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a Electrical Engineering Department, Faculty of Engineering, Assiut University, 71515 Assiut, Egypt.

bControl Systems Group, Department of Electrical Engineering, Eindhoven University of Technology, P.O. Box 513,
5600 MB, Eindhoven, The Netherlands.

cInformation Engineering Department, University of Padova, Padova 35131, Italy.

Abstract

In this paper, a Bayesian nonparametric approach is introduced to estimate multi-input multi-output (MIMO) linear parameter-
varying (LPV) models under the general noise model structure of Box-Jenkins (BJ) type. The approach is based on the
estimation of the one-step-ahead predictor of general LPV-BJ structures. Parts of the predictors associated with the input
and output signals are modeled as asymptotically stable infinite impulse response (IIR) models. Then, these IIR models are
identified in a completely nonparametric sense: not only the coefficients are estimated as functions, but also the whole time
evolution of the impulse response w.r.t. the scheduling signal of the LPV system. In this Bayesian setting, the estimate of
the one-step-ahead predictor is a realization from a zero-mean Gaussian random field, where the covariance function is a
multidimensional Gaussian kernel that encodes both the possible structural dependencies and the stability of the predictor.
Two different kernel formulations are presented for the LPV setting, namely a diagonal (DI) like and tuned/correlated (TC)
like kernels, where the TC-like kernel is able to describe the correlation between coefficient functions associated with different
time indices. The unknown hyperparameters that parameterize the DI or TC kernel are tuned by maximizing the marginal
likelihood w.r.t. the observed data. Moreover, we provide a nonparametric realization scheme to recover the original process
and noise IIRs from the identified one-step-ahead predictor. The performance of the presented identification approach is tested
on a MIMO LPV-BJ simulation example by means of an extensive Monte-Carlo study.

Key words: Bayesian identification; System identification; Reproducing kernel Hilbert space; Linear parameter-varying
systems; Machine learning; Regularization; Prediction-error identification; Gaussian processes; Box-Jenkins models.

1 Introduction

Linear parameter-varying (LPV) systems, introduced
in [1], have received considerable attention [2,3], as they
offer an attractive modeling framework to capture non-
linear and/or non-stationary behavior of physical and
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chemical processes [4,5]. Most of the existing LPV identi-
fication (ID) approaches are formulated in discrete-time
(DT) [2] to identify state-space or linear-fractional rep-
resentation forms, e.g., [6,7,8,9]; series-expansion based
models, e.g., [10]; and various input-output (IO) model
structures, e.g., [4,11,12].

Identification of LPV-IO models gained popularity, as
prediction-error minimization (PEM) methods have
been successfully extended to LPV models, providing a
well-understood framework for consistency and stochas-
tic interpretation of the estimates together with low
computational complexity of the resulting identifica-
tion procedures [11]. Moreover, the PEM framework is
well suited to identify a large variety of noise and plant
models, see [2] for an overview. Although LPV-IO mod-
els cover a variety of process and noise representations,
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where the Box-Jenkins (BJ) model is the most general
form, PEM identification of BJ models leads to a non-
linear optimization problem [11], which is sensitive to
local minima. Alternatively, the instrumental variable
(IV) method provides an attractive approach that deals
with the general noise scenario and avoids the nonlinear
optimization [13]. Another important issue in the iden-
tification of LPV-IO models is capturing the structural
dependency on the scheduling signal. In the parametric
case, the structural dependency is generally character-
ized by using a pre-specified set of basis functions, which
either require significant prior knowledge of the under-
lying system or tedious repetitive execution of methods
to synthesize an acceptable basis [11]. In addition, the
choice of the number of these bases is challenging as it
induces a bias/variance trade-off, i.e., by using fewer ba-
sis functions, the under-modeling (bias) error increases
while increasing their number results in an increase of
the variance of the parameters of the estimated models.

The so-called nonparametric methods offer an attrac-
tive alternative approach to capture the underlying
dependencies directly from data without specifying
any parameterization in terms of fixed basis functions.
The main approaches of LPV nonparametric identifi-
cation in the literature are: i) the dispersion function
method [14], ii) the least squares-support vector machine
(LS-SVM) methods, e.g., [15,16], and iii) the Bayesian
setting based approaches [17,18]. However, in i)-iii) the
considered noise models are restricted to output error
type (LPV finite impulse response (FIR) model) and
autoregressive type (LPV autoregressive with exogenous
input (ARX) model). Additionally, both LS-SVM and
Bayesian approaches have roots in the reproducing ker-
nel Hilbert space (RKHS) theory [19] and admit an `2-
regularization interpretation [20], such that consistency
and convergence notions of the resulting estimator can
be formulated.

This work is inspired by recent advances in nonparamet-
ric identification of linear time-invariant (LTI) models in
the PEM setting [21] and novel results for optimal kernel
design [22]. Here, we aim at formulating a nonparametric
estimator of the one-step-ahead predictor for an LPV-
BJ model, preserving the generality of the noise class
and the asymptotic optimality of PEM. More specifi-
cally, we consider the one-step-ahead predictor as the
summation of two sub-predictors associated with the in-
put and output signals, where these sub-predictors are
modeled as asymptotically stable LPV infinite impulse
response (IIR) models. These LPV-IIR sub-predictors
are identified in a nonparametric sense, where not only
the coefficients are estimated as functions, but also the
whole time evolution of the impulse response.

We follow a Bayesian approach for the nonparametric
estimation by modeling the sub-predictors as realiza-
tions of zero-mean Gaussian random fields, which can
be completely characterized by covariance (kernel) func-

tions that implicitly act as a basis generator to describe
both the functional dependencies and the time evolution
of the impulse response of the sub-predictors. To this
end, inspired by [23], we introduce a multidimensional
Gaussian kernel which encodes: i) the possible structural
dependencies on the scheduling signal by using radial ba-
sis functions (RBF) and ii) the stability of the predictor
by including a decay term, which models the vanishing
influence of the past input-scheduling-output pairs on
the predicted output. The hyperparameters that param-
eterize the kernel can be efficiently estimated from data
by maximizing the marginal likelihood w.r.t. the obser-
vations [24]. A preliminary work in this direction can be
found in [25], however, here we provide the following ex-
tensions:

(1) Kernel formulation for the multi-input multi-output
(MIMO) case;

(2) Enriching the kernel to take into account (nomi-
nal) LTI dynamics of the model, independent of the
scheduling variables;

(3) Introduce a tuned/correlated (TC)-like kernel for
the LPV setting to encode correlation between co-
efficient functions associated with different time in-
dices;

(4) Introducing a nonparametric realization scheme to
recover the original process and noise IIRs from the
identified one-step-ahead sub-predictors.

The paper is organized as follows. In Section 2, the con-
sidered model structure is defined and the corresponding
optimal one-step-ahead predictor is derived. The consid-
ered Gaussian regression framework is reviewed in Sec-
tion 3. In Section 4, Bayesian identification of LPV-IO
models and the problem of estimating the predictor and
the hyperparameters of the kernel from data are pre-
sented. This is followed by a realization approach to get
a nonparametric estimate for the process and noise dy-
namics from the identified predictor in Section 5. In Sec-
tion 6, the effectiveness of the introduced approach is
demonstrated by means of extensive Monte Carlo study.
Finally, the paper is ended with conclusions in Section 7.

