Book
- Tóth, R.: Modeling and identification of linear parameter-varying systems. Lecture Notes in Control and Information Sciences, Vol. 403, Springer, Heidelberg, 2010. (book webpage) (link)
Book Chapters (6)
- Tóth, R. and C. Verhoek: Modelling and Control of LPV systems. In Encyclopedia of Systems and Control, Springer-Verlag, (to appear) 2025.
- Piga, D., S. Formentin, R. Tóth, A. Bemporad and S.M. Savaresi: A hierarchical approach to data-driven LPV control design of constrained systems. In C. Novara and S. Formentin (Eds): Data-Driven Modeling, Filtering and Control: Methods and Applications (pp. 213-237), The Institution of Engineering and Technology, 2019. (link)
- Tóth, R., P. S. C. Heuberger and P. M. J. Van den Hof: Prediction error identification of LPV systems: present and beyond. In: J. Mohammadpour and C. W. Scherer (Eds.), Control of Linear Parameter Varying Systems with Applications (pp. 27-60), Springer, Heidelberg, 2012. (pdf) (link)
- Tóth, R., P. S. C. Heuberger and P. M. J. Van den Hof: LPV system identification using series-expansion models. In: P. L. dos Santos, C. Novara, D. Rivera, J. Ramos and T-P. Perdicoúlis (Eds.), Linear Parameter-Varying System Identification: New Developments and Trends (pp. 259-294), World Scientific Publishing, Singapore, 2011. (pdf) (link)
- Laurain, V., M. Gilson, H. Garnier, R. Tóth: Identification of discrete-time and continuous-time input/output LPV models. In: P. L. dos Santos, C. Novara, D. Rivera, J. Ramos and T-P. Perdicoúlis (Eds.), Linear Parameter-Varying System Identification: New Developments and Trends (pp. 95-132), World Scientific Publishing, Singapore, 2011. (pdf) (link)
- Van den Hof, P. M. J., R. Tóth and P. S. C. Heuberger: Model structures for identification of linear parameter-varying (LPV) models, In: K. M. Hangos and L. Nádai (Ed.). Proceedings of the Workshop on Systems and Control Theory in honor of József Bokor on his 60th Birthday (pp. 15-34), MTA, Budapest, 2009. (pdf)
Journal Papers (66)
- Antal, P., T. Péni, and R. Tóth: Autonomous Hook-Based Grasping and
Transportation with Quadcopters. Accepted to the IEEE Transactions on Control Systems Technology (2024). (ELKH, ARNL) - Koelewijn, P.J.W., S. Weiland, and R. Tóth: Convex Equilibrium-Free Stability and Performance Analysis of Discrete-Time Nonlinear Systems, IET Control Theory & Applications, Vol. 18, pp. 1710–1728., (2024). (pdf & link) (ERC, ARNL)
- Kon, J., R. Tóth, J. van de Wijdeven, M. Heertjes, T. Oomen: Guaranteeing Stability in Structured Input-Output Models: With Application to System Identification, IEEE Control Systems Letters, Vol. 8., pp. 1565-1570 (2024).
- Beintema, G. I., M. Schoukens, and R. Tóth: Meta-State-Space Learning: An Identification Approach for Stochastic Dynamical Systems. Automatica, Volume 167, pp. 111787 (2024). (ELKH) (pdf is available upon request).
- Wang R., R. Tóth and I. R. Manchester: Virtual Control Contraction Metrics: Convex Nonlinear Feedback Design via Behavioral Embedding. In print, International Journal of Robust and Nonlinear Control (2024). (ERC, ARNL) (pdf is available upon request)
- Retzler, A., R. Tóth, M. Schoukens , G. I. Beintema, J. Weigand, J.-P. Noël, Zs. Kollár, and J. Swevers: Learning based augmentation of physics-based models: an industrial robot use case, Data-Centric Engineering, Volume 5, pp. e12 (2024).
