Chapter 2
Prediction-Error Identification of LPV Systems:
Present and Beyond

Roland Taéth, Peter S.C. Heuberger, and Paul M.]J. Van den Hof

Abstract The proposed chapter aims at presenting a unified framework of
prediction-error based identification of LPV systems using freshly developed
theoretical results. Recently, these methods have got a considerable attention as
they have certain advantages in terms of computational complexity, optimality in
the stochastic sense and available theoretical tools to analyze estimation errors
like bias, variance, etc., and the understanding of consistency and convergence.
Beside the introduction of the theoretical tools and the prediction-error framework
itself, the scope of the chapter includes a detailed investigation of the LPV extension
of the classical model structures like ARX, ARMAX, Box—Jenkins, OE, FIR, and
series expansion models, like orthonormal basis functions based structures, together
with their available estimation approaches including linear regression, nonlinear
optimization, and iterative IV methods. Questions of model structure selection
and experimental design are also investigated. In this way, the chapter provides a
detailed overview about the state-of-the-art of LPV prediction-error identification
giving the reader an easy guide to find the right tools of his LPV identification
problems.

2.1 Introduction

To design efficient linear parameter-varying (LPV) controllers, it is has a paramount
importance to have an accurate but at the same time low-complexity LPV model of
the underlaying behavior of the system at hand. In engineering, it is common to
use first-principle laws of physics, chemistry, biology, etc., to construct dynamic
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models. However, such a procedure requires a detailed process knowledge from
specialists. To assemble the existing knowledge into a coherent and compact
mathematical description is not only a challenging task but it usually results in a
too complex model as it is hard to distinguish relevant effects from negligible terms.
The selection of the scheduling variable itself is also often restricted by the way of
model construction and likely different choices follow from linearization-based or
direct conversion based methods, see [15,19,23]. Therefore, modeling is often found
to be very laborious and expensive. If the specialist’s knowledge is lacking, like in
case of poorly understood systems, the derivation of a model from first principles is
even impossible. Moreover, certain quantities, like coefficients, rates, etc., required
for the model, are likely unknown and have to be estimated by performing dedicated
experiments.

Descriptions of systems can alternatively be derived by system identification
(ID), where the estimation of a dynamical model is accomplished directly from
measured input—output data. Theexpert’s knowledge still has a major role, as it gives
the basic source of information in decisions on parametrization, model-structure
selection, experiment design, and the actual way of deriving the estimate. This
knowledge also helps in judging the quality and applicability of the obtained models.
Even if system identification requires human intervention and expert’s knowledge
to arrive at appropriate models, it also gives a general framework in which most of
the steps can be automated, providing a less laborious and cost intensive modeling
process.

In the current literature, many LPV identification approaches have been devel-
oped using model structures that are formulated in terms of state-space (SS) and
linear-fractional representations (LFR), e.g., [7, 18,22, 33, 34], input—output (10)
representations, e.g., [1,3, 11,36], or series-expansion forms, e.g., [23,27,28]. Most
of the existing approaches use a discrete-time setting and commonly assume static
dependence on the scheduling variable p : Z — P, with P C R"™. Here, static
dependence means dependence of the model coefficients only on the instantaneous
value of p. For a recent overview of the available methods, see [4,23].

Recently, LPV-IO model structures based methods have got a considerable
attention as they appear to have certain advantages w.r.t. other identification
approaches of the field. One of the major benefits is that identification of this
representation-based model structures can be addressed via the extension of the
LTI prediction-error (PE) framework [23,25]. In opposition with other approaches,
this enables the stochastic analysis of the estimates, treatment of general noise
models [13,25], experimental design [6,12,36], model structure selection, and direct
identification of the involved dependencies [11,30,31] often in a computationally
attractive manner and also in continuous time [14]. Moreover, in this setting it is
also relatively easy to identify models with dynamic dependence (dependence of the
coefficients on time shifted instances of p), which is often required for high accuracy
identification of nonlinear systems (see [23]). However, the main stream LPV
control-synthesis approaches are based on models defined in an SS or an LFR form,
hence the delivered IO model needs to be converted to such representation forms.
Due to the fact that multiplication with any time operator is not commutative over
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the p-dependent coefficients, the existing realization theory is more complicated
than in the LTI case and often introduces rational dynamic dependence on p in the
resulting state-minimal SS forms [26, 32]. It is possible to avoid this phenomenon
by aiming at minimal realization in terms of the involved dependency as well,
which often requires either auxiliary state variables or special parametrization of the
polynomial forms [24]. Improving SS realization of IO models in terms of finding
the state basis that provide the simplest scheduling dependence and minimal state
dimension is in the focus of current research activities in this area.

In this chapter, we give an overview about the state-of-the-art of LPV prediction-
error identification. In particular, we focus on what is feasible by the available
approaches, what the practical advantages are, and what developments are still
needed. Due to the broad scope of the topic, we will address here only the discrete-
time case.

The chapter is organized as follows: First in Sect.2.2, the concept of LPV
series expansion representations is introduced which makes it possible to formulate
predictors and model manipulations later on. Next in Sect.2.3, the basic setting
of the LPV prediction-error framework is defined with the concept of the data-
generating system, noise models, and one-step-ahead predictors. A general structure
of parameterized models and the perspective of estimation in the ¢;-optimal
prediction-error sense, identifiability of model structures and informativity of
datasets are also studied. Then in Sect.2.4, the LPV extension of the classical
model structures is introduced and their properties are analyzed. This is followed
in Sect. 2.5 by a detailed investigation of the available estimation approaches w.r.t.
these models in terms of linear regression, nonlinear optimization and iterative
instrumental variable methods and their stochastic properties.

2.2 LPV Series-Expansion Representations

In the LTT case, many key concepts and model manipulations in the PE framework
are based on a transfer function representation of the dynamic behavior (see [16]).
One of the major problems which has so far prevented the analysis of the PE
methods in the LPV case has been the lack of a transfer function representation
of LPV systems which expresses signal relations in the frequency domain. To
illustrate the problem, consider the classical LPV filter form of discrete-time 10
representations, often defined in the single-input single-output (SISO)' case as:

3 ailp®)ay®) = 3 bi(p (k) u(k), @1
i=0 j

ILPV-IO representations can also be defined for multiple-input multiple-output (MIMO) systems
in a similar form as (2.1), see [23].
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where u : Z — R is the input, y : Z — R is the output, and p : Z — P is the scheduling
variable of the LPV system .¥ represented by (2.1); ¢ is the (forward) time-shift
operator, i.e., ¢! (k) =u(k—1), ngny >0 and ¢; : P - R and b; : P — R are
functions of p(k) (instantaneous value of p) which is called static dependence. The
functions a; and b; can have arbitrary complexity ranging from simple linear to
rational or real meromorphic?> dependence. To guarantee well-posedness of (2.1), it
is often assumed that all a; and b; are bounded on PP.

In identification, we aim to estimate a dynamical model of the system based on
measured data, which corresponds to the estimation of each a; and b; in (2.1). To
formulate estimation of these functions, it is attractive to introduce

A(ql,p<k>)—ilai<p<k>>qi and B(ql,p<k>)—_"2:bj<p<k>>qf
i= J=

as polynomials in ¢! with varying coefficients a;(p(k)) and b;(p(k)) and, inspired

by the LTI system theory, to write

y(k)=F (¢ ", pk))u(k) with F(q",pk)) = —F——+L. (2.2)

However, F (¢!, p(k)) in (2.2) relates to a transfer function if and only if p(k) is
a constant signal, i.e., p(k) = p for all k, where p € IP. This is justified by the fact
that if g is substituted with the complex z variable, then F (z’l, p(k)) is a mixed
frequency—time relationship. If Y (z) and U (z) denote the Z-transform of the signals
u and y on an appropriate region of convergence, then Y (z) = F (z~!, p(k)) U(2)
has a meaning if and only if p, associated with (u,y), is a constant (not-varying
with time). Furthermore, F (q’l, p(k)) is ill-defined also as an operator because
multiplication with ¢! is not commutative over time-dependent coefficients such
as bj(p(k)), i.e., ¢ 'bj(p(k)) = bj(p(k — 1))g~'. Therefore, multiplication from
the left or right has different meaning. In (2.2), it is ambiguous whether left or
right multiplication is intended to derive this rational operator form. Currently no
theoretical framework is available (to the author’s knowledge) to handle rational
time-operator forms with time-dependent coefficients (such a framework does exist
in case of constant coefficients, i.e., in the LTI case, see [37]).