2 Problem Statement

2.1 LPV-BJ model

Consider a MIMO data-generating LPV system de-
scribed in DT 1 by the following difference equations:

(A0(q−1) � p)k y̆(k) = (B0(q−1) � p)k u(k), (1a)

(D0(q−1) � p)k v(k) = (C0(q−1) � p)k e(k), (1b)

y(k) = y̆(k) + v(k), (1c)

1 Equivalence between DT and continuous-time (CT) LPV
systems can be understood in terms of considering all free
signals of the CT system (e.g. the input and the scheduling
signals) to be generated by an ideal zero order hold (ZOH),
i.e., they are piecewise constant and the output is sampled
in a perfectly synchronized manner (for details see [26]).
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where k ∈ Z is the discrete time, q is the forward time-
shift operator, i.e., qx(k) = x(k + 1), u : Z → U = Rnu

is the input, y̆, y : Z → Y = Rny are the noiseless and
noisy outputs, respectively, p : Z → P is the so-called
scheduling variable with compact range P ⊂ Rnp , and e :
Z→ Y is a white noise process with normal (Gaussian)
distribution, i.e., e(k) ∼ N (0,Σe) with covariance Σe ∈
Rny×ny , generating the colored noise signal v : Z → Y.
The p-dependent operators A0(q−1) and B0(q−1) that
define the process model (1a), are matrix polynomials
in q−1 of degree na and nb respectively:

(A0(q−1) � p)k = I +

na∑
i=1

(ai � p)k q−i, (2a)

(B0(q−1) � p)k =

nb∑
j=0

(bj � p)k q−j , (2b)

where I is the identity matrix with the appropri-
ate dimension and ai : P × . . . × P → Rny×ny

and bj : P × . . . × P → Rny×nu are matrix func-
tions while (ai � p)k and (bj � p)k are shorthand
notations for (ai � p)k = ai(p(k), . . . , p(k − i)) and
(bj � p)k = bj(p(k), . . . , p(k − j)). These functions are
assumed to be smooth and bounded on P. In a similar
fashion, the noise model relation (1b) is characterized
by C0(q−1) and D0(q−1) corresponding to

(C0(q−1) � p)k = I +

nc∑
i=1

(ci � p)k q−i, (3a)

(D0(q−1) � p)k = I +

nd∑
j=1

(dj � p)k q−j , (3b)

where ci : P× . . .× P→ Rny×ny and dj : P× . . .× P→
Rny×ny are the coefficient function matrices of the monic
polynomials (3) in q−1 of degree nc and nd, respectively.

2.2 The IIR form

As a first step to identify (1), the system representation
is reformulated in an equivalent IIR formulation. For the
reformulation to be well-posed, both (1a), (1b), and the
inverse noise dynamics of (1b) 2 need to correspond to
asymptotically stable LPV filters:

Definition 1 An LPV filter (A(q
−1) � p)k y(k) =

(B(q−1) � p)k u(k) is called globally asymptotically sta-
ble, if, for all trajectories {u(k), p(k), y(k)} satisfying
the filter equation with u(k) = 0 for k ≥ 0 and p(k) ∈ P,
it holds that limk→∞ y(k) = 0.

A computational approach to verify asymptotic stability
of (1) in terms of Definition 1 can be found in [27].

2 Hence, we assume the existence of a stable left inverse of
the corresponding IIR.

In classical identification approaches, one is interested in
finding the process G0 and noise H0 dynamics, see [28],
of (1) in terms of the following equivalent representation

y(k) = (G0(q−1) � p)k u(k) + (H0(q−1) � p)k e(k), (4)

where the process and noise models, given that the un-
derlying system has the BJ form (1), are defined as

G0(q−1) = A†0(q−1)B0(q−1) =

∞∑
i=0

g0,i q
−i, (5a)

H0(q−1) = D†0(q−1)C0(q−1) = I +

∞∑
i=1

h0,i q
−i, (5b)

where A† denotes the left inverse of the polynomial A,
see Lemma 2. Note that (5) represent functions that are
dependent on the scheduling signal and they can be eval-
uated for a given scheduling trajectory, i.e., (g0,i�p)k and
(G0(q−1) � p)k, similar to (2) and (3). Furthermore, (4)
defines the infinite impulse response representation of
the underlying system. The IIRs are key in formulating
the identification problem, because the notion of trans-
fer functions, that are applied in the LTI case, do not
exit in the LPV setting.

Lemma 2 Given a monic parameter-varying polyno-
mial filter A(q−1) with finite order na. If (A(q−1) �
p)k y(k) = u(k) is asymptotically stable in the sense of
Definition 1, then the left inverse A†(q−1) of A(q−1) is
given by

A†(q−1) =

∞∑
i=0

(
I −A(q−1)

)i
, (6)

such that A†(q−1)A(q−1) = I. In addition, if (6) is ap-
proximated by a finite truncation order n:

Ã†(q−1) =

n∑
i=0

(
I −A(q−1)

)i
, (7)

then the normed truncation-error is given by

εn= sup
‖u‖`2=1

p∈PZ

∥∥∥((A†(q−1)−Ã†(q−1)) � p
)
u
∥∥∥
`2

= sup
‖u‖`2=1

p∈PZ

∥∥∥((I−A(q−1)) � p
)n+1

u
∥∥∥
`2
. (8)

where ‖·‖`2 denotes the `2 norm of a discrete signal.

Proof: See Appendix A. �

Note that the inverse (A†(q−1)�p)k is also well-defined in
terms of Lemma 2, i.e., (A†(q−1) � p)k(A(q−1) � p)k = I.
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By straightforward application of Lemma 2 and substi-
tuting (2)-(3) into (5), the individual coefficient func-
tions g0,i and h0,i are given by the following recursions:

(g0,i�p)k = (bi�p)k−
min(na,i)∑
j=1

(aj �p)k(g0,i−j �p)k−j , (9a)

(h0,i�p)k = (ci�p)k−
min(nd,i)∑
j=1

(dj�p)k(h0,i−j�p)k−j , (9b)

for i≥1 with g0,0 = b0 and h0,0 = I. Note that the co-
efficient functions ai, . . . , hi are non-commutative, i.e.,
q−1(ai � p)k = (ai � p)k−1q

−1, therefore, the time-index
in (9) is of the essence.

Similar to the LTI case [28], the representation (4) can
be reformulated based on the trajectory of u, p, y, and
the current value of e as, see [25, Eq. (23)]:

y(k) =
(
(I −H†0(q−1)) � p

)
k
y(k)+(

H†0(q−1)G0(q−1) � p
)
k
u(k) + e(k), (10)

if the noise filter (1b) and its left inverse are globally
asymptotically stable in terms of Definition 1. In this
case, the noise v has bounded spectral density. Moreover,
given the system (1), the form (10) is also an IIR:

Theorem 3 ([25]) If process dynamics (1a) and noise
dynamics (1b) are asymptotically stable according to Def-
inition 1, and, in addition, the inverse noise process is
monic and asymptotically stable, then (1) can be equiva-
lently represented by the following IIR

y(k)=

∞∑
i=1

(hyi�p)kq−i y(k)+

∞∑
j=0

(huj �p)kq−j u(k)+e(k),

(11)

where, hyi : P × . . . × P → Rny×ny and huj : P × . . . ×
P → Rny×nu are real meromorphic 3 matrix coefficient
functions in the scheduling signal p.