- Bloemers, T.A.H., S. Leemrijse, V. Preda, F. Boquet, T.A.E. Oomen, and R. Tóth: Vibration Control under Frequency-Varying Disturbances with Application to Satellites. In print, IEEE Transactions on Control Systems Technology (2024). (OSIP, ARNL)
- Verhoek, C., J. Berberich, S. Haesaert, F. Allgöwer, and R. Tóth: Data-driven Dissipativity Analysis of Linear Parameter-Varying Systems, IEEE Transactions on Automatic Control, Volume 69, Issue 12, pp. 8603-8616, (2024). (ERC, ARNL)
- Liu, Y., P. Wang, C.-H. Lee, and R. Tóth: Attitude Takeover Control for Noncooperative Space Targets Based on Gaussian Processes with Online Model Learning, IEEE Transactions on Aerospace and Electronic Systems, Volume: 60, Issue: 3, pp. 3050-3066 (2024).
- Iacob, L. C., R Tóth and M. Schoukens: Koopman Form of Nonlinear Systems with Inputs, Automatica, Volume 162, pp. 111525, (2024). (ERC, ELKH)
- Ignéczi, G. F., E. Horváth, R. Tóth, and K. Nyilas: Curve Trajectory Model for Human Preferred Path Planning of Automated Vehicles, Automotive Innovation, (2024). (JKK, ELKH, ARNL)
- Antal, P., T. Peni and R. Tóth: Backflipping with Miniature Quadcopters by Gaussian Process Based Control and Planning. IEEE Transactions on Control Systems Technology, Volume: 32, Issue: 1, pp. 3-14, (2024). (ELKH)
- Antal, P., T. Péni, and R. Tóth: Modelling, identification and geometric control of autonomous quadcopters for agile maneuvering. Aeronautical Science Bulletins, Vol. 35, pp. 141-160, (2023). (JKK, ELKH, ARNL)
- Beintema, G. I., M. Schoukens, and R. Tóth: Deep Subspace Encoders for Nonlinear System Identification. Automatica, Vol. 156, pp. 111210, (2023). (ELKH)
- Petreczky, M., R. Tóth, and G. Mercère: Minimal realizations of input-output behaviors by LPV state-space representations with affine dependency, IEEE Control Systems Letters, Vol 7., pp. 2952-2957, (2023). (ARNL)
- Broens, Y., H. Butler and R. Tóth: On improved commutation for moving-magnet planar actuators, IEEE Control Systems Letters, Vol. 7, pp. 2593-2598, (2023). (IT2, ARNL)
- Polcz, P., T. Péni, and R. Tóth: Efficient implementation of Gaussian Process Based Predictive Control by Quadratic Programming, IET Control Theory & Applications, Vol. 17, Issue: 8, pp. 943-1087, (2023). (ELKH, ARNL)
- Khandelwal, D., M. Schoukens, and R. Tóth: Automated Multi-Objective System Identification Using Grammar-Based Genetic Programming, Automatica, Vol. 154, pp. 111017 (2023). (CADUSY, ELKH)
- Petreczky, M., R. Tóth, and G. Mercère: LPV-ARX Representations of LPV State-Space Models with Affine Dependence, Systems and Control Letters, Vol. 173, pp. 105459, (2023). (ELKH, ERC)
- Verhoek, C. , P.J.W. Koelewijn, S. Haesaert and R. Tóth: Convex Incremental Dissipativity Analysis of Nonlinear Systems. Automatica, Vol. 150, pp. 110859, (2023). (ERC, ARNL)
- Sadeghzadeh, A. and R. Tóth: Improved Embedding of Nonlinear Systems in Linear Parameter-Varying Models with Polynomial Dependence, IEEE Transactions on Control Systems Technology, Vol. 31, Issue 1, pp. 70-82, (2022). (ERC, ARNL)