To overcome this “representation” problem, it has been shown in [23] that the
dynamic mapping between u and y can be characterized as a convolution involving
p and u. This so-called impulse response representation (IRR) is given as

YK = 3 (gr0p) (K ulk— i) = (i@iomqiu) (0 = (Gl@)o p)(K), (2.3)

i=0 i=0

2h:R" — R is a real meromorphic function if & = f /g with f, g analytic and g # 0.
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where the so-called impulse response coefficients g; are functions of p(k) and of
multiple, but finite many, time-shifted instances of p, like g;(p(k+11),...,p(k— 1))
with 71,7, > 0. This is called dynamic dependence. To express such a broad range
of dependencies conveniently, we apply the operator ¢ : (%’ ) ]P’Z) — RZ, where Z is
the set of all real meromorphic functions with finite dimensional domain, such that
(giop)(k) =gi(plk+11),...,p(k— 12)). Note that in the sequel, we will use © to
express dynamic or general dependence like (g; ¢ p)(k) whenever it is needed and
we will use g;(p(k)) to express if a coefficient has only static dependence. For an
illustration, consider the following example.

Example 2.1. Given an asymptotically stable discrete-time LPV-IO representation:
y=—0.1pg 'y—0.2¢ >y+sin(p)g 'u, (2.4)

with P = [0,1]. By recursive substitution for ¢~'y,g2y,..., the following IRR,
equivalent with (2.4), results

y = sin(p)g~'u+(=0.1psin (¢"'p)) ¢ u
N——
g1op 820p
+(0.01p (¢ 'p) —0.2)sin (¢ %p) g Su+--,

830p
where the sequence of functions g; ¢ p converges to zero as i — oo.

Equation (2.3) can be considered as a series expansion of . in terms of ¢~
which is convergent if .7 is asymptotically stable. Furthermore, (2.3) can be seen
as the generalization of LPV-SS and LPV-IO representations with appropriate
equivalence transformations available (see [23]).

2.3 An LPV Prediction-Error Framework

By using the LPV impulse response representation, established in the previous
section, it becomes possible to extend the classical PE framework to the LPV case
allowing sophisticated analysis of the estimation of LPV-1O models. To do so, we
will first define the concept of an LPV data-generating system. This will be followed
by deriving a one-step-ahead predictor for the observed output sequence that we
will use to formulate the estimation of parametrized models under a mean-squared
prediction-error criterion.

2.3.1 Data-Generating System

According to the classical PE setting, the data-generating system is considered as
a discrete-time deterministic filter G, whose output is influenced by a stochastic
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Fig. 2.1 LPV concept of the [
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noise process v, in an additive manner (see Fig. 2.1). It is assumed that v, is a quasi-
stationary noise process with a bounded power spectral density @, (). In case G,
is linear, it is possible to lump many different sources of disturbances in v,, such
as noise-corrupted actuation, uncontrollable inputs, process noise, etc., because,
under minor restrictions, all these effects can be propagated through G,. In the LTI
case, this suggests that for many systems it is valid to assume that @, (®) is a
rational function, i.e., that v, can be represented as a filtered zero-mean white noise
process.

Using this concept, a data-generating LPV system .7, can be analogously
formulated as

(k) = (Go(g) o p) (k) u(k) +vo(k), (2.5

where the process part is represented by an LPV impulse response form
Go(g)op =Y (s7oP)g ", (2.6)
i=0

with g; being bounded w.rt. every p € P, where P C PZ denotes all possible
trajectories of p that are allowed during the operation of the system. In order to
guarantee that (2.6) is convergent, it is a necessary assumption that G, under P
represents an asymptotically stable LPV system. Additionally, it is assumed that the
disturbance v, can be described as

vo(k) = (Ho(q) o p) (k) €o(K), 2.7

where H, is a convergent LPV-IRR, i.e., it corresponds to an asymptotically stable
LPV filter, it is monic, i.e., Hy(e0) = 1, and e,(k) is a zero-mean white noise
process. Similar to the LTI case, asymptotic stability of H, in the deterministic sense
is a necessary assumption of the PE setting (see [16]), otherwise @, (®) would
not be bounded yielding that ID of G,(q) is an ill-posed problem. Furthermore,
it is important to point out that in terms of (2.7), E{v,(k)} = O for each k,
where E denotes the expectation operator, but the autocorrelation of v,, i.e.,
Ry, v, (k,T) = E{vo(k)vo(k — 7)}, is time-dependent. However in the asymptotic
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sense, 1im1\HC,<,11\,25{\/:1&”U (k,T) exists for a given p and for all T € Z due to
the convergence properties of H,(g) and the independence of p form e,. Hence
v, qualifies as a quasi-stationary signal (see [25] for the detailed proof).

2.3.2 One-Step-Ahead Prediction of v,

In order to formulate the estimation of parametrized LPV models of (2.5) in a
prediction-error setting, it is necessary to derive a predictor of y. The simplest case
is to characterize a one-step-ahead predictor of y, for which it is essential to clarify
how we can predict v,(k) at a given time-step k if we have observed v,(7) for
T < k—1.In terms of (2.7):

=3

vo(k) = (h§o p) (k) eo(k)+ (B o p) (k) eo(k— i), (2.8)

i=1

meaning that {v,(7)} ;<41 and a given trajectory of p defines {e,(7)} ;<. Note
that if each /4 depends only on the current and the backward-time-shifted values of
p,eg., p(k), p(k—1), p(k—2), etc., which is called causal dynamic dependence,
then only the knowledge of { p(7)} 1<k and {vo(7) } r<—1 is sufficient to characterize
{eo(T)}r<k—1. In case the noise process has an LPV-IO representation in terms
of (2.7) with only static p-dependence, then the equivalent IRR form (2.8) is
guaranteed to have only causal dependence [23]. In most practical applications,
causal dynamic dependence on p is quite realistic.

To follow the classical concept of deﬁning the prediction of v,(k), assume that

observations of X ") = = {eo(7)}r<t1 and p®) = {p(7)} ¢y are given. Under this
information set, our obJectlve is to compute the one-step-ahead prediction of v, (k)
w.r.t. the />-loss:

Po(k|k — 1) = arg min E{Hvo(k) — 8|2 | e
SeR

v, p0 . 2.9)

In [23,25] it is shown that if p(*¥) is fully known, then (2.9) is equal to

oo

Do(k|k—1) =Y (hf o p) (k) eo(k—1). (2.10)

i=1

It easily follows that (2.9) also minimizes the mean-squared error of the prediction.

Of course it is not practical to assume that eﬁ, 1 is known. To formulate prediction

of vo (k) in terms of observation of e = {vo(7) } r<k—1, it is required that H, has
a stable inverse, i.e., there exists a monic convergent LPV-IRR denoted as Hg such
that (HJ (¢)Ho(¢)) o p = 1. Note that if such a H] exists, then it is a bi-lateral inverse



34 R. Téth et al.

of H,i.e., HI(q)Ho(q) = Ho(q)H_ (q) = 1, which can be shown based on telescopic
sums, see [25]. This implies that

eo(k) = (H{ (q) 0 p) (k) vo(K). 2.11)
Then using (2.11), we can write (2.10) as
So(k|k—1) = ((Ho(q) — 1) o p)(k) eolk) = (1 - Hi(g)op) (K) vo(k),  (2.12)

which is the LPV form of the classical one-step-ahead predictor result [16].

2.3.3 One-Step-Ahead Prediction of v, with Noisy p

In the previous derivation, it was essential that full, i.e., noise-free observation of
the sequence p<k> is available, which we will call the “p-true case”. In the LPV
literature, such an assumption is generally taken as a technical necessity regardless
of the used identification setting (see [6,7, 12, 18,22,33,34,36], exceptions: [3,5])
and the resulting methods based on it are almost exclusively applied in practical
situations where measurements of p are polluted by noise with various stochastic
properties. The reason for this theoretical gap lies in the difficulty to establish
a conditional expectation of v,(k) in the situation when instead of p(k) only
observations of

ps(k) = p(k) +wo(k), (2.13)

with wo (k) is an iid noise process, are available as each 49 can be a nonlinear
function with dynamic dependence on p. For systems with simple dependencies,
formulation of ¥ (k |k — 1) is possible but no general formula can be given based
on the current results (see [3] for an analysis of consistency for LPV autoregressive
with exogenous input (ARX) models under stochastic p). It has been only recently
shown that a general approach to formulate the one-step-ahead predictor in case of
noisy observations of p(k) can be derived from moment-generating functions of the
underlaying distribution of w, (k) [25]. Furthermore, a parametrized noise model to
capturing nonwhite noise on p can also be applied. However, currently the stochastic
properties of the estimated models are not well understood in that case. For the sake
of simplicity and coherence of our overview, we will restrict our attention to the
p-true case and investigate estimation under such an assumption.