Hence, utilizing Lemma 2 and substituting (2)-(3)
into (10), the coefficient functions hyi and huj in (11)
are given by

(hyi�p)k = −(di�p)k−
min(nc,i)∑
j=1

(cj�p)k(hyi−j �p)k−j , (12a)

(hui � p)k = −
i∑

j=0

(hyi−j � p)k(g0,j � p)k−i+j , (12b)

3 h is a real meromorphic function, if h(·) = g(·)/f(·) with
g, f analytic functions and f(·) 6= 0.

for i ≥ 0 with hy0 = −I. It is worth to mention that the
IIR representation (11) also exists for LPV state-space
models represented with a specific innovations noise
structure, making representation (11) also attractive for
identifying such LPV state-space models, e.g., see [7,29].

2.3 One-step-ahead predictor

In the prediction-error setting, identification of (1) is
formulated by using (11) to define a one-step-ahead pre-
dictor of y(k) based on only the observations of the in-
put u(τ) for τ ≤ k, the scheduling p(τ) for τ ≤ k, and
the output signal y(τ) for τ ≤ k − 1. The basic idea is
to consider the mean of y conditioned on the past data:

ŷ(k|k − 1) = argmin
δ∈R

E
{
‖y(k)− δ‖22

∣∣ x(k)
}
, (13)

where ‖ · ‖2 is the Euclidean norm, E {·} is the expecta-
tion operator and x(k) =

{
u(k), p(k), y(k−1)

}
is the short-

hand notation of the past measurements, e.g., u(k) =
{u(τ)}τ≤k. Based on (11) and the fact that e(k) is con-
sidered to be white noise, straightforward application of
the expectation operator on (11) gives

ŷ(k|k−1) =

∞∑
i=1

(hyi �p)kq−iy(k)+

∞∑
j=0

(huj �p)kq−ju(k).

(14)

The resulting predictor is similar to the predictor in the
LTI case as it is a summation of two IIRs. Analogous to
the LTI case, parametric identification employing (14)
can be performed by either: 1) parameterizing the under-
lying BJ model (ai, . . . , di in (2)-(3)) leading to a nonlin-
ear estimation problem, prone to local minima, or 2) pa-
rameterizing the coefficient functions hyi and huj in (14)
directly as a linear combination of a set of basis func-
tions leading to a linear-in-the-parameter problem [28].
In the LPV case, the latter choice requires a priori spec-
ified set of basis functions dependent on the schedul-
ing signal. Incorrect selection of this set leads to struc-
tural bias of the estimate, where over-parameterization
results in a variance increase of the estimated parame-
ters. Due to the larger degree of freedom of LPV models,
this bias/variance trade-off plays a more prominent role
compared to the LTI case. The question is how to uti-
lize the simplicity of the IIR form (11), but to overcome
the large parametrization and the high parameter vari-
ance associated with its identification. A solution can be
found in the regularization framework, which can be un-
derstood from two equivalent point of views: Bayesian
identification and the RKHS context [30]. More specifi-
cally, the functional dependencies hyi and huj are esti-
mated nonparametrically, where a regularization is in-
troduced to keep the variance of the estimates low by
allowing a small amount of estimation bias. In the next
section, the Bayesian identification within the Gaussian
framework and the connection to function estimation in
the RKHS will be reviewed.

4



3 Gaussian Regression Framework

In this section, the Gaussian process (GP) regression
framework and the connection to function estimation in
RKHS are reviewed.

3.1 Nonparametric Gaussian regression

Definition 4 ([31]) A GP is a collection of random
variables f(x), indexed by x ∈ R, any finite number of
which have a joint Gaussian distribution.

This means that a GP is completely characterized by
its mean and covariance function m(x) = E {f(x)} and
K(x, x′) = cov (f(x), f(x′)), respectively, where f(x) is
a real function and it is denoted by

f(x) ∼ GP(m(x),K(x, x′)). (15)

Note that this definition basically extends the notion of
random variables with normal distribution to normally
distributed functions with domain R.

For the sake of simplicity, the GP framework is first in-
troduced for the multi-input single-output (MISO) case.
Given a data set DN = {x(k), ω(k)}Nk=1 that is gener-
ated according to:

ω(k) = f(x(k)) + ε(k), (16)

where x : Z → Rd is considered as an input variable,
f : Rd → R is a (non)linear function, and ε(k) ∼
N (0, σ2

ε ) is a zero-mean normally distributed white noise
with variance σ2

ε . Following the Bayesian inference tech-
niques within the GP framework, e.g., see [31], GP re-
gression considers the unknown function f as a ran-
dom function with a GP distribution postulating the
prior (15). This prior also represents our beliefs and the
high-level assumptions about f , e.g., smoothness and
stability. Often, a zero-mean GP prior on f is assumed 4 ,
i.e., f(x) ∼ GP(0,Kθ(x, x′)) where the covariance is de-
fined via a parameterized kernel function Kθ in terms of
the unknown hyperparameter vector θ.

The posterior distribution P(f(x∗) | X,W, θ) is Gaus-
sian and it can be used to make predictions about f at an

arbitrary point x∗ ∈ Rd. LetX=[x(1) · · ·x(N)]
>∈ RN×d

be the regression matrix and W = [ω(1) · · ·ω(N)]
>∈

4 In the Bayesian setting, unless other prior information
available, the mean of the Gaussian process is considered to
be zero. Such an assumption does not penalize the sign or
variation of the function, fulfilling the so-called maximal en-
tropy principle. Introducing a parameterized mean function
often only increases the variance of the estimator (and also
the computational complexity). As pointed out in [31], in
general the kernel is sufficiently rich and parameterizing the
mean is not needed.

RN×1 be the observed output of (16). The minimum
variance estimator of f(x∗) for X,W, with a given θ, i.e.,

f̂(x∗)=E {f(x∗) |X,W, θ}, is [31]

f̂(x∗) =

N∑
i=1

ciKθ(x(i), x∗), (17)

where ci denotes the (i)-th element of c=
(
Kθ+σ2

ε I
)−1

W
and Kθ is the so-called “kernel matrix” and its (i, j)-th
element is defined as [Kθ]i,j = Kθ(x(i), x(j)). Further-
more, the covariance of the posterior distribution, i.e.,
cov(f(x∗) |X,W, θ), that defines the uncertainty of the
estimation (17) under the prior (15), is given as

cov(f(x∗) |X,W, θ)=Kθ(x∗, x∗)−K∗
[
Kθ+σ2

ε I
]−1

K∗
>,

(18)
where K∗=[Kθ(x∗, x(1)) · · · Kθ(x∗, x(N))] encodes the
covariance relation between the test point x∗ and the
training points xi.

In a function estimation problem, the true underlying
covariance function K is not known a priori. Hence, a
crucial step in GP regression is to design a kernel func-
tion Kθ, parameterized in terms of θ, which can express
a wide variety of expected properties. At the same time,
θ must be low dimensional such that the estimation of θ
based on data can be efficiently performed. A well-known
choice for the kernel function to encode both smoothness
and stationarity of the unknown function is the radial
basis function (RBF) [31]

Kθ(x, x′) = α2 exp

(
−1

2
(x− x′)>Γ−1(x− x′)

)
, (19)

where x, x′ ∈ Rd, α2 is a scaling parameter that repre-
sents the signal variance and Γ = diag

([
ς21 · · · ς2d

])
is a

diagonal matrix of the squared kernel width parameters
{ςi}di=1. The complete hyperparameter vector θ of (19)

is θ = [ α ς1 · · · ςd ]>.

