.

Note that J can be computed in practice by considering the

supremum over the values of g0, . . . , gna
for finite sequences

[p(k), . . . p(k − na)] = [p0 . . . pna
] ∈ P

na+1. Then by

griding of P
na+1 and assuming un upper bound on the rate

of variation of p, i.e. ‖p(k) − p(k − 1)‖ < η, approximate

computation of J becomes available in a lower bound sense.

Example 1: Consider the LPV-IO representation (2) with

na = 9, nb = 2, P = [−2π, 0] where the parameter

dependent coefficients are given as follows:

a1(p) = 0.24 + 0.1p, a2(p) = 0.6 − 0.1
√−p,

a3(p) = 0.3 sin(p), a4(p) = 0.17 + 0.1p,

a5(p) = 0.3 cos(p), a6(p) = −0.27,

a7(p) = 0.01p, a8(p) = −0.07, a9(p) = 0.01 cos(p),

b0(p) = 1, b1(p) = 1.25 − p, b2(p) = −0.2 −√−p.

(7)

Note that all coefficients have static coefficient dependence

on p. A fine grid of P
10 is constructed, where each grid point

represents a finite sequence of p such that ‖p(k) − p(k −
1)‖ < η1 = 0.01. Then (5) and (6) are adopted to compute

J and J̄ with Υ = 100, where the latter corresponds to a

1% relative error. The maximum achieved J over the whole

grid points is J1 = 0.054, while J̄ = 0.075. Since J1 < J̄ ,

in terms of the specified error, the LTI realization can be

employed to convert this LPV-IO model with η1 = 0.01 into

an adequate LPV-SS form using for instance the reachable

canonical form. To validate the approximate LPV-SS model,

the best fit rate (BFR), [6]:

BFR = 100%. max

(

1 − ‖y(k) − ŷ(k)‖2

‖y(k) − ym‖2
, 0

)

, (8)

where ym is the mean of y, is used. At each grid point, (8)

is applied to compute the error between the IR coefficients

of the true IO model and the obtained SS realization. The

resulting worst case BFR over the grid points is BFR1 =
96.73%. This means that using the LTI realization theory

to construct a LPV-SS form of the original LPV-IO model

leads to a worst-case approximation error BFR1, which can

be considered acceptable. The example can also be repeated
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with η2 = 0.3. According to (5) the maximum achieved J

is J2 = 1.26, so J2 ≫ J̄ . Therefore the LTI realization

concept cannot be used here to determine a SS realization of

the LPV-IO model as the resulting error can be considerable

(larger than the specified 1%). This is proved by computing

the worst case BFR2 over the grid points which is 67.39%
in this case.

In order to find a boundary η̄ for which J < J̄ the

following problem is solved

η̄ := arg inf
η≥0

J̄ − J s.t. J̄ − J > 0.

According to this criterion, here η = η̄ = 0.0139 is the

maximum allowed rate of change of p in terms of (6)

in order to use the LTI realization theory to perform the

transformation for (7). The worst case approximation error

associated with η̄ is BFR= 96.27% which can be considered

as a good approximation of the IO behavior of the original

LPV-IO model.

III. DEDICATED LPV-SS REALIZATION TO

ENSURE STATIC DEPENDENCE

By considering the realization theory developed in [7],

it can be shown that in special cases there exist ways of

converting LPV-IO models to LPV-SS realizations without

introducing dynamic dependence. However, each realization

form is based on different assumptions or provide non-

minimal SS realizations, which can be converted into mini-

mal realizations using appropriate tools, see Section IV.

A. Shifted Form

For the sake of simplicity we consider only the SISO case,

however the approaches we introduce can be extended to the

MIMO case in a straight forward manner. Assume that an

LPV-IO model is given in the form

y +

na
∑

i=1

ai(q
−ip)q−iy =

nb
∑

j=0

bj(q
−jp)q−ju. (9)

Note that ai and bj have a special form of dynamic de-

pendence, which can be introduced into the parametrization

of most of the available LPV-IO identification approaches.

Based on a so called natural state construction scheme, see

[7], it is possible to show that (9) has the following LPV-SS

representation:




















−a1(p) 1 0 . . . 0 b1(p)−a1(p)b0(p)
... 0

. . .
. . .