2.3.4 One-Step-Ahead Prediction of y

As a next step, we need to formulate the one-step-ahead predictor of y(k) to address
identification of a parametrized model in terms of minimizing the prediction error,
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i.e., the difference between y(k) and the predicted model output, which is the
primary goal in the PE setting. Consider the p-true case with y*—1) = (%) }e<i—15
u® = {u(1) } 1<, and p® = {p(7)} 1< (in case of causal dependence). Since (2.5)
implies that

=3

vo(k) = y(k) =Y (&0 o p) (k) u(k—1i), (2.14)
=0

vo(7) is characterized for T < k — 1 w.r.t. the information set (u®), p(&) yk=1)),
Based on (2.12), it is not complicated to show that under the given information
set, the one-step-ahead prediction of y(k) w.r.t. the ¢, loss is

(k| k—1) = ((H{(q)Go(q)) o p) (k) u(k) + (1= Hi(q) o p) (k) y(k).  (2.15)

This corresponds to the LPV form of the classical result of the LTI case (see [16]).
Note that in a similar manner, k-step-ahead predictors can also be formulated in this
setting. For a detailed proof, see [23,25].

2.3.5 Parametrized Models and Estimation

Now, introduce an LPV parametrized model in the form of

(G(q,64),H(q,6n)), (2.16)

where G(q,6,) and H(g,6h) are the IRRs of the process part, denoted as %, ,
and the noise part, denoted as jfgh, of the model structure, respectively, and
0, € O, C R": with 6, € @, C R™ are the parameters to be estimated. Note that
these parameters are not necessarily associated with the parametrization of impulse
response coefficients directly, but can correspond to the parametrization of the
coefficients of the process and noise models given in an SS or IO form. Then
these parametrized structures are represented by the IRRs: G and H. Also introduce
0 = col(6s,6,) € © C R", the vector of independent parameters in 6, and 6.

Denote § = {%, | 0; € Oy} and H = {Hp, | O € O} the collection of all
process and noise models with the considered parametrization and similarly denote
the overall parametrized model (2.16) as .#y. Then, based on the model structure
My, the model set, denoted as M, takes the form

M = {(“o,, )| 6 = col(6,,6,) €O} . (2.17)

This set corresponds to the set of candidate models in which we seek the model
that explains data gathered from .7, the best, under a given criterion. We denote
by % € M, when the data-generating system is in the model set, i.e., 36, =
col(6y.¢,600n) € O such that Go(q)op = G(q,0,¢) o p and Hy(q)op =H(q,01n) 0 p.
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With respect to (2.16), we can define the one-step-ahead prediction error as
e (k) = y(k) = $(k[6,k—1), (2.18)
where
I(k|0.k—1) = (Wu(g,0) o p)(k) u(k) + (Wy(q.0) o p) (k) y(k). (2.19)
is the one step-ahead predictor of the model output with subpredictors
Wu(q,0) = H'(¢,6,)G(q,6,) and Wy(q,0)=1—H"(q,6n) (2.20)

according to (2.15). Denote a data sequence of .%, by Dy = {y(k),u(k), p(k)}3_,.
Then the basic philosophy of PE-based identification is to find 6 w.r.t. a given
parametrized model .# with parameter space ©@ C R"¢ and a dataset Dy such that
the one-step-ahead predictor (2.19) associated with 6 provides a prediction error eg
which resembles a zero-mean white noise “as much as possible”.

Based on the predictor form (2.19), many different classical identification criteria
can be applied to achieve this objective in terms of “minimization” of ey subject to
0. A particularly interesting choice is the mean-squared prediction error or more
often called as the least-squares (LS) criterion:

V(Dy,0) 2 ep(k \egngz, (2.21)

such that the parameter estimate is

6 = argmin V(Dy, 6). (2.22)
0co

Other criteria can also be used to characterize estimation of 6 in (2.16) as a
minimization of (2.18) w.r.t. a chosen measure (see [16]) or to introduce other
objectives, e.g., minimization of the support of 6, or weights, like forgetting factors.
However for sake of simplicity, we restrict the main stream of discussion to the
classical LS case.

2.3.6 Identifiability and Informativity

To guarantee uniqueness of (2.22), one condition is that .#y is globally identifiable.

Definition 2.1 (Identifiability, based on [8]). The model structure .#y, defined by
(2.16) with a parameter domain @ C R, is called locally identifiable at a 6; € O,
if 36 > 0 such that for all 6, € O in ||8; — 6:]| < O:

Wy(q,01) =Wy(q,6,) and Wu(q,01) =Waul(q,62) = 61=6,. (2.23)
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The model structure is said globally identifiable at 6, if the same holds for arbitrary
large §. It is called globally identifiable if it is globally identifiable at all 6; € ©.

Another condition for uniqueness (2.22) is the informativity of the data set Dy.

Definition 2.2 (Informative data, based on [8]). For a model structure .#jy,
defined by (2.16) with a parameter domain © C R"¢, a quasi-stationary data set
Dy = {u(k),y(k), p(k)}¥_, is called informative, if for any 6;,6, € ©

E{(Wy(q,61)0p)y— (Wy(q,62) o p)y+ (Wu(g,61) 0 p)u
~(Walg,62) o p)u}’ =0, (2.24)

with |E being the generalized expectation operator,’ implies that
Wy(q,61) =Wy(q,62) and Wu(q,61) =Wu(q,62). (2.25)

In terms of these definitions, if the model set is globally identifiable (no two
different parameters 6; and 6, give rise to the same predictor) and the data set Dy
is informative, then V (6, Dy) has a global optimum in the statistical sense.

2.3.7 Consistency and Convergence

When applying the quadratic ID criterion (2.21), the asymptotic properties of
the resulting parameter estimate can be analyzed in the situation when N — oo,
similarly as in the LTI case. Consider the following definitions of consistency and
convergence.

Definition 2.3 (Convergence). For an informative data set Dy and model structure
My, the parameter estimate 6 is called convergent if N — o implies that 6 — 6~
with probability one, i.e., P(6 = 6*) = 1, where 6* = argming E {¢3 }.

Note that convergence implies that the asymptotic parameter estimate is inde-
pendent of the particular noise realization in the data sequence and .#j is locally
identifiable at 0.

Definition 2.4 (Consistency). For model structure .#y with model set M and a
data set Dy which is informative w.r.t. .#j, a convergent parameter estimate 6 — 6*
is called consistent if either of the following conditions holds:

» If 7 € M, then Go(gq) = G(q,0;) and Ho(q) = H(q, 6y).

o If S gMbut¥, € G, then Go(q) = G(q, 0;).

We will investigate these properties w.r.t. the particular identification approaches
we consider in Sect. 2.5.

3The notation E{x} = limy ;.. ﬁ >N E{x(k)} is adopted from the prediction-error framework of
[16].
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2.4 Classical Model Structures

Next we can investigate how the classical model structures can be formulated in the
introduced LPV-PE setting. To follow the classical formulations, we will construct
both the process and the noise components using an LPV-IO representation form.
For the sake of simplicity, we treat these model structures such that their coefficients
have only static dependence on p. Extension of these definitions using coefficients
with dynamic dependence follows naturally.