A popular approach to obtain the hyperparameters θ
that parameterize the kernelKθ is to estimate them from
data by maximizing the log-marginal likelihood of the
output w.r.t. θ [32]:

θ̂ = argmax
θ

logP(W | X, θ), (20)

where P denotes a probability density function (PDF)
and the log-marginal likelihood function is

logP(W | X, θ) = −N
2

log(2π)−
1

2
W>

(
Kθ + σ2

ε I
)−1

W︸ ︷︷ ︸
“data-fit” term

− 1

2
log det(Kθ + σ2

ε I)︸ ︷︷ ︸
“complexity” term

. (21)
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Such an optimization problem, i.e., maximizing the
marginal likelihood (20) is a nonlinear optimization
problem prone to local minima [31,24]. However, the
superiority of maximizing the marginal likelihood, i.e.,
(20) over other classical tuning methods, e.g., Cp statis-
tics [33], cross-validation [28], predicted residual sums
of squares [34], generalized cross-validation [35], Stein’s
unbiased risk estimator [36], has been investigated in
[37], showing that it can better balance data fit and
model complexity. In the sequel, for the sake of simplic-
ity, the dependency of the kernel function on θ will be
dropped.

It is worth to mention that in the above discussion, we
have considered a univariate prediction, i.e., the MISO
setting with x∗ ∈ Rd, ω∗ ∈ R. However, for the MIMO
setting with ω∗ ∈ Rnω , the correlation between different
function values associated with different output channels
should be considered. To do so, the covariance function
K(x, x′) is replaced by a covariance matrix function

K(x, x′) =


K11(x, x′) · · · K1nω (x, x′)

...
. . .

...

Knω1(x, x′) · · · Knωnω (x, x′)

 , (22)

where Kij denotes the covariance between the (i)-th
and (j)-th output channels. However, by assuming that
the function values f1(x∗), . . . , fnω (x∗) are conditionally
independent given an input x∗, then the off-diagonal
entries in (22) become 0 5 . So, in case of multivariate
prediction with a deterministic test input x∗, nω in-
dependent GP models can be trained with the same
training inputs X, but with different training outputs

Wi = [ωi(1) · · ·ωi(N)]
>
, i = 1, . . . , nω.

3.2 Connection to functional estimate in RKHS

The connection between Gaussian processes and RKHS
is given in [30], where it has been shown that the min-

imum variance estimate f̂ in (17) can be obtained as
the solution of the following Tikhonov-type variational
problem

f̂ = argmin
f∈HK

N∑
k=1

‖ω(k)− f(x(k))‖22 + σ2
ε ‖f‖2K, (23)

where HK is the RKHS associated with K and ‖ · ‖K is
the norm defined in HK. Note that the solution of (23)

5 The covariance matrix function in (22) is assumed to be
diagonal for the sake of simplicity, but such an assumption
can be removed as it is not an implicitly needed assumption
of the method. Assuming a full covariance matrix would
significantly increase the complexity of the hyperparameters
optimization problem as this results in the necessity of the
simultaneous estimation of all channels.

can be easily obtained using the representer theorem
[30]. Resorting to the RKHS point of view is useful to
provide information about the properties of the estima-
tor, e.g., consistency, by characterizing the RKHS space
HK, which is considered to be the hypothesis space or
“model set” of the functions to be estimated.

4 Bayesian Identification of LPV-IO models

In this section, the Gaussian regression framework of
Section 3 will be applied to the estimation of the LPV-
IIR representation (11). First, the identification of (11)
will be formulated as shown in Section 3. Second, an
appropriate kernel K will be designed. Finally, the esti-
mation of the unknown structural dependencies will be
introduced.

The covariance on the noise e(k) is assumed to be diag-

onal, i.e., Σe = diag([ σ2
1 · · · σ2

ny
]). Hence, the (λ)−th

output channel of (11) can be written as:

[y(k)]λ = fλ
(
x(k)

)
+ [e(k)]λ

=

ny∑
γ=1

∞∑
i=1

[(hyi � p)k]λ,γ q
−i [y(k)]γ︸ ︷︷ ︸

fy
λ,γ(x(k))︸ ︷︷ ︸

fy
λ(x(k))

+

nu∑
γ=1

∞∑
i=0

[(hui � p)k]λ,γ q
−i [u(k)]γ︸ ︷︷ ︸

fu
λ,γ(x(k))︸ ︷︷ ︸

fu
λ(x(k))

+ [e(k)]λ , (24)

where [•]λ,γ denotes the (λ, γ)-th element of a matrix

and [•]λ is the (λ)-th element of a vector. Moreover,
fy
λ , fu

λ represent the sub-predictors whose sum forms
the one-step-ahead predictor, denoted by fλ. Finally,
fy
λ,γ , fu

λ,γ , under the stability assumption of the data-
generating system, represent convergent IIRs. It is worth
to remind the reader that x(k) =

{
u(k), p(k), y(k−1)

}
is

the shorthand notation of the past measurements, e.g.,
u(k) = {u(τ)}τ≤k.

From (24), the identification of the one-step-ahead pre-
dictor fλ can be considered as a standard GP regression
problem. More specifically, by following the Bayesian
setting within the GP framework detailed in Section 3,
the IIRs fy

λ,γ , fu
λ,γ are assumed to be realizations of zero-

mean Gaussian random fields, i.e.,

fy
λ,γ ∼ GP

(
0,Ky

λ,γ

)
, fu

λ,γ ∼ GP
(
0,Ku

λ,γ

)
, (25)
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characterized by the covariance functions Ky
λ,γ , Ku

λ,γ . In
the Bayesian setting, these covariance functions encode
the prior knowledge and assumptions about the to-be-
estimated functional dependency. Hence, in order to suc-
cessfully identify the data-generating system, the kernel
function needs to be appropriately designed for the prob-
lem at hand. The design of the kernel function is con-
cerned with choosing a parameterized form of it in terms
of the hyperparameters, see Section 3 for more details.

4.1 Kernel design for LPV-IO models

First of all, within the LPV framework, the relation be-
tween the input and output is assumed to be linear,
but with coefficients (ai, . . . , di in (2)-(3)) that are de-
pendent on p. In many situations, the functional depen-
dencies consist of a p-independent (LTI) part and a p-
dependent part, which should be represented in the ker-
nel. In addition, the kernel should guarantee the stabil-
ity of the one-step-ahead predictors. To conclude, the
kernel functions Ky

λ,γ , Ku
λ,γ should be designed to

K1 Describe possible structural dependencies on p.
K2 Encode asymptotic stability of the predictor.
K3 Take the LTI part into account.

Next, we show how to design a kernel satisfying K1-K3
to identify the MIMO LPV-BJ system by employing the
one-step-ahead predictor (14). From (24) and under the
GP prior (25) of the IIRs for the output channel λ, we

collect the data in the vector Yλ =
[
[y(1)]λ · · · [y(N)]λ

]>
.