...
...

...
...

. . .
. . .

...
...

−ana−1(p) 0 . . . 0 1 bna−1(p)−ana−1(p)b0(p)
−ana

(p) 0 . . . . . . 0 bna
(p)−ana

(p)b0(p)
1 0 . . . . . . 0 b0(p)





















Note that this LPV-SS realization is minimal and has only

static dependence.

B. Augmented SS Form

Assume that the LPV-IO model is given in the form

y +

na
∑

i=1

ai(q
−1p)q−iy =

nb
∑

j=1

bj(q
−1p)q−ju. (10)

Note that ai and bj has a special form of dynamic depen-

dence which again can be introduced into the parametrization

of most of the available LPV-IO identification approaches.

It is also important that there is no feedthrough term, i.e.

b0 = 0. Under these conditions, an augmented equivalent

LPV-SS representation is given in a straightforward manner:

































−a1(p) . . . −ana
(p) b2(p) . . . bnb

(p) b1(p)
1 0 . . . . . . . . . 0 0
...

. . .
. . .

. . .
. . .

...
...

0 . . . 1 0 . . . 0 0
0 . . . 0 0 . . . 0 1
0 . . . 0 1 . . . 0 0
...

. . .
. . .

. . .
. . .

...
...

0 . . . . . . . . . . . . 1 0
1 . . . . . . . . . . . . 0 0

































Note that this SS realization is non-minimal, but has only

coefficients with static dependence. As a next step, an LPV

model reduction algorithm, see Section IV, can be applied

to remove the redundant states, if possible, but preserve the

static dependence.

C. Observability Form

Suppose that the LPV-IO model is given in the form

y +

na
∑

i=1

ai(q
−nap)q−iy = bna

(q−nap)q−nau. (11)

Note that ai and bj has a special form of dynamic depen-

dence and the input has a delay of q−na only. Then based on

the realization theory of observability canonical forms (see

[7]), an equivalent SS realization reads as




















0 1 0 . . . 0 0
... 0

. . .
. . .

...
...

...
...

. . .
. . .

...
...

0 0 . . . 0 1 0
−ana

(p) −ana−1(p) . . . . . . −a1(p) bna
(p)

1 0 . . . . . . 0 0





















Note that this LPV-SS realization is minimal and has only

static dependence.

IV. LPV MODEL ORDER REDUCTION

In this section we introduce a model reduction technique

for LPV-SS representations, which have affine dependence

on the scheduling parameters, as an extension of the LTI

Ho-Kalman realization algorithm, see e.g. [3]. This technique

will help to remove redundant states from transformed LPV-

SS realizations based on the augmented SS form method,

or further reduce converted SS models. Unlike LPV model

reduction techniques based on balanced truncation like [11],

which use a constant similarity transformation, the proposed

technique here, in addition to its simplicity, does not require

quadratic stabilizability or detectability of the full order

model, moreover it can be employed for both stable and

unstable systems without imposing any modification.
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A. Hankel Matrix

Consider the LPV-SS representation in (1a-b), where the

system matrices have affine dependence on the scheduling

functions represented as

A(p) = A0 +

nψ
∑

i=1

Aiψi(p), B(p) = B0 +

nψ
∑

i=1

Biψi(p),

C(p) = C0 +

nψ
∑

i=1

Ciψi(p), D(p) = 0, (12)

where ψi(¦) : P → R are analytic functions on P and

{Ai, Bi, Ci}nψ

i=0 are constant matrices with appropriate di-

mensions. Furthermore, for well-possedness it is assumed

that {ψi}nψ

i=1 are orthogonal on P with respect to an appro-

priate inner product. Define

M1 =
[

B0 . . . Bnψ

]

, (13a)

Mj =
[

A0Mj−1 . . . Anψ
Mj−1

]

, (13b)

Inspired by the formulation of the regressor in [9], introduce

the so called k-step extended reachability matrix as

Rk =
[

M1 . . . Mk

]

. (14)

Now, define

N1 =
[

C⊤
0 . . . C⊤

nψ

]⊤
, (15a)

Nj =
[

(Nj−1A0)
⊤ . . . (Nj−1Anψ

)⊤
]⊤

, (15b)

then the so called k-step extended observability matrix is

Ok =
[

N⊤
1 . . . N⊤

k

]⊤
, (16)

where Ok ∈ R
(ny

∑ k
l=1(1+nψ)l)×nx . It can be shown that

Hij = OiRj , (17)

can be regarded as the extended Hankel matrix of (1a-b). For

sufficiently large i and j,

rank(Hij) = n, (18)

which can be considered as the McMillan degree of (1a-b).