2.4.1 Process Model

Consider the parametrized model .#j, where the process part %gg, whose IRR is
given by G(g, 0;), is defined by

A(q " p(k),0,) (k) =B (g, p(k),6) g “u(k). (2.26)

Here y is the noise-free output of the process part, 7g > 0 is the input delay and the
p-dependent polynomials

A(q " p(k),0y) = 1+ iai(p(k), 6s)g ",
i=1

B(q ', p(k).6,) = %b;‘(ﬁ(k)ﬁg)q’j,
=0

with ny, ny,, 79 > 0, are parametrized as:

ne, g
ai(p(k),0g) = > ai0i(p(k), bi(p(k),0y) =Y bjiB(p(k)), (2.27)
1=0 =0

with 0;0(.) = Bj0(-) = 1. In this particular parametrization, which is called linear
parametrization, {0,219, and {B Jl}r;b:gﬁlzl are priori given functions (chosen
by the user) which are bounded on [P and

.
0y = [a10 *** g D00+ buymy ] € Oy TR,
with ng = ny(ng + 1)+ (np + 1)(ng + 1), represents the unknown parameters to be

estimated for the process part. Note that parametrizations other than (2.27) are pos-
sible; however, the advantage of (2.27) is that a large number of functional depen-
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dencies can be represented, based on the choice of {Ofi,l}?i’ff;:l and {f /;l};l:gﬁ:l’
and it is linear in 6,. Additionally for the structure (2.26) with static coefficient
dependence, the impulse response coefficients (g; < p)(k) have only causal dynamic
dependence on p [23]. A particular advantage of linear parametrization is that it
not only reduces the complexity of the associated estimation problem but at the
same time it also makes the adequate selection of the structural dependencies well
posed [23]. In terms of (2.27), this selection problem translates to a search for
a set of functions {ai’,};.’i’ﬁ‘l’: , and {ﬁ,;};ll;gﬁl: , such that the true p-dependent
coefficients af and bf]?, associated with the 10 representation of the underlaying

system, satisfy @} € Span({0;,};%) and b$ € Span({ﬁjyl};ﬁo). In case of a black-
box scenario, the choice of these functions can be arbitrary. One can consider all ¢
and f3;; to be rational functions or polynomials with a fixed degree and a fixed order
of dynamic dependence. However, the number of possible choices is enormous.
Including a too large set of functions can easily lead to over-parametrization, while
restriction of ¢;; and f3;; to only a few basic functions can lead to serious structural
bias. In order to assist the selection of an efficient set of functional dependencies
in the parametrization of linear regression models, recently practically applicable
approaches have been proposed in [11,30,31]. In [11] a dispersion functions based
method while in [30] a support vector machine approach, both originating from
the machine learning field, have been developed. These approaches aim to learning
the underlying static or dynamic nonlinear dependence of the coefficients with great
efficiency. In [31], a coefficient shrinkage method, the so-called nonnegative garrote
(NNG) approach originating from statistics, has been introduced for this purpose.
The NNG uses regularization in terms of weights to penalize individual elements of
the parameter vector 6. In this way, the approach starts with a relatively large set of
possible functional dependencies from which those functions that do not contribute
significantly to the validity of the estimated model are eliminated by decreasing their
weights.

2.4.2 Noise Model

The noise model 773, , whose IRR is given by H(q, 6y), is defined as

C(g ', p(k),60) v(k) =D (q ", p(k), 6n) e(k), (2.28)

where e(k) is a zero-mean white noise process and the p-dependent polynomials C
and D are defined similarly as A and B with order n.,ng > 0. These polynomials are
also considered to be monic in the sense that ¢o(.) = dop(s) = 1 and to have linear
parameterization in terms of the functions {y,‘,l}?i’f’;:l, {6j71}:fi'11§:1 bounded on P
and parameters

6h = [CI,O “ Cneny dl,O dnd,ng} €0, CR™,
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with ny = ne(ny+ 1) 4+ nq(ng + 1), respectively. Furthermore, it is assumed that
the IRR H(q, ) of (2.28) has a stable inverse denoted as H' (g, @) for all values
of 6, € ©y. Note that (2.28) is able to express a large variety of different noise
processes. It also includes LTI noise models which admit a polynomial description
since for ny = 0 and ns = 0, C and D correspond to polynomials with constant
coefficients and hence H (g, 6;,) can also be expressed as a transfer function. Similar
to the process part, static coefficient dependence of (2.28) implies that H (g, 6;,) has
causal dynamic dependence.

2.4.3 Overall Model Structure

Finally, we can define the overall model structure in terms of (2.26) and (2.28). Let
0 = col(6g,6,) € Oy x Oy C R" with ng = ng +ny, in case the parametrizations
of %, and Hp are independent. Otherwise 6 is constructed from 6, and 6, such
that it contains only independent parameters. Then the signal relations of the overall
parametrized model .#y are given as

A(g " p(k),0) ¥(k) =B (g, p(k). 6) g “u(k), (2.29a)
C(q ", p(k),6n) v(k) =D (g~ ", p(k), 6n) e(k), (2.29b)
y(k) = ¥(k) +v(k). (2.29¢)

Note that in this general model structure, we can distinguish specific cases which
correspond to the classical model structures used in the LTT setting.

2.4.3.1 LPV-ARX and ARMAX structures

By considering C (¢~ ', p(k),6n) = A(q ", p(k),6;) and D(qg',p(k),6,) = 1 in
(2.29a—c), the LPV version of the so-called autoregressive with exogenous input
(ARX) model structure results:

Ag " p(k),6¢) y(k) =B (g~ ", p(k), 0¢) g “ulk) + e(k), (2.30)
with 6 = 6,. It is important to acknowledge here that w.r.t. (2.19):

$(k|0,k—1)=B(q",p(k),0:) g “u(k)+1—A(q ", p(k),6)y(k). (2.31)

(Wu(g,0)op)(k) (Wy(q,0)op)(k)

This means that if A and B are linearly parametrized then the predictor (2.19)
(and hence (2.18)) is linear in 0, giving that the solution of (2.22) can be analytically
computed (see Sect.2.5.1.1). A particularly interesting feature of this structure in
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the LPV case is that it explicitly assumes that v is correlated with p through the
same nonlinearities as the noise-free output signal. Hence, it generally applies a
more restrictive assumption on the noise than in the LTI case. This type of model
structure is most commonly applied in LPV-ID approaches that are based on least-
squares estimates (e.g., [1,9,35]).

An extension of this model structure can be achieved by introducing a moving
average part on e, i.e., when D (¢~ ', p(k),64) # 1. This significantly reduces the
restrictiveness of the modeling assumption on the noise, but the price to be paid is
that the predictor (2.19) is not linear in 6 any more as

oo

(Wa(g.8)op)(k) =Y (1=D(g" ", p(k), 6n))

i=0

i

B(qg ",pk),6:)q ™, (2.32a)

(Wy(q,0)0p) (k) =1=3 (1—=D(g ", p(k),6n)) A (g ", p(k),6,).  (2.32b)
i=0

Note that here the infinite sum term results due to the inversion of the scheduling
dependent noise model. This term is convergent as H' is defined to be sta-
ble. Furthermore, due to noncommutativity of ¢ in this setting, the polynomial
terms do not commute, e.g., (2.32a) is not equal to B(q’l,p(k),eg) g Y

(1-D(q",p(k),6n))"

2.4.3.2 LPV-FIR and Series Expansion Structures

Considering the IRR form (2.6) of the process part of .7, a particularly interesting
idea is to truncate this series expansion to get an approximation of the original
system (2.5) in the following form:

g

y(k) =Y (g7 o p) (k) u(k — i)+ vo(k). (2.33)
i=0

Note that if ny is large enough, the approximation error is negligible in (2.33). This
gives that by introducing a polynomial model structure*:

y(k) = igi(p(k), 0o )u(k—i)+v(k)=F (qil,p(k), Gg) u(k)+v(k), (2.34)
i=0

where each coefficient g; of the polynomial F is linearly parameterized in terms

of the functions {a; :’ig‘}zl and parameters 0,, a rather simple but effective

approximation of the original system can be achieved. This model structure is

“It is more natural to use dynamic dependence in the parametrization of the coefficients in (2.34),
but for the sake of simplicity we use only static dependence here.
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the LPV form of the well-known LTI finite impulse response (FIR) models and
has the attractive property of being linear-in-the-coefficients if v(k) is a white
noise, as in this case, its associated one-step-ahead predictor is $(k |0,k —1) =
F(q ', p(k),6,)u(k). Note that in the latter case, which corresponds to an output-
error (OE) noise model, this model structure can also be derived from (2.29a—c) by
setting A, B, Cto L and B(q ', p(k),6,) £ F (¢~ ', p(k), 6;).