Under the assumption that E
{
fy
λ,γf

u
λ,γ′

}
= 0 for all γ ∈

{1, . . . , ny}, and γ′ ∈ {1, . . . , nu}, the covariance of the
output channel λ is given by E

{
YλY

>
λ

}
and its (ξ, η)−th

entry is described as follows 6

E {[y(ξ)]λ [y(η)]λ} =

ny∑
γ=1

Ky
λ,γ

(
x(ξ), x(η)

)
+

nu∑
γ=1

Ku
λ,γ

(
x(ξ), x(η)

)
+ σ2

λ, (26)

where Ky
λ,γ is defined as (Ku

λ,γ is defined in a similar

fashion)

Ky
λ,γ

(
x(ξ), x(η)

)
= E

{
fy
λ,γ

(
x(ξ)

)
fy
λ,γ

(
x(η)

)}
=

∞∑
i=1

∞∑
j=1

(
[y(ξ − i)]γQ

y
λ,γ

(
p(ξ,i), p(η,j)

)
[y(η − j)]γ

)
, (27)

6 Note that, such an assumption implies that the IIRs fy
λ,γ

and fu
λ,γ′ are independent. Hence, the coefficient sequence

hyi and hui in (24) are independent, which simplifies the
underlying problem by removing the cross-correlation terms.

with p(ξ,i) being the vector of past scheduling values

p(ξ,i)=
[
p>(ξ) · · · p>(ξ − i)

]>
and

Qy
λ,γ

(
p(ξ,i), p(η,j)

)
=E
{[

(hyi � p)ξ
]
λ,γ

[
(hyj � p)η

]
λ,γ

}
.

We need to parameterize the kernel Qy
λ,γ to encode the

prior knowledge, i.e., K1-K3. Interestingly, due to the
linearity of the addressed system class, ideas of kernel
design for LTI systems, e.g., diagonal (DI) kernel [20],
tuned/correlated (TC) kernel [38], and orthonormal ba-
sis function (OBFs) based kernels [39,40,41], can be ex-
tended to the considered LPV setting in this paper. More
specifically, in the following discussion, we show how to
design DI-like and TC-like kernels for LPV systems.

To describe the underlying structural dependency on p
represented in terms of the matrix coefficient functions
hyi , hui , i.e., Item K1, any positive semidefinite kernel,
e.g., polynomial, spline, etc., can be used, depending on
the problem at hand. In our case, hyi , hui are assumed
to be smooth matrix coefficient functions and, hence, an
RBF kernel can be used to describe such dependency.
Secondly, to encode asymptotic stability of the predic-
tor or equivalently to guarantee the convergence of the
estimated IIR, i.e., Item K2, a decay term needs to be
included that models the vanishing influence of the past
input-scheduling-output pairs on the predicted output,
i.e., the effect of (yk−t, uk−t, pk−t) over yk decreases as
t→∞. Thirdly, to take the LTI part into account, i.e.,
Item K3, the kernel function is composed of two parts,
namely a part to describe the LTI dynamics and a part
to describe the p−dependent dynamics. In view of the
above discussion, a general formulation of a kernel func-
tion that encodes the prior knowledge about the under-
lying IIR fy

λ,γ , i.e., K1-K3 is

Qy
λ,γ

(
p(ξ,i), p(η,j)

)
=Qy,lin

λ,γ (i, j)︸ ︷︷ ︸
linear part

+Qy,p
λ,γ

(
p(ξ,i), p(η,j)

)︸ ︷︷ ︸
p-dependent part

, (28)

with
Qy,lin
λ,γ (i, j)=α2

1r1(α2), (29a)

Qy,p
λ,γ

(
p(ξ,i), p(η,j)

)
=α2

3r2(α4)exp

(
−‖p

(ξ,i)−p(η,j)‖22
[ςy(i, j)]

2
λ,γ

)
,

(29b)

whereα1,α3 are scaling parameters and r1(α2), r2(α4)→
0 as i, j → ∞ to describe the decay rate, i.e., to ensure
that the IIR is convergent. The RBF kernel in (29b) de-
scribes the possible structural dependency on p, where
[ςy(i, j)]λ,γ is the width of the RBF. The kernel Qu

λ,γ for

fu
λ,γ is similarly defined.

Due to the assumed existence of the one-step-ahead
predictor (14) for (1), i.e., the assumed convergence
of the involved IIRs, the sub-predictors fy

λ,γ , f
u
λ,γ in

7



(24) asymptotically decay to the zero function with the
higher order terms of the expansion becoming insignifi-
cant. Hence, (24) can be arbitrarily well approximated
by truncating the corresponding infinite sum:

f̄λ
(
x(k)

)
=[ȳ(k | k − 1)]λ

=

ny∑
γ=1

f̄y
λ,γ

(
x(k)

)
︸ ︷︷ ︸

f̄y
λ(x(k))

+

nu∑
γ=1

f̄u
λ,γ

(
x(k)

)
︸ ︷︷ ︸

f̄u
λ(x(k))

, (30)

with

f̄y
λ,γ

(
x(k)

)
=

nfy∑
i=1

[(hyi � p)k]λ,γ q
−i [y(k)]γ , (31a)

f̄u
λ,γ

(
x(k)

)
=

nfu∑
i=0

[(hui � p)k]λ,γ q
−i [u(k)]γ , (31b)

where nfy and nfu are sufficiently large to capture the
dominant dynamic behavior of the system. As a result,
the covariance function (27) is truncated as

K̄y
λ,γ

(
x̄(ξ), x̄(η)

)
= E

{
f̄y
λ,γ

(
x̄(ξ)

)
f̄y
λ,γ

(
x̄(η)

)}
=

nfy∑
i=1

nfy∑
j=1

(
[y(ξ − i)]γQ

y
λ,γ

(
p(ξ,i), p(η,j)

)
[y(η − j)]γ

)
, (32)

where x̄(ξ) is the set of truncated past measurements, i.e.,
x̄(ξ) =

{
u(ξ,nfu ), p(ξ,nf ), y(ξ,nfy )

}
and nf = max(nfy , nfu)

is the maximum truncation order. The truncated covari-
ance for the input IIR K̄u

λ,γ

(
x̄(ξ), x̄(η)

)
is defined similar

to (32), but with truncation order nfu .

For the truncated kernel representation (32) the number
of hyperparameters is (including noise variance 7 )(

ny(nfy + 4) + nu(nfu + 4) + 1
)
ny, (33)

which grows rapidly in ny, nu, nfy , and nfu , potentially
leading to computational problems. However, further as-
sumptions could be made if necessary to reduce the num-
ber of hyperparameters:

Assumption 5 For the output channel λ: all the IIRs
associated with the sub-predictor fy

λ , i.e., fy
λ,γ for γ =

1, . . . , ny, share the same decay rate, i.e., they share the
same parameterization for r1, r2, with different scaling
parameters α1, α3. The same assumption holds true for
the IIRs associated with the sub-predictor fu

λ , i.e., fu
λ,γ

for γ = 1, . . . , nu.

7 Note that the noise variance σ2
λ is not known a priori. One

possible way to identify σ2
λ is to regard it as an additional

hyperparameter and estimate it together with the other hy-
perparameters by maximizing the marginal likelihood.

Assumption 6 For every IIR fy
λ,γ (24), the kernel width

is assumed to be the same for all coefficient functions
within this IIR, i.e., [ςy(i, j)]

2
λ,γ in (29) are equal for all

i, j. The same holds true for fu
λ,γ .

Under Assumptions 5 and 6, the total number of un-
known hyperparameters is reduced to

(3 (ny + nu) + 5)ny. (34)

For example, in case ny = 2, nu = 2, nfy = nfu = 10
the original number of the hyperparameters (33) that
are needed to be estimated is 114. However, by following
Assumptions 5 and 6, this number is reduced to 34.