In the case of a minimal representation n = nx.

B. LPV Ho-Kalman Algorithm

In order to construct a minimal state-space realization of a

given LPV-SS representation with static dependence one can

proceed as follows. A Hankel matrix of the representation

for sufficiently large dimensions is constructed such that (18)

holds true. Then for any (full rank) matrix decomposition:

Hij = H1H2, (19)

with constant matrices H1 ∈ R
(ny

∑ i
l=1(1+nψ)l)×n and H2 ∈

R
n×(nu

∑ j

l=1
(1+nψ)l) satisfying rank(H1) = rank(H2) = n,

there exist matrices functions Â(p), B̂(p), Ĉ(p) defined as

in (12), such that the i-step observability matrix Ôi and the

j-step reachability matrix R̂j generated from their constant

matrices satisfies

H1 = Ôi, H2 = R̂j . (20)

The matrices Â(p), B̂(p), Ĉ(p) can be computed as follows:

When given H1 = Ôi, the matrices [ Ĉ⊤
0 . . . Ĉ⊤

nψ
]⊤

p1
engine vehicle

p2

v

+

KP

−+

Nref Te

Overall system

manifold
intake

αlim mnac

Fig. 1. Overall system including engine and vehicle in closed-loop.

can be extracted by taking the first ny(1 + nψ) rows and

when given H2 = R̂i, the matrices [ B̂0 . . . B̂nψ
] can

be extracted by taking the first nu(1 + nψ) columns. The

matrices {Â0, . . . , Ânψ
} can be isolated by using a shifted

Hankel matrix
←−Hij , which is simply obtained from the

original Hankel matrix Hij , by shifting the matrix one block

column, i.e. nu(1 + nψ) columns, to the left. Generate Ĥ2

from H2 by leaving out the last nu(1+nψ)j columns. It can

be directly verified that

H
†
1

←−Hij(I1+nψ
⊗ Ĥ

†
2) =

[

Â0 . . . Ânψ

]

, (21)

where H
†
1 and Ĥ

†
2 are the pseudo inverses of H1 and Ĥ2.

Similar to the LTI case, a reliable procedure to compute

the full rank decomposition of Hij in (19) is to use the

Singular Value Decomposition (SVD). Furthermore it can

be demonstrated that the LPV Ho-Kalman algorithm is able

to reduce the order or to find a minimal realization with a

finite number of IR coefficients, provided that certain rank

conditions on the finite Hankel matrix are satisfied. It can

also be shown that the SS model obtained using the LPV

Ho-Kalman algorithm with SVD will be balanced, i.e. the

controllability and the observability gramians of the state-

space representation are equal, see [3] for more details. An

additional remark is that due to the rapid increase of matrix

dimensions for growing nx and nψ , use of the algorithm is

restricted to moderate scale problems.

V. SIMULATION EXAMPLE

In this section, the methods discussed in Sections III

and IV are tested and compared on an application-based

simulation study. The example considered here is the air

charge control problem of a spark ignition (SI) engine.

The intake manifold of a SI Engine for air charge control

has a highly nonlinear nature. It is not an isolated system

but part of the overall car model, Fig. 1. The opening of the

throttle valve in the intake manifold αlim is used to control

the amount of the normalized air charge mnac. The speed of

the vehicle p2 influences the internal dynamics of the intake

manifold and the engine itself. The vehicle model as shown

in Fig. 1 has an integral behavior, thus a feedback is applied

between p2 and αlim through a proportional gain Kp in order

to stabilize the engine speed.