FIR models have many advantages in identification due to their simple structure.
However, their well-known disadvantage, both in the LTI and the LPV cases, is
that the expansion may have a slow convergence rate, meaning that it requires a
relatively large number of parameters for an adequate approximation of the system.
In order to benefit from the same properties, but achieve faster convergence rate of
the expansion, it is attractive to use basis functions which, opposite to q’i, have
infinite impulse responses. A particular choice of such a basis follows through the
use of orthonormal basis functions (OBFs), which are specific basis functions in
5 (Hardy space of square integrable complex functions) and have already proven
their usefulness in LTI identification (see [10]). Based on this idea, it is possible to
show that any asymptotically stable LPV system has a series expansion in terms of
an OBF basis set {§;(z)}7>, C % (see [23]), via the expansion of each g 'in (2.3)
in terms of {;(¢)}7~ . Thus, (2.5) can be written as

=

y(k) = (wh o p) (k)u(k) + ; (a} o p) (k)9i(q)u+vo(k), (2.35)

where «f are functions with dynamic dependence on p. An obvious choice of model
structure is to use a truncated expansion, i.e., truncating (2.35) to a finite sum in

terms of {¢;}"",, and introducing a parametrization of the expansion coefficients:

YE) = w(p(0).0Juk) + 3 wr(p(k) )b @u + (), (236)
=1

where each wj; is parametrized as in the FIR case using functions with static
dependence on p. Similar to the FIR, this structure is linear in the coefficients
{w;}™ | if v(k) is assumed to be white, but with ny, < ns for the same approximation
capability. Furthermore, it is proven that structures like (2.36), i.e., a OBF filter
bank followed by a static nonlinearity are general approximators of nonlinear
systems with fading memory, i.e., nonlinear dynamic systems with convolution
representation [2]. Additionally, OBF and FIR models have a direct and simple SS
and LFR realization, a somewhat unique property among polynomial IO structures
[23]. An important question that arises is whether the basis functions ¢; can
be chosen such that a fast convergence rate can be achieved for all possible
trajectories of p, i.e., how {¢;(¢)}", with minimal n, should be chosen such
that the approximation error is adequate for the problem at hand. For this purpose
the Kolmogorov n-width theory gives an effective way to characterize optimal
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convergence rate as an optimization problem in terms of the poles of the basis
functions {¢;}", [28]. Using this concept, data-driven basis selection methods can
be introduced to optimize the basis set w.r.t. to the dynamical behavior of the system
at hand, see [23, 28] for further details.

2.4.3.3 LPV-BJ and OE Structures

Independent parametrization of %gg and 7 with the complete structure of
(2.29a—c) corresponds to an LPV Box—Jenkins (BJ) model structure, which allows
to describe a wide range of noise dynamics in a general sense. Of course this
generality have a heavy price in terms of a complicated one-step-ahead predictor
characterized by

(Wa(g.0)0p) (k) =%<1 —D (g, p(K),6))C (g7 p(k), 60)

oo

x> (1-A(g",p(k),0.))B(q 7", pk),6:) g ™, (237a)
i=0

=3

(Wy(q,0)0p)(k) =1 -3 (1-D(q",p(k),6:))'C(q7",p(k),6h).  (2.37b)

J=0

A simplification of this structure in terms of C (q’l,p(k), 6h) =D (q ', p(k),6n)
£ 1 leads to the so-called output-error (OE) type of model structure with

=3

(Wa(q.0)0p)(k) =Y, (1A (g " p(k),8,)) B (g ", p(k).6:) g ™,  (2.38a)
i=0

(Wy(q,0)0p)(k) =1. (2.38b)

Regarding LPV-BJ models an extra distinction can be introduced w.r.t.
p-independent noise models. For instance, assuming H(g,60,) to be a rational
LTI transfer function leads to a simplified LPV-BJ model for which a refined
instrumental variable estimation approach has been developed recently (see [13]).

2.4.4 Informativity and Identifiability

Regarding the introduced model structures, we can investigate conditions under
which informativity of a given data set and identifiability of a particular model
structure itself can be assured. As these are the basic ingredients for a successful
identification of the system, it is important to review the available results even if
they are rather sparse.
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For the case of LPV-ARX models with polynomial dependence of the
coefficients on the parameters, conditions for identifiability and informativity have
been studied in [6,9,36]. Based on these results, the following theorem holds true.

Theorem 2.1 (Identifiability, LPV-ARX case). The LPV-ARX model structure
(2.30) with linear parametrization (2.27) is globally identifiable, if and only if
each set of functions {04;(:)}}*, and {[3]1()}7£1 forallie{1,....,n,} and j €
{0,...,np}, used in the parametrization (2.27), are linearly independent on P.

For a detailed proof see [6]. Identifiability conditions for other model structures
require linear independence (necessary condition) of the functions used in the
parametrization of each p-dependent coefficient and also co-primeness of certain
pairs of polynomials just like in the LTI case, see [8]. However, the sufficient
conditions to guarantee identifiability in these cases have not been established yet.

To establish a condition on informativity in the ARX case, define

AWy (q) =Wy(q,01) —Wy(q,62), AWa(g)=Wu(gq,01) —Wu(q,6s).

Then it follows that (2.24) equals to

= 2

E{([AWu(q) — AWy(q)Go(q)] © p) u+ ([AWy(g)Ho(g)] o p)e}” =0.  (2.39)
Straightforward application of IE in E gives that (2.39) is equivalent with

2
{([AWa(q) — AWy(9)Go(q)] 0 p) u}” =0, (2.40a)

= 2
E{([AWy(q)Ho(q)] o p) e} =0. (2.40Db)
Now we can seek for conditions on «# and p for which the above conditions imply
that AWy (q) = AWy(q) = 0. As p is independent of e, (2.40b) holds if and only
if E{AW,(g) ¢ p} = 0 whenever e # 0. However, E{AW,(q) ¢ p} = 0 does not
necessarily imply AWy (q) = A(q ', p(k),61) —A (g, p(k),6:) = 0. In case of

global identifiability of .#y, the necessary and sufficient condition to guarantee this
is that the data matrix @y = [y (1) --- @y(N)]" satisfies that E { @] &y } > 0 where

0y(k) = [ 011 (p(K)) -+~ Oy na (p(K)) ]

Next we need to find necessary and sufficient conditions on « and p such that
E{(AWu(g)op)u}’ =0 = AW,(q)=0. 2.41)
In case of an LPV-ARX model:

AWu(q) =B (q . p(k),61) g —B(q ', p(k),0,) g ™. (2.42)
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Assume that the LPV-ARX model is globally identifiable. Now in order to
guarantee that (2.41) holds with (2._42), a necessary and sufficient condition is that
Dy =[@u(1) -+ @u(N)]" satisfies E{® @, } - 0 where

(k)= [ulk— ) Boa (POl — ) - By (P(Rulk—~ 74 —my) |

Theorem 2.2 (Informative dataset, LPV-ARX case). Given a globally identifi-
able LPV-ARX model structure (2.30), denoted by .#y, with linear parametrization
(2.27), then a quasi-stationary data set Dy generated by ., € M is informative
w.rt. My, iffor @y = [@y(1) --- @u(N)]" and @y =[(1) --- (N)]" it holds that
E{®, @}~ 0and E{®] ®y} > 0.

Note that in case of a given data set Dy with finite N, the above conditions
translate to the existence of a set of time instances Ky, X, C {I,...,N} with
Card(Xy) = nang = ny and Card(Xy) = (np +1)(ng + 1) = ny such that @y =

[@y(ky) -+ @y(kn,)]T with {ky, ... kn,} =Ky and @y =[@u(k1) -+ @u(ky,)]" with
{ki,... ,kn, } = Ky satisfy that QDJ @, > 0and tpyT @, - 0. Note that these conditions
are the minimal conditions which are required to be satisfied by the data set Dy
to guarantee informativity. It is also possible to formulate these conditions w.r.t.
typical scheduling trajectories to derive easily understandable design rules. This
has been investigated in [6] where the above conditions are interpreted in case of
piecewise and periodic scheduling trajectories. Informativity conditions for other
type of model structures are in the focus of current research.

2.5 Identification with the LS Criterion

Using the LS criterion (2.21), in this section we will investigate the estimation
of the LPV model structures introduced in Sect.2.4 with linear parametrization.
According to the available approaches in the literature, identification of (2.29a—c)
can be investigated from two perspectives: local setting (identification for constant
p and interpolation) and the global setting (identification with varying p). Here
we will concentrate on global approaches as only this setting allows to address
the minimization of the prediction error eg which is our aim with the introduced
PE framework. We will see that in the considered global PE setting, the predictor
(2.19), w.r.t. each of the introduced model structures, can be rewritten as a linear
or a pseudolinear regression. This yields that estimation of these structures is
available via a (iterative) least-squares estimate. Alternatively, other nonlinear
optimization schemes can also be applied in the absence of the linear-in-the-
coefficients property of (2.19). Furthermore, we will explore identification with
instrumental variables (IV) in this context as well, showing why such approaches
can be rather advantageous in the LPV case. In addition, consistency and variance
properties of the estimated parameters will be also investigated.
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2.5.1 Prediction-Error Based Identification in the ARX Case

In terms of the considered global setting, we aim at the direct minimization of (2.21)
in terms of the parametrized model structure (2.29a—c) using a dataset Dy where
p is varying. This data set is assumed to be informative w.r.t. (2.29a—c) to have
a well-posed problem for identification. To fulfill our estimation objective, several
approaches can be introduced for the various model structures given in Sect. 2.4. For
the sake of clarity, we will study these estimation approaches step-by-step, starting
from the most simplest case of ARX models where the estimation can be addressed
via simple linear regression.