By appropriately choosing the functions r1(·) and r2(·),
different relations between the coefficient functions as-
sociated with different time instants can be represented.
In this paper, we consider two cases: i) a non-correlated,
DI-like representation of the resulting kernel in (32):

Qy
λ,γ

(
p(ξ,i), p(η,j)

)
=
[
α2

1

]
λ,γ

(
[α2]λ

)i
δi,j+[

α2
3

]
λ,γ

(
[α4]λ

)i
exp

(
−‖p

(ξ,i) − p(η,j)‖22
[ςy(i, j)]

2
λ,γ

)
δi,j , (35)

where δi,j is the Kronecker delta function w.r.t. (i, j); ii)
a correlated, TC-like formulation can be given by tak-
ing into account the correlation between the coefficient
functions associated with different time instants:

Qy
λ,γ

(
p(ξ,i), p(η,j)

)
=
[
α2

1

]
λ,γ

(
[α2]λ

)max(i,j)
+[

α2
3

]
λ,γ

(
[α4]λ

)max(i,j)
exp

(
−‖p

(ξ,i) − p(η,j)‖22
[ςy(i, j)]

2
λ,γ

)
, (36)

where
[
α2

1

]
λ,γ

,
[
α2

3

]
λ,γ

are scaling parameters of the LTI

and the p−dependent part of the (λ, γ)−th IIR, respec-
tively, and [α2]λ, [α4]λ are the parameters that deter-
mine the decay rate of the IIRs associated with the (λ)-
th output channel.

Remark 7 Regarding Assumptions 5 and 6, they can be
seen as selections that can be made by the user to alle-
viate the computational burden and decrease the chances
of ending in an unwanted local minimum. These two as-
sumptions are a valid starting point. Nonetheless, the
proposed kernel structure facilitates the incorporation of
additional prior knowledge, which might be available to
the user.

4.2 Estimation of the predictor from data

With the kernel designed, the estimation of the pre-
dictor fλ in (24) by the truncated model (30) from a
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given data set DN = {y(k), u(k), p(k)}Nk=1 can now be
discussed. This is accomplished by minimizing the `2
norm of the prediction-error ε(k) = y(k)− ȳ(k | k − 1).
Let θλ denote the vector of unknown hyperparam-
eters related to the output channel λ. Let Y =[
y>(1) · · · y>(N)

]>
, Y ′ =

[
y>(nf + 1) · · · y>(N)

]>
, Y ′λ=

[[y(nf + 1)]λ· · ·[y(N)]λ]
>
, U =

[
u>(1) · · ·u>(N)

]>
and

P =
[
p>(1) · · · p>(N)

]>
. Under the Gaussian regres-

sion framework, briefly introduced in Section 3, the
posterior distribution of fλ is also Gaussian. Hence, the

minimum variance estimate f̂λ of the predictor for out-
put channel λ, i.e., f̄λ in (30), conditioned on a fixed θλ
can be written as 8

f̂λ( • )=E
{
f̄λ( • ) |Y, U, P, θλ

}
=

N∑
k=nf+1

ck−nf
K̄λ
(
• , x̄(k)

)
,

(37)
where

K̄λ
(
• , x̄(k)

)
=

ny∑
γ=1

K̄y
λ,γ

(
• , x̄(k)

)
+

nu∑
γ=1

K̄u
λ,γ

(
• , x̄(k)

)
,

and ck−nf
is the (k − nf)-th component of the vector

c =
(
Σy(θλ)

)−1
Y ′λ,

with Σy(θλ) ∈ RN−nf×N−nf being invertible and its en-
tries are given by[

Σy(θλ)
]
i,j

= K̄λ
(
x̄(nf+i), x̄(nf+j)

)
+ σ2

λδi,j .

In this work, we follow the approach of maximizing the
marginal likelihood of the output w.r.t. θλ under DN
[24]. More specifically, the log-marginal likelihood of the
observations Y ′λ given U,P, θλ:

logP(Y ′λ | U,P, θλ) = −N
2

log(2π)−
1

2
Y ′λ
>(

Σy(θλ)
)−1

Y ′λ −
1

2
log |Σy(θλ)|. (38)

Then, an estimate for θλ is obtained by maximizing this
log-marginal likelihood or equivalently:

θ̂λ = argmin
θλ

− logP(Y ′λ | U,P, θλ). (39)

According to the empirical Bayes approach [42], the

minimum variance estimate of the predictor, i.e., f̂λ
in (37), is obtained by substituting θλ by its estimate

8 The summation in (37) starts from nf + 1 to avoid the
estimation of the unknown initial conditions. In case nf is
not much smaller than N , it is recommended to collect more
data.

θ̂λ from (39). Moreover, the estimate f̂λ is normally
distributed and the estimate can be associated with
a probability level or confidence region to provide a
quantification for the quality of the estimate. This can
be achieved by computing the variance of the posterior
distribution of the prediction based on (18):

var
(
f̂λ( • ) | Y,U, P, θλ

)
=K̄λ( • , • )− ψ>λ

(
Σy(θ̂λ)

)−1
ψλ,

(40)

where ψλ=
[
K̄λ( • , x̄(nf+1)) · · · K̄λ( • , x̄(N))

]>
.

4.3 The individual coefficient function estimates

Next, it is explained how the individual coefficient func-
tions hyi , hui can be calculated from the estimated one-
step-ahead predictor.

From [23, Theorem 4], it can be seen that the ker-
nels Qy

λ,γ , Qu
λ,γ induce mutually orthogonal subspaces

HQy
λ,γ

, HQu
λ,γ

, the associated RKHS with Qy
λ,γ , Qu

λ,γ ,

respectively. As a result, the minimum variance esti-

mate of the individual coefficient functions, i.e., [ĥyi ]λ,γ ,

[ĥuj ]λ,γ , can be obtained as the orthogonal projection

of f̂λ ∈ HK̄λ , where HK̄λ is the RKHS associated with

K̄λ, onto HQy
λ,γ

, HQu
λ,γ

, respectively, as follows:

[
(ĥyi � • )

]
λ,γ

= E
{[

(hyi � • )
]
λ,γ
| Y,U, P, θ

}
=

N∑
k=nf+1

ck−nf
[y(k − i)]γQ

y
λ,γ

(
• , p(k,i)

)
, (41)

and the estimated variance of the corresponding poste-
rior distribution is given by

var
([

(hyi � • )
]
λ,γ
| Y, U, P, θ

)
=

Qy
λ,γ( • , • )−

(
ψy
λ,γ

)>(
Σy(θ)

)−1
ψy
λ,γ , (42)

where

ψy
λ,γ =

[
Qy
λ,γ

(
• , p(nf+1,i)

)
[y(nf − i+ 1)]γ · · ·

Qy
λ,γ

(
• , p(N,i)

)
[y(N − i)]γ

]>
. (43)

Eq. (42) provides a quantification of the uncertainty of
estimated coefficient functions by highlighting the re-
gions that suffer from poor excitation. Hence, such in-
formation can be used to further improve the estimate.
The minimum variance estimate of (huj � • ) and its asso-
ciated covariance can be formulated in a similar fashion.
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5 Estimate of the Process and Noise Models

In this section, we present a novel method to con-
struct a nonparametric estimate of the process (9a) and
noise (9b) model based on the estimated one-step-ahead
predictor in of Section 4.3. Such a representation of the
model estimates is more useful for control synthesis [43]
or analysing the dynamics of the deterministic part (1a).