A parameterized nonlinear physical model of the overall

process was provided and experimentally validated by the

IAV GmbH company, Gifhorn, Germany; see [5] for more

details. Constructing an LPV model from the physical model

has two drawbacks: 1) it necessitates approximation of some

nonlinear characteristics in an ad-hoc manner which reduces

the accuracy of the derived LPV model, 2) it provides a

continuous-time LPV model, and digital implementation of a
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TABLE I

BFR OF THE ESTIMATED MODELS FOR THE INTAKE MANIFOLD PLANT.

MIO(p) MIO(q ⋄ p) MIO(q−1p) MIO(q−nap)
BFR % 96.47150 95.72519 96.03974 93.95923

controller designed in continuous-time leads to performance

deterioration due to hardware constraints on the sampling

time, here Ts = 0.01s. Therefore, LPV-IO identification can

be used to identify a valid discrete-time description of the

system for which LPV control synthesis can be applied.

In order to provide a fair assessment of the introduced

realization approaches we consider no noise in the system,

therefore LPV identification will be applied as a model

optimization tool rather than estimation in a stochastic sense.

The intake manifold dynamics is affected by the pressure

p1 which is generated inside it and the engine speed p2.

Therefore both signals are considered as scheduling signals

in the LPV model. Using the collected data, different LPV-

IO models are optimized to describe the intake manifold

with: 1) static-dependence on the p: MIO(p) as in (2), 2)

dynamic-dependence on p: MIO(q ⋄p) as in (9), 3) one-step

backward dependence on p: MIO(q−1p) as in (10) and 4)

na-step backward dependence on p: MIO(q−nap) as in (11).

Based on expert’s knowledge, na and nb are both chosen to

be 2. Furthermore, all coefficient functions in the considered

models are chosen as second-order polynomials in p1 and p2

with no cross terms and these polynomials are parametrized

linearly resulting in the parameters θ ∈ R
20 to be optimized.

With the considered linear parametrization, optimization of

θ (estimation without noise) with respect to the squared error

of the output prediction for a given IO data of the system

(least squares criterion) can be solved via linear regression

for each considered model structure.

In order to gather informative signals for the model

identification, a white noise Nref , see Fig. 1, is designed

with uniform distribution U(760, 6250) and level change

at random instances, which are specified by an additional

random variable U(0, 1) for deciding when to change the

level. Another signal v, Fig. 1, with the same properties,

but with U(10, 90), is designed to excite the input-output

dynamics of the system (from αlim to mnac). The required

operating ranges for the different variables to design the input

signal are as follows: y = mnac ∈ [10, 90]%, u = αlim ∈
[0, 100]%, p1 ∈ [99, 950] hPa, p2 ∈ [760, 6250] rpm.

The above given procedure with the specified IO data

records has been used to optimize LPV-IO models for the

intake manifold with different structures. Table I shows a

comparison between the resulting models in terms of the

BFR of the simulated outputs of these models using the same

set of validation data. It is clear that the identified models

with the structures (2), (9), (10) and (11) give almost the

same BFR ≈ 95% showing that all these structures are able

to approximate well the dynamics of the intake manifold.

Next, the identified LPV-IO models are transformed into

the LPV-SS forms using the approaches introduced in Sec-

tion III. Regarding the model MIO(q−1p), a non-minimal

TABLE II

BEST INDUCED ℓ2 GAIN FOR EACH DESIGN.

KMIO(p) KMIO(q⋄p) K
MIO(q−1p) K

MIO(q−nap)

γ 20.3987 1.1205 1.1091 2.8549

3rd-order LPV-SS model has been produced. The Ho-Kalman

algorithm has been employed to reduce this SS model to

a 2nd-order form. It is worth to mention that the non-

minimal LPV-SS model was not quadratically stabilizable,

which means that classical model order reduction like [11]

or H∞ control synthesis, e.g. [1], can not be applied to this

model. After using the Ho-Kalman algorithm, the resulting

2nd-order model was balanced and quadratically stabilizable

and detectable, however it approximated the original model

with BFR = 75.58% on the validation data.