2.5.1.1 Linear Regression

Consider the LPV-ARX model structure (2.30). A particular property of this
structure with the linear parametrization (2.27) of A and B is that the predictor (2.19)
is linear in the parameters 8 = 6,, see (2.31), and hence can be written as

$(k|0,k—1)='(k)6, (2.43)
where
@(k) = [—y(k=1) =0 1 (p(k))y(k—1) -+ = Oy ny (P(K))y(k — 1)
u(k—1a) Bo,(p(k))u(k—1a) -+ PBuyng (P(k))u(k — 74 —nb)}T
(2.44)

As (2.43) is a linear regression equation, thus by defining @ = [¢(1) --- @(N)]"
and Y = [y(0) --- y(N)] ", the minimum of (2.21) is unique and equal to

Ors = DY, (2.45)

if rank(®) = ng, where @ = (1 @' @) - + @ is the regularized Moore—Penrose
pseudoinverse. This approach is summarized in terms of Algorithm 1. Equation
(2.45) has been used in many works, e.g., [1], to estimate LPV-IO models, however,
in the introduced PE framework it is justified that (2.45) is the minimizer of (2.21) in
case of an LPV-ARX model structure. It is also important to mention that (2.43) can
be also considered as an LTI multiple-output multiple-input (MIMO) ARX model
with “virtual” input and output signals {f;;(p)u} and {0;;(p)y}.

To get an insight of the stochastic behavior of the LS estimator (2.45), assume
that &, € G and consider the “optimal” residual error eq, which based on (2.43) is

ea,(k) = y(k) — 9(k| 6o,k — 1) = y(k) — ¢'(k) 6. (2.46)
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Algorithm 1: LPV-ARX identification, LS global method

Require: a data record Dy = {u(k),y(k), p(k)}__, of .%, the LS identification criterion V,
and the LPV-ARX model structure (2.30) with linear parametrization (2.27) and
parameters 6 = (a1 -+ Guyng P00 -+ bpyng | € R". Assume that Dy is
informative w.r.t. (2.30) and (2.30) is globally identifiable.

1: calculate the signals x;; = —0;;(p)g 'y and x; 1, = Bj1(p)g 7/~ “u and let
¢ =[x00 * Xngtnp+1, g ] giving that y(k) = T(k)e +eg (k).

2: estimate 0 in terms of & = argming V(6,Dy). In case of (2.21), 6 = ¢ty with
Y=[y"(1) - y"(N)]" and @ =[g(1) --- (N)]".

3: return estimated model (2.30).

As a consequence, (2.45) satisfies that

Ors = 6, + <2 ok ) 2 o(k)eq,(k (2.47)

Equation (2.47) yields that éLs is a consistent estimate of 6, (unbiased for finite
data) if the following conditions are respected:

E{o®)0 ()} -0 and E{p(k)eq,(k)} =0. (2.48)

While the first condition is satisfied in case Dy is informative w.r.t. (2.30), the
second condition only holds if eq, is a white noise. Unfortunately, this is only
true when the data-generating system .75 itself has an ARX noise structure. In
that case, based on the classical proofs, it is possible to show that if the model
set M is uniformly asymptotically stable w.r.t. a compact © and it is globally
identifiable, then under the assumption that the data set Dy is informative and quasi-
stationary, the estimates § — 6, = argmingce I_E{HegH[%z} with probability 1 where
0 is unique [25]. Furthermore, if 6, = 6, ; associated with G, satisfies that 6, € ©,
then 0, = 6,. This proves consistency and convergence of the estimation. In case
of noisy observation of p, convergence of the LS estimates can be shown, but in
general, consistency does not hold (see [3] for a motivation). It has been recently
shown that his problem can be circumvented by using a regressor with estimated
moment functions associated with p., see [25] for further details.

In practice, the ARX modeling assumption often appears to be rather restrictive.
Even though it might be a fair assumption to consider that the process is well
parametrized by (2.29a), the noise model A(g~!, p(k), 6;) v(k)=e(k) is often not
rich enough to capture v,. Indeed, in most cases, there is no reasonable explanation
to justify why the noise v, and the process part of .7, should contain the same
dynamics and nonlinearities. In terms of estimation, this means that using the LS
method in practice will most often lead to biased estimates. Consequently, some
methods have been developed in order to cope with the error induced by this invalid
assumption on the noise. A method proposed in [3] and relying on an instrumental
variable approach is described in the next section.
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2.5.1.2 Instrumental Variable Approach

The original aim of instrumental variable methods is to cope with the fact that
in most cases, eg, is a colored process. The idea is to introduce an instrument
{ :Z — R which is used to produce a consistent estimate independently on the
noise model taken. The IV estimate is given as

O = (2 ¢(k) ) 2 (k) (2.49)

which implies that

N
Oy = 6, + <Z Ske' ) Z C(k)eq,(k (2.50)
k=1

Therefore, and similarly to the LS solution, éw is a consistent estimate of 6, if

B{L(09 (k) } -0 and E{L(K)eq,(k)} =0. (2.51)

There is a considerable amount of freedom in the choice of an instrument respecting
these conditions. In the LTI context, the choice of the instrument has been widely
studied and most of the advanced IV methods offer similar performance as extended
LS methods or other PE minimization methods (see [17, 20]). A particularly
interesting fact is that, under the ARX model assumption, the variance of the
IV estimate is minimal if the instrument is chosen as the noise-free version of
the regressor [21]. In other words, when directly applying the IV theory to the
LPV-ARX model (2.30) (the LPV-ARX model can be seen as an LTI model), the
optimal I'V estimate is given by

~1
N
o = (2 Copt (k) ) - 2 Sope(K)y (k) (2.52)
k=1
where the optimal instrument is defined as:

Copt(k) = [_)70(1‘_ 1) —oq 1 (p(k))Yo(k—1) -+ — Oy ng (p(k))Vo(k —na)
u(k—1a) o1 (p(k))u(k—7a) -+ Bupng (p(k))ulk —a—np)]. (2.53)

Here J, denotes the noise-free output of the data-generating system .#, which is a
priori unknown in practice. Consequently, often an estimate of y, is applied as an
instrument, like the simulated output of a previously obtained model estimate which
in turn can be refined iteratively. Note that if ., € M, then both the IV solution
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(2.52) and the LS solution (2.47) are consistent and statistically optimal (minimum
variance and unbiased). Furthermore, consistency of (2.52) also holds in the p-noisy
case, see [3].

To construct the optimal instrument Cop, a particular approach is the IV4 method
[16], proposed in the LPV case in [3]. In this approach, the instrument is built
using the simulated data generated from an estimated auxiliary ARX model. This
method is given in detail by Algorithm 2. In [3], it was shown that in case

Algorithm 2: LPV-ARX identification, IV4 global method

Require: a data record Dy = {u(k),y(k), p(k)}__, of .%, the LS identification criterion V,
and the LPV-ARX model structure (2.30) with linear parametrization (2.27) and
parameters 6 = [a1,0 -+ Gnyny P00 - by g | € R". Assume that Dy is informative
w.r.t. (2.30) and (2.30) is globally identifiable on ©.

1: estimate an LPV-ARX model by Algorithm 1.

2: generate an estimate 9, (k) of ¥, (k) based on the resulting ARX model of the previous
step.

3: build an instrument based on §, (k) and then estimate 6 via (2.49).

4: return estimated model (2.30).

¥, corresponds to an LPV-OE model (v, = ¢,), Algorithm 2 leads to an unbiased
estimate. Moreover, like in the LTI case, any structural modeling error of the noise
results in a bias for the LS estimate while, using this IV method, only the variance
of Oyy is increased. Nevertheless, the bigger the difference between the true noise
process and the noise model assumed is, the higher the resulting variance in the [V
estimate is. Depending on the size N of the dataset, the variance increase of the IV
estimate can lead to worse results than by the LS estimator (for which the variance
is known to remain low). Consequently, it is highly important to assume a noise
model asrealistic as possible in the first place. In the LTI case, many IV methods are
dedicated to more general noise models such as OE or BJ [39]. In Sect.2.5.2.3, we
consider some available methods for LPV-OE and LPV-BJ model structures which
were introduced in [13].