- Bloemers, T.A.H., T.A.E. Oomen, R. Tóth: Frequency Response Data Based LPV Controller Synthesis Applied to a Control Moment Gyroscope, IEEE Transactions on Control Systems Technology, Vol. 30, Issue 6, pp. 2734-2742, (2022). (ERC, ARNL)
- Proimadis, I., C.H.H.M. Custers, J.W. Jansen, H. Butler, R. Tóth, E.A. Lomonova and P.M.J. Van den Hof: Active deformation control for a magnetically-levitated planar motor mover, IEEE Transactions on Industry Applications, Vol. 58, Issue 1, pp. 242-249, (2022). (NAPAS, ARNL)
- Bloemers, T.A.H., T.A.E. Oomen and R. Tóth: Frequency Response Data-driven LPV Controller Synthesis for MIMO Systems, IEEE Control Systems Letters, Vol. 6, pp. 2264 – 2269, (2022). (ERC, ARNL)
- Abbas, H. S., R. Tóth, M. Petreczky, N. Meskin, J. Mohammadpour and P.J.W. Koelewijn: LPV Modeling of Nonlinear Systems: A Multi-Path Feedback Linearisation Approach, International Journal of Robust and Nonlinear Control, Vol. 31, Issue 18, pp. 9436-9465, (2021). (ERC)
- Wang R., P.J.W. Koelewijn, I. R. Manchester and R. Tóth: Nonlinear parameter-varying state-feedback design for a gyroscope using virtual control contraction metrics, special issue, Journal of Robust and Nonlinear Control, Vol. 31, Issue 17, pp. 8147-8164, (2021). (ERC)
- Hanema, J., R. Tóth and M. Lazar: Stabilizing non-linear model predictive control using linear parameter-varying embeddings and tubes. IET Control Theory & Applications, (2021), pp. 1-18. (ERC)
- Cox, P. B., and R. Tóth: Linear Parameter-Varying Subspace Identification: A Unified Framework. Automatica, Vol. 123, pp. 109296 (2021). (ERC)
- Sadeghzadeh, A., B. Sharif and R. Tóth: Affine linear parameter-varying embedding of non-linear models with improved accuracy and minimal overbounding, IET Control Theory & Applications, Volume 14, Issue 20, (2020) pp. 3363 – 3373. (ERC)
- Khandelwal, D., M. Schoukens and R. Tóth: A Tree Adjoining Grammar representation for models of stochastic dynamical systems, Vol. 119, Automatica, (2020).
- Laurain, V., R. Tóth, D. Piga, M.A.H. Darwish: Sparse RKHS estimation via globally convex optimization and its application in LPV-IO identification, Automatica, Vol. 115, (2020). (ERC)
- Hanema, J., M. Lazar and R. Tóth: Heterogeneously parameterized tube model predictive control for LPV systems, Automatica, Vol. 111, (2020). (ERC) (pdf) (link)
- Darwish , M. A. H., P. B. Cox, I. Proimadis, G. Pillonetto and R. Tóth: Prediction-Error Identification of LPV Systems: A Nonparametric Gaussian Regression Approach, Automatica, Vol. 97, (2018), pp. 92-103. (pdf) (link)
- Cox, P. B., R. Tóth, M. Petreczky: Towards Efficient Maximum Likelihood Estimation of LPV-SS Models, Automatica, Vol. 97, (2018), pp 392-403. (ERC) (pdf) (data) (link) (arXiv)
- Cox, P. B., S. Weiland and R. Tóth: Affine Parameter-Dependent Lyapunov Functions for LPV Systems with Affine Dependence, IEEE Transactions on Automatic Control, Vol. 63, No. 11, (2018), pp. 3865-3872. (ERC) (pdf) (link) (arxiv)
- Rizvi, S.Z., J. Mohammadpour, F. Abbasi, R. Tóth and M. Meskin: State-space LPV Model Identification Using Kernelized Machine Learning, Automatica, Vol. 88, (2018), pp. 38-47. (pdf) (link)