To this end, we use the truncated nonparametric esti-

mates ĥyi , ĥuj (41) of hyi , huj of order nfy , nfu (de-
scribed in Section 4.3) to calculate estimates of g0,i and

h0,i in (5). To start, note that ĥyi in (41) for a finite
order estimate corresponds to

(Ĥ†(q−1) � • )k = I −
nfy∑
i=1

(ĥyi � • )kq
−i. (44)

To recover an estimate of H0(q−1), the left inverse of

Ĥ†(q−1) in (44) needs to be calculated. By applying (6)
on (44), after some algebra, the inverse relation boils
down to

(ĥj � • )k =

min(nfy ,j)∑
i=1

(ĥyi � • )k(ĥj−i � • )k−i, (45)

for i ≥ 1 where ĥy0 = I. Recursion (45), in practice, is
computed up to the truncation order nfy , with a resid-
ual truncation error εnfy

expressed by (8). Key of the

recursion (45) is that it is solely dependent upon ĥyi .
Therefore, the noise filter can be constructed from the
estimated one-step-ahead predictor. In a similar fash-
ion, a nonparametric estimate of the process coefficient

filters ĝi is found by left multiplying
∑
ĥui q

−i with∑
ĥj q

−j of (45), i.e., left multiplying Ĥ†(q−1)Ĝ(q−1)

with Ĥ(q−1), which, after some algebra, gives

(ĝj � • )k = (ĥuj � • )k +

min(nfu ,j)∑
i=1

(ĥi � • )k(ĝj−i � • )k−i, (46)

with j ≥ 1 and (ĝ0 � • )k = (ĥu0
� • )k. In case the func-

tional estimates ĥyi and ĥui are replaced by the true
functions hyi and huj , the original coefficient functions

g0,i and h0,i of G0(q−1) and H0(q−1) can be recovered
with (45) and (46). The estimated individual coefficient

functions ĥuj and ĥyi are assumed to be independent
and normally distributed, however, due to the multipli-

cation of these functions, the estimates ĝi and ĥi are not
normally distributed any more. The associated variance

and PDF of ĝi and ĥi becomes rather complex for high
i due to the high order of multiplications and, therefore,
calculating a confidence bound by numerical integration

is required. Yet, combining the nonparametric identifi-
cation approach of Section 4.2 with the nonparametric
realization will lead to a relatively simple identification
approach to find a nonparametric estimate of G0(q−1)
and H0(q−1).

6 Numerical Simulation

In this section, the performance of the presented non-
parametric approach for the identification of LPV-BJ
models based on their one-step-ahead predictor is shown
by means of an extensive Monte-Carlo study.

6.1 Data-generating system

The considered data-generating system is a MIMO sys-
tem with nu = 2, ny = 2 and np = 2 in the form of (1).
The LPV-BJ data-generating system 9 has a plant
model order of na = nb = 2 and a noise model order of
nc = nd = 2.

6.2 Identification setting

The one-step-ahead predictor is estimated using
an identification data set with three different sizes
N = {200, 500, 1000} and the prediction performance
of the estimated model is examined on a validation data
set that contains Nval = 200 samples. The identification
and validation data sets are generated with indepen-
dent realizations of a white noise input signal u with
uniform distribution, i.e., [u(k)]λ ∼ U(−1, 1), λ = 1, 2.
The scheduling signals are given by

[p(k)]λ = 0.4 sin(0.035k +
λπ

5
) + 0.25λ

+ U(−0.15, 0.15), for λ = 1, 2.

The variance of the white noise e driving the noise pro-
cess is chosen such that the signal-to-noise (SNR) ratio

SNR[y]λ = 10 log

∑N
k=1[y̆(k)]2λ∑N
k=1[v(k)]2λ

,

is 20dB. To analyze the statistical properties of the
presented identification approach, a Monte-Carlo study
with NMC = 100 runs is carried out. At each run, a new
realization of the input u, the scheduling signal p and
the noise e are taken.

The predicted output ˆ̄y from the estimated one-step-
ahead predictor model is compared to the true output of

9 Due to lack of space, the matrix polynomials associated
with the plant and noise models are not provided. Descrip-
tion of the LPV-BJ system can be found in [44].
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the data-generating system by the best fit ratio (BFR)

BFR=max

(
1−

1
N

∑N
k=1 ‖y(k)− ˆ̄y(k | k − 1)‖2

1
N

∑N
k=1 ‖y(k)− ȳ‖2

, 0

)
·100%,

(47)
where ȳ defines the mean of the true output y. Note that
the definition in (47) characterizes the average perfor-
mance over all output channels.

6.3 Identification results

In this section, the results of the identification of the
one-step-ahead predictor of the data-generating system
given in Section 6.1 with the identification setting given
in Section 6.2 are discussed. The results have been ob-
tained with a truncation order nfy = nfu = nf = 10. The
considered estimators are

(1) Bayesian estimator with DI-like kernel in (35).
(2) Bayesian estimator with TC-like kernel in (36).
(3) Oracle estimator that knows the true underlying

nonlinear functional dependencies of hyi , huj in
(12a), (12b), respectively. With such knowledge,
the Oracle estimator performs an LS estimate of a
high-order ARX model with a truncation order of
n = 15, which is chosen large enough to capture the
dynamics of the system. It is worth to mention that
the number of parameters to be estimated via LS
is (2n + 1)ny = 62. In this setting, the truncation
order introduces a bias/variance trade-off.

In case of the Bayesian estimator, the hyperparameters
are estimated via solving (39). Figure 1 displays the first
50 samples of one realization of the true and the pre-
dicted output response on the validation data set by the
one-step-ahead predictor estimated with TC-like kernel,
truncation order nf = 10 and N = 1000 samples based
identification data set. In Figure 1, 95% confidence re-
gion of the predictor is also displayed to quantify the ex-
pected variance of the predictor. The figure shows that
the presented Bayesian approach is able to identify an
LPV model under general BJ noise conditions. Table 1
gives the sampled mean and the standard deviation (std)
of the BFR of the identified predictor over NMC = 100
runs tested on the validation data set. To gain more in-
sights into the performance of the considered estima-
tors, Figure 2 gives a box plot based visualization of the
model fit on the validation data set for various sizes of
the identification data set. It can be seen from Table 1
and Figure 2 that all the predictors benefit from increase
amount of samples in the identification data set, seem-
ingly converging in performance to the Oracle.

6.4 Realization of the process and noise models

In this section, the performance of the realization of the
IIRs of the process and noise models is assessed in terms

of the coefficient functions ĝi and ĥi, respectively. We
use the scheduling trajectory of the validation data set
to compute the BFR of a function by

[BFR]l,m= 100% ·max
(
1−

1
N

∑N
k=1 ‖[(g0,i � p)k]l,m − [(ĝi � p)k]l,m‖2

1
N

∑N
k=1 ‖[(g0,i � p)k]l,m − [ḡ0,i]l,m‖2

, 0
)
, (48)

where [·]l,m denotes the (l,m)-th element and ḡ0,i is
the average of the coefficient variation along the given
scheduling trajectory.

Table 2 shows the mean and standard deviation (std) of
the average BFR over all i, j elements in (48) for NMC =
100 runs. The table shows that the BFR decreases for a
higher index number, i.e., higher i in ĝi. As the system
is asymptotically stable, the coefficient functions decay
to the zero function. Hence, for a higher index number,
the contribution of the associated coefficient function
is lower in the measured output signals. The relative
magnitude difference also explains that a higher index
number has an increased variance. Also, increasing the
number of samples in the identification data set increases
the prediction performance and lowers the variance of
the estimate in almost all cases, as expected. In line with
Table 1, no significant difference is noticed between the
DI and TC kernels.