2.5.1.3 Estimation of FIR and OBF Models
Even if LPV-FIR and OBF models have different representation capabilities than

ARX models, if the noise v, is assumed to be zero mean and white, the one-step-
ahead predictor can be written as a liner regression similar to (2.43) where

o(k) = [u(k) 001 (p(k)ulk) -+ Oy (p(k)ulk —np)] " (2.54)

Due to this fact, the LS approach can be used to estimate such models and as the
regressor does not contain any output terms, the LS estimate is consistent even if
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the noise v, is not white or p is polluted by noise, till these noise effects are not
correlated with u. However, in case of OBF models, the selection of the basis set
{9i(¢)}™™, has a paramount importance as it governs the size of parametrization and
the approximation error directly. To provide a computationally attractive data-driven
selection of efficient sets of basis functions, a Fuzzy clustering based approach has
been proposed in [28]. For more on LPV-OBF models and issues of basis selection
and identification, see [23, 28].

2.5.2 Prediction-Error Based Identification with General
Noise Models

Next we consider the global identification of model structures which utilize
extended noise models to increase the validity of the noise modeling. Unfortunately,
due to the more complicated noise models, the linear-in-the-coefficient property is
lost in these cases, causing (2.22) to be a nonlinear optimization problem whose
solution is more complicated than in the previous case. First a particular idea of
rewriting the one-step-ahead predictor as a pseudolinear regression is extended
from the LTI framework to the LPV case, allowing to derive a computationally
attractive solution. Then we also consider general nonlinear optimization to solve
the estimation problem. Finally, it is shown how the IV approach can offer a simple
solution for the estimation of 0 in case of a more general noise model than in
Sect.2.5.1.2.

2.5.2.1 Pseudolinear Regression

Consider first the LPV-ARMAX case, where A, B, D are (linearly) parametrized as
in (2.27). By multiplying (2.19) with D (¢~', p(k),6,) on the left, it follows that

D(q7",p(k),6) X7_o(1 —D(g ", p(k),61))’ = 1 and hence
D(q ", p(k),6n) 9(k|6,k—1) = B(q~", p(k),0) u(k — Ta)
+(D (g7, p(k),60) —A (g, p(k), 6))y (k)
(2.55)

in terms of the subpredictors (2.32a-b). By adding (1 —D(¢~ !, p(k),6,))5(k|8) to
both sides of (2.55) and using (2.18), (2.19) is equivalent with

$(k|0,k—1) = B(q ', p(k),0,) ulk— 1)+ (1 —A (g ', p(k), 6;)) y(k)
+(D (g7, pk), 6) — 1) eq (k). (2.56)
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Then by considering a regressor @' (k | 8) defined as before (see (2.44)), but
extended with 0y 1(p(k))eg(k —1),...,0u4.n5(P(k))eq(k — nq), the predictor (2.56)
can be rewritten as

$(k|0,k—1)=¢ (k|6)6. (2.57)
This equation corresponds to a pseudolinear regression, hence minimization of

(2.21) follows by an iterative LS approach where an estimate of eg (k) is generated
by a model obtained in a previous iteration, see Algorithm 3.

Algorithm 3: LPV-ARMAX identification, iterative LS global method

Require: a data record Dy = {u(k),y(k), p(k)}__, of .%,, the LS identification criterion V,
and the LPV-ARMAX model structure (2.29a—c) with C (¢~ 1, p(k), 6n) 2A (¢, p(k),6,)

and linear parametrization (2.27) with parameters 6 = [a10 -+ bpyny d1,0 - dugng |
€ R"6. Assume that Dy is informative w.r.t. (2.29a—c) and (2.29a—c) is globally
identifiable on ©.

1: estimate an ARX model by Algorithm 1 resulting in ééo). Set D (q‘l ,p(k), 0150)> =1,

-
50 — | (60" (50" -
60) _ {(eg ) (8) } and 7= 0.
2: repeat
generate an estimate ég'—) (k) based on the resulting model of the previous step, i.e., 6,
4:  calculate the signals x;; = — ¢t (p)q 'y, Xj1n, 110 = Bj1(p)g / ™u and
Xispngtny+1,0 = — i,z(p)q‘ié(ef) and let ¢ = [X0.0 ** Xy smy-rng 15 | -
5 estimate 0 in terms of §(™") = @Y withY = [y (1) --- yT (N) ]T and
D =[o(1) - (p,(N)}T. Increase 7 by 1.

6: until 6; has converged or the maximum number of iterations is reached.
7: return estimated model (2.29a—c).

Now consider the LPV-OE case. In this case, 6, = 0 and (2.19) read as

(k| 6,k—1)= i(l —A(q 7" p(K),65))'B (q7".p(K), 6g) g u(k).  (2.58)
i=0

Define y = (G(q, 6y) © p)u as the noise-free output of the LPV-OE model. Then,
(2.58) can be rewritten as

I(k|0,k—1)=(1-A(g ", p(k),6))¥(k) + B (q ", p(k),6s) ¢ “u(k). (2.59)
This gives the idea again to introduce the regressor
o' (k10) = [-¥(k—1) —a11(p(k))F(k—1) -+ —0, g (P(k))F(k— na)
u(k—1a) Po1(p(k))ulk—7a) - Buyng (P(k))ulk—Ta—ny)], (2.60)

to write (2.59) in the form of (2.57). Again an iterative LS algorithm, similar to
Algorithm (3), can be introduced to obtain an estimate.
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A pseudolinear regression form can be obtained for the LPV-BJ case by
combining the approaches of the ARMAX and OE cases. In the LPV-BJ case

(k| 0,k —1) = (Wu(q,0) < p)(k)u(k) + (Wy(q,8) o p)(k)y(k), (2.61)

where the subpredictors are defined by (2.37a-b). Again introduce y = (G(q, 6;) ©
p)u as the noise-free model output and multiply (2.61) with D(¢g~"!, p(k), 6,) on the
left giving:

D (g ', p(k),60) (k| 6,k —1) = C (g ", p(k),6) ¥(k)+D (g, p(k), 64) y(k)

As eg(k) = y(k) —9(k|6,k— 1), we can write

eo(k) = (1-D (g, p(k),6n))eo (k) +C (g~ p(k),6n) (y(k) = 5(k)).  (2.63)
Note that C is monic. We also know that
V= (1-A(qg ", p(k),0:))5(k)+B(q ', p(k),0) u(k). (2.64)
Let & =y — ¥, then (2.63) reads as
eq(k) = y(k) — @'(k| 6)8, (2.65)
where

o'(k) = [k —1) —ou1(p(k))F(k—=1) - —0hyne (p(K))J(k —na)
u(k—1a) Poa(p(k))u(k —7a) -+ Buyng (p(k))u(k — Ta —np)
—&(k=1) =11 (p(k)E(k=1) -+ —Yuem, (P(k))E (k —nc)
eg(k—1) S11(p(k))ea(k—1) -+ Suynys(p(k))eg(k—na)].  (2.66)

As eq (k) =y(k) —9(k|6,k— 1), (2.65), can be written as (2.57). Again an iterative
LS algorithm, similar to Algorithm (3) can be introduced to obtain an estimate.

As we could see, despite noncommutativity of the time operator ¢, the rather
complicated LPV model structures in the considered PE setting could have been
relatively easily transformed to a pseudo linear regression form, hence their
estimation is available by different iterative schemes. However, there is a particular
difficulty to establish consistency and convergence results w.r.t. these schemes.
Namely, the optimal regressor is required by the linear regression form to achieve
such properties. However, as these items are approximated, we can analyze the
estimation properties only in the case if the corresponding iterative approximations
have converged. Such convergence properties, just like in the LTI case, are not fully
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understood in general. In terms of application of these approaches, it has a prime
importance that convergence is quite sensitive on the modeling assumption and the
largeness of parametrization which are typically ill-chosen in most applications.
Nevertheless, the introduced schemes, if they converge, provide computationally
efficient estimation approaches in the considered context.

2.5.2.2 Nonlinear Optimization

Alternatively, minimization of (2.21) is available by general nonlinear optimization
methods, like gradient-based minimization which can be applied directly com-
puting the partial derivatives of the predictor (2.19) w.r.t. 6. Even the advanced
LSQNONLIN approach of MATLAB can be directly used to obtain an estimate. As
the application of these nonlinear optimization schemes only extends to the solution
of the underlaying optimization problem, these approaches are not presented in
detail. However, there are two particular difficulties that can hinder the application
of nonlinear optimization schemes:

1. In case of over-parametrization of the scheduling dependencies, the number of
possible saddle points of (2.21) can seriously increase which can slow down or
even prevent the convergence to the global optimum.