Next, LPV controllers are synthesized based on all the

transformed LPV-SS models using the synthesis technique

proposed in [1] with a mixed-sensitivity loop shaping ap-

proach. This step is performed in order to assess the quality

of each realization approaches and model structures in terms

of control design. The performance requirements for the

closed-loop behavior are specified as: a rise time of tr =
0.15s, a settling time of ts = 0.3s, overshoot Mp < 5%,

steady state error e∞ < 1% in addition to a constraint on

actuator usage. These objectives are translated into shaping

filters

WS =
0.02z + 0.02

z − 0.9998
, WKS =

0.000643z − 0.0002439

z + 0.9956
,

to shape respectively the sensitivity and the control-

sensitivity of the closed-loop. For consistent comparison,

the same shaping filters are used for all synthesis problems.

Then the mixed-sensitivity criterion is minimized such that

the induced ℓ2 gain, of both the sensitivity and the control-

sensitivity, is less than some prescribed value γ > 0.

Controllers of order five have been computed and the best

achieved performance index γ for each design is given in

Table II. The controller KMIO(p) is based on a LPV-SS model

converted from the IO model MIO(p) using the LTI rules.

Other controllers are denoted respectively.

Finally, all controllers are applied to the nonlinear physical

model of the intake manifold. Figures 2-5 demonstrate the

tracking of the normalized air charge rl = mnac at different

levels and periods of a specified typical trajectory with the

different controllers KMIO(p), KMIO(q⋄p), KMIO(q−1p) and

KMIO(q−nap), respectively. In general, with all designed con-

trollers, except KMIO(p), mnac follows the given reference

trajectory in a satisfactory manner, with tr, ts,Mp, e∞ within

the limits which have been specified above. On the other

hand, the controller KMIO(p), which has been synthesized

based on a SS model constructed by the LTI rules, violates

the constraints on tr, ts,Mp, e∞, see Fig. 2. In order to

achieve the performance of the other controllers by KMIO(p),

the shaping filters have been re-tuned and the best achieved

performance is shown in Fig. 6, which still violates the

requirements on Mp in addition to the undesired oscillations

in the control signal.
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Fig. 2. Tracking of mnac with the controller KMIO(p).
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Fig. 3. Tracking of mnac with the controller KMIO(q ⋄p).
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Fig. 4. Tracking of mnac with the controller K
MIO(q−1p).
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Fig. 5. Tracking of mnac with the controller K
MIO(q−nap).
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Fig. 6. Tracking of mnac with the improved controller KMIO(p).

This example demonstrates that the proposed structures of

LPV-IO models in (9), (10) and (11) can provide a good

approximation of the original model. Furthermore, using the

LTI rules to obtain a SS realization for an LPV-IO model

may lead to an inadequate approximation of the true system,

possibly resulting in a significant performance loss of closed-

loop control.

In order to ensure a low complexity of the control design

phase, LTI conversion rules to get the SS realization should

be tested first by adopting the criterion in Section II. If it

turns out that the LTI rules provide poor SS realization, a

LPV-IO model with any of the structures in Subsection III-

A or III-C can be identified and via the proposed approaches

an adequate LPV-SS model of the system can be obtained

with static dependence. If these structures do not result in

an acceptable model for the underlying process, then the

structure in Subsection III-B can be adopted with the model

order reduction approach in Section IV to provide minimal

SS realization.

VI. CONCLUSIONS

Equivalent representation of a LPV-IO model in LPV-SS

form, in general necessitates dynamic dependence of the

state-space realization on the scheduling signal. Neglecting

this fact can cause a significant performance loss in the con-

trol design phase. On the other hand, the presence of dynamic

dependence leads to difficulties in terms of controller design

and implementation. To deal with this problem, first a crite-

rion has been proposed to decide when the LTI conversion

rules can be used without serious consequences and how

much can be lost in terms of model validity. Then three ways

have been introduced to convert LPV-IO models to LPV-

SS realizations without introducing dynamic dependence.

However, these ways can be applied only in special cases

to solve the conversion problem. An LPV Ho-Kalman type

of model reduction approach has been developed to reduce

complexity of the transformed SS model with no restrictions

of quadratic stabilizability and detectability. Finally all ideas

have been illustrated by solving the charge control problem

of a SI engine.
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