In Figure 3, the true coefficient function g0,1 is com-
pared to the sampled mean and sampled standard de-
viation (std) of the estimated coefficient function ĝ1 for
NMC = 100 runs. The scheduling trajectory applied has
190 increasing and equally distant samples between the
minimum and maximum value of the scheduling signal
used in the identification data set. The figure shows that
the function estimate is close to the original function
shape. In overall, by Table 2 and Figure 3, it is evident
that the underlying data-generating parameter-varying
matrix functions g0,i and h0,i can be consistently recov-
ered.

7 Conclusion

In this paper, we have presented a nonparametric identi-
fication approach for MIMO LPV-BJ models. Similar to
the LTI case, it has been shown that the one-step-ahead
predictor of such models is a summation of two sub-
predictors associated with the input and output signals,
where under mild assumptions, these sub-predictors are
shown to be convergent IIRs. To cope with issues asso-
ciated with identifying such models, e.g., parameteriza-
tion of parameter-varying matrix coefficient functions, a
Bayesian nonparametric approach within the GP frame-
work has been adopted. More specifically, the IIRs asso-
ciated with the predictor are assumed to be realizations
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Fig. 1. The first 50 samples of the true and the predicted output response on the validation data set by the one-step-ahead
predictor estimated with TC-like kernel, truncation order nf = 10 and N = 1000 samples based identification data set. 95%
confidence region of the predictor is also displayed.

Table 1
The sampled mean and std of the BFR of the identified predictor on the validation data set over NMC = 100 Monte-Carol runs.

N = 200, nf = 10 N = 500, nf = 10 N = 1000, nf = 10

DI TC Oracle DI TC Oracle DI TC Oracle

BFR[%]
mean 87.18 87.20 88.11 88.36 88.39 89.01 88.80 88.80 89.32

std 0.8222 0.8170 0.8150 0.6769 0.6804 0.7054 0.7173 0.7227 0.6828

200 500 1000

86

88

90

N

B
F

R
%

DI
TC
Oracle

Fig. 2. BFR of the predicted response on the validation data
sets using the estimated models with DI, TC kernels and the
Oracle estimate under various sizes of the identification data
set N = {200, 500, 1000}.

of zero-mean Gaussian random fields with suitable ker-
nels. One of the main important contributions of this
work is to show how to design such kernels in the LPV
setting that encode the expected behavior of the predic-
tor:

• Ensure stability of the identified predictor;
• Encode possible structural dependencies;

Table 2
The sampled mean and std of the average BFR of the real-
ized process IIR coefficients for NMC = 100 runs. The per-
formance criterion is based on the value of the realized func-
tions on the scheduling trajectory in the validation data set.

N = 200,
n = 10

N = 500,
n = 10

N = 1000,
n = 10

BFR[%] DI TC DI TC DI TC

ĝ0
mean 88.90 88.85 93.15 93.18 95.27 95.28

std 4.613 4.760 2.501 2.567 1.662 1.684

ĝ1
mean 74.88 74.97 84.10 84.20 88.82 88.86

std 6.787 6.928 4.344 4.269 2.883 2.867

ĝ2
mean 64.04 65.25 78.06 78.78 84.11 84.25

std 16.10 14.77 10.66 9.798 7.355 7.189

ĝ3
mean 51.92 53.74 65.62 66.48 73.04 73.81

std 24.50 25.00 17.81 18.41 14.16 14.20

ĝ4
mean 17.81 20.27 29.21 30.43 41.74 44.00

std 17.19 18.20 18.37 19.21 17.79 18.11

• Take into account the LTI part as well as the
p−dependent part of the model.

Two kernel formulations have been presented: a DI-like
and a TC-like kernel. The hyperparameters of the ker-
nels are tuned by maximizing the marginal likelihood
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Fig. 3. The true parameter-varying matrix function g0,1 compared with the sample based estimate of the mean and std of the
matrix function estimate ĝ1 for N = 1000, nf = 10, and TC kernel on NMC = 100 runs. The functions are displayed between
the minimum and maximum value of the scheduling signal used in the identification data set, i.e., pmin = [−0.2955 − 0.0248]>

to pmax = [0.7588 1.0296]>.

of the predictor over the observed data. Additionally,
a nonparametric realization scheme has been developed
to recover the estimates of the process and noise models
from the identified predictor.
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A Proof of Lemma 2

Based on the notation of Lemma 2, dim(y) = dim(u) =
ny. For notational ease, define Aq := A(q−1) and Rq :=
(I − A(q−1)). First, we will prove that A†q in (6) is a

left inverse of Aq, i.e., A†qAq = I. So, let us expand the

infinite summation A†qAq for a finite order n, as

Sq =

n∑
i=0

RiqAq = Aq +RqAq +R2
qAq + . . .+RnqAq,

and multiply from the left with Rq

RqSq = RqAq +R2
qAq + . . .+Rn+1

q Aq.

Next, subtract the two previous expansions giving

(I −Rq)Sq = Aq −Rn+1
q Aq

AqSq = Aq −Rn+1
q Aq = Aq −AqRn+1

q

Sq = I −Rn+1
q . (A.1)

Note that RiqAq = AqR
i
q, which trivially follows by ex-

panding the terms and factorising them again. As the
filter Aq is asymptotically stable, the filter Rnq → 0 in
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terms of convergence to a zero function as n → ∞.
Hence, using (A.1)

A†qAq = lim
n→∞

n∑
i=0

RiqAq = I − lim
n→∞

Rn+1
q = I. (A.2)

So, taking a finite order n, the approximation error of
the inverse is Rn+1

q .

Taking a finite order n, the approximation error of the
inverse is Rn+1

q . It remains to be proven that the `2 sig-
nal norm of the approximation error in (8) exists, i.e.,

that
(
I−(A(q−1) � p)

)n+1
u in (8) qualifies as an `2 sig-

nal. Note that the expression is a polynomial in A with
(A(q−1))n → 0 for n → ∞ as the filter A is asymptot-
ically stable and that u is an `2 signal. The individual
coefficients can be written as

∀k ∈ Z :
(
(A(q−1)�p)k

)n
uk = uk+

na∑
i=1

(ai �p)kuk−i+

na∑
i=1

(ai � p)k
na∑
j=1

(aj � p)k−iuk−i−j + . . . ,

where each product is a `2 signal and, hence, their finite
summation is also an `2 signal. Therefore, the `2 norm
in (8) exists.

Note that A being monic is a crucial property for this
derivation to be valid and for nonmonic A the existence
of an inverse is not guaranteed.

15


	Introduction
	Problem Statement
	LPV-BJ model
	The IIR form
	One-step-ahead predictor

	Gaussian Regression Framework
	Nonparametric Gaussian regression
	Connection to functional estimate in RKHS

	Bayesian Identification of LPV-IO models
	Kernel design for LPV-IO models
	Estimation of the predictor from data
	The individual coefficient function estimates

	Estimate of the Process and Noise Models
	Numerical Simulation
	Data-generating system
	Identification setting
	Identification results
	Realization of the process and noise models

	Conclusion
	References
	Proof of Lemma 2