2. In case of large-scale systems, the computational time can be substantial
compared to other approaches.

2.5.2.3 Instrumental Variable Approach

As the alternative of the previous estimation method, we can also introduce an
instrumental variable approach that makes possible the direct identification of LPV—
BJ models with p-independent noise part. Hence it improves considerably the
achievable variance of the IV4 method in case of more complicated noise processes.
To derive such an improved IV scheme, we first start with rewriting the process
equation (2.29a) as

Ny ng n, "B

Flg " 00)5(k)+3, Y amii(k) =Y Y bjiij k), (2.67)

i=11=1 j=01=0

where F (¢71,0,) = 1+3"  ajoq " is an LTI filter, §;; (k) = o, (p(k))y(k — i) and
ij (k) = Bji(p(k))u(k — j— 7q). Note that in this way the process part is rewritten
as a MISO LTI model with nyng + (ny + 1)(ng + 1) input signals {J;;}7*7%_, and

{i jJ}jig{}z:o- However, this is not a representation of the original LPV behavior of
(2.29a) as it contains lumped output terms. As a second step, assume that the noise
part is not dependent on p, hence it is modeled as a stable LTI filter H(q, 6,) =
D(q",64)/C(q",64), which is a technical assumption we need to take to derive
the intended approach. Given the fact that the polynomial operator F commutes in
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(2.67) over the constant coefficients, thus (2.67) can be rewritten as

"B n, "B
% v ik ,6n)e(k),
R B e e
(2.68)

which can be considered again as a “pseudolinear” form. This reformulation
makes possible to introduce IV estimation of the considered LPV-BJ models.
An approach that has been successfully applied in this context is an extended
version of the refined instrumental variable (RIV) approach of the LTT identification
framework [13].

As a refinement of the IV scheme presented in Sect.2.5.1.2, IV methods have
been developed to cope with more general noise structures such as the BJ case,
where the data equation, under the assumption of ., € M, can be written as

(k) = @'(k)Bo,g + Q(q, 60)eq, (k). (2.69)

with Q(q, 8,) being an LTI transfer function, 0~ !(g, 6,) being stable, and eq (k) is a
white noise. In the LPV-BJ case with p-independent noise part, this can be achieved
by taking

D) = [~k = 1) o k=) F11(8) - Ty () o0 (k) - iy 1))

and
D (qilv 6O,h)

0(q,6,) =F ((]71, Bo.¢ ) m

Based on this form, the extended-IV estimate in the ¢, sense can be given as [21]:

N N 2
dpsay =arg min, | 5 3 La) OL@)0 160, DL WL
é = t= [2

(2.70)

where (k) is the instrument and L(g) is a stable prefilter. The conditions for
consistency in this case read as:

E{L@) WL (k) } -0 and E{L(g)C(K)L(gea()} =0. T

Again, there is a considerable amount of freedom in the choice of the instruments.
In [21,38] it has been shown that the minimum variance estimator can be achieved
in the BJ case if { is chosen as the noise-free version of the extended regressor ¢
and L(q) = Q" '(g, 6,). Furthermore, it holds true that in case of noise modeling
error, the extended IV method is consistent and the variance of the estimates should
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be significantly decreased with respect to the IV4 method: even if the noise process
is not in the noise model set defined, it is more likely to be better described by an
BJ model than by an ARX model.

In terms of the estimation, it is important to notice that ¢ contains the noise-
free output terms {y;; }. Therefore, by momentary assuming that {J;, (k)}:’;l'";zo are
known a priori and that the data-generating system .%, is in the model set, then the
previously discussed conditions for optimal estimates lead to the choice of optimal

instrument [13]:
Cop(k) = =Folk = 1)+ =Fo(k—na) =5, (K) - =35, (K
~ ~ T
iio.0(k) -+ unb,nﬁ(k)} (2.72)
while the optimal filter is given as

C (q71 ) eo,h)
D(g~',000)F (¢, 60g)

Lopt(q) = Q' (4,60) = (2.73)

In a practical situation, the optimal instrument (2.72) and filter (2.73) are unknown
a priori. Therefore, the RIV estimation normally involves an iterative (or relaxation)
algorithm in which, at each iteration, an “auxiliary model” is used to generate
an estimate of (2.72) and (2.73). This auxiliary model is based on the parameter
estimates obtained at the previous iteration. Consequently, if convergence occurs,
the optimal instrument and filter are obtained. Based on the previous considerations,
the RIV algorithm dedicated to the LPV case is summarized in Algorithm 4.

Using a similar concept, the so-called simplified RIV (SRIV) method can also
be developed for the estimation of LPV-OE models. As in this case C (q’l, Gh) =
D(q',6,) =1, Step 7 of Algorithm 4 can be skipped. In practical cases, it is a fair
assumption to consider that the noise model assumed is incorrect for both LPV-OE
and LPV-BJ models. In this case, the LPV-SRIV algorithm might perform as well
as the LPV-RIV algorithm: the BJ assumption might be more realistic, but this is
compensated by the reduced number of parameters to be estimated under the OE
assumption. Additionally, both the RIV and SRIV algorithms can be also extended
to be applicable in a closed-loop setting [29].

2.6 Conclusion

By using an impulse response representation of LPV systems, it has been shown in
this chapter that a unified prediction-error framework for the identification of LPV
polynomial models can be established. We have seen that this framework allows to
understand the role of general noise models in the LPV setting, making possible to
formulate the LPV extensions of classical model structures of the LTI case, like
ARX, ARMAX, Box—Jenkins, OE, FIR, and series expansion models. Further-
more estimation of these models is computationally rather attractive and allows
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Algorithm 4: LPV-BIJ identification, RIV global method

Require: a data record Dy = {u(k),y(k), p(k)}__, of .%, the LS identification criterion V,
and the LPV-BJ model structure (2.29a—c) with linear parametrization (2.27), an LTI
noise model characterized by C (q‘l , Gh) and D (q_l , Gh) and with parameters

0, =[aio - b,zb,,,ﬁ ]T €R™ and 6, = [¢; --- dy, |7 € R™. Assume that Dy is

ng

informative w.r.t. (2.29a—c) and (2.29a—c) is globally identifiable on ©.
1: estimate an ARX model by Algorithm 1 resulting in ééo). Set

c(q.8")=p(s.6") =1,00 = {(égw)T (;@)T and © = 0.
2: repeat
compute an estimate of y(k) via A (pk, g ééT)>)7(k) =B (pk,qfl, ééT)) u(k) and

(95}

Na ;Mo

generate the auxiliary signals {J;,};*9_, and {ﬁ_i,[};zgﬁzo according to (2.67).
4:  compute the filter: '

a
~/~
S
|
=
2
~—

np,N Na,No
and the associated filtered signals {ﬁf l(k)}jb:oﬁz:o’ vt (k) and {ilf l(k)}i:l o

5: build the filtered estimated regressor (f)f(r)(k) and the filtered instrument éf(r) (k) as:
(7) st st +f of T
(Pf (k): |:7Yf(k7 1) e *)’f(k*"a) V1.1 (k) e 7ynaAna (k) uOAO(k) e unb,nB (k):|
s T
Cf(r) (k): [_yvf(k_ 1) e _yvf(k - na) _if,l (k) e _y)fza,n{l (k) ﬁ(gO(k) e ﬁﬁb,nﬁ (k):|

6 caleulate &) = (LT @,) ' (LETY) withy = [y(1) - y(V)]

T . . T
o= [¢l(1) - )| amd L= [E001) - {0 -

7:  estimate the noise signal v, as ¥(k) = y(k) — y(k). Based on ¥, the estimation of éé”l)
follows using the ARMA estimation algorithm of the MATLAB identification toolbox
(an IV approach can also be used for this purpose, see [39]). Increase 7 by 1.

8: until 6(7) has converged or the maximum number of iterations is reached.

9: return estimated model (2.29a—c).

to derive stochastic properties of the model estimates which is a unique property
among the available approaches of the LPV identification literature. We could see
that the present research focus in this framework not only lies in further developing
results on these stochastic properties or understanding the rather challenging case of
the p-noisy case but also establishing model structure selection tools and experiment
design methods which allow better application of data-driven LPV modeling by the
engineering community.
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