- Abbas, H. S., J. Hanema, R. Tóth, N. Meskin, and J. Mohammadpour: An Improved Robust Model Predictive Control for Linear Parameter-Varying Input-Output Models, International Journal of Robust and Nonlinear Control, Vol. 28, No. 3, (2018), pp. 859-880. (pdf) (link)
- Darwish , M. A. H., G. Pillonetto and R. Tóth: The Quest for the Right Kernel in Bayesian Impulse Response Identification: The Use of OBFs, Automatica, Vol. 87, (2018), pp. 318-329. (pdf) (link)
- Golabi, A., N. Meskin, R. Tóth, J. Mohammadpour and T. Donkers: Event-triggered Reference Tracking Control for Discrete-time LPV Systems with Application to a Laboratory Tank System, IET Control Theory & Applications, Vol. 11, No. 16, (2017), pp. 2680-2687. (pdf) (link)
- Hanema, J., M. Lazar and R. Tóth: Stabilizing Tube-Based Model Predictive Control for LPV Systems, Automatica, Vol. 85, (2017), pp. 137–144. (pdf) (link)
- Wollnack, S., H. S. Abbas, H. Werner, and R. Tóth: Fixed-Structure LPV-IO Controllers: An Implicit Representation Based Approach, Automatica, Vol. 83. (2017), pp 282–289. (pdf) (link)
- Chitraganti, S., R. Tóth, N. Meskin and J. Mohammadpour: Stochastic model predictive tracking of piecewise constant references for LPV systems, IET Control Theory & Applications, Vol. 11, No. 12, (2017), pp 1862-1872. (pdf) (link)
- Golabi, A., N. Meskin, R. Tóth and J. Mohammadpour: A Bayesian Approach for LPV Model Identification and its Application to Complex Processes, IEEE Transactions on Control Systems Technology, Vol. 25, No. 6, (2017), pp. 2160-2167. (pdf) (link)
- Petreczky, M., R. Tóth and G. Mercere: Realization Theory for LPV State-Space Representations with Affine Dependence, IEEE Transactions on Automatic Control, Vol. 62, No. 9, (2017), pp. 4667-4674. (pdf) (link)
- Lataire, J., R. Pintelon, D. Piga, and R. Tóth: Continuous-Time Linear Time-Varying System Identification with a Frequency-Domain Kernel Based Estimator, IET Control Theory & Applications, Vol. 11, No. 4, (2017), pp. 457-465. (pdf) (link)
- Abbas, H. S., R. Tóth, N. Meskin, J. Mohammadpour, J. Hanema: A Robust MPC for Input-Output LPV Models, IEEE Transactions on Automatic Control, Vol. 61, No. 12, (2016), pp. 4183-4188. (pdf) (link)
- Rahme, S., H. S. Abbas, N. Meskin, R. Tóth and J. Mohammadpour: LPV Model Development and Control of A Solution Copolymerization Reactor, Control Engineering Practice, Vol. 48, (2016), pp. 98-110. (pdf) (link)
- Rizvi, S.Z., J. Mohammadpour, R. Tóth and N. Meskin: A Kernel-based PCA Approach to Model Reduction of Linear Parameter-varying Systems, IEEE Transactions on Control Systems Technology, Vol. 24, No. 5, (2016), pp. 1883-1891. (pdf) (link)
- Formentin, S., D. Piga, R. Tóth, S. Savaresi: Direct learning of LPV controllers from data, Automatica, Vol. 65, (2016), pp. 98-110. (pdf) (link)
- Verbert, K. A. J., R. Tóth and R. Babuška: Adaptive Friction Compensation: A Globally Stable Approach, IEEE/ASME Transactions on Mechatronics, Vol. 21, No. 1, (2016), pp. 351-363. (pdf) (link)
- Laurain, V., R. Tóth, D. Piga, W. X. Zheng: An Instrumental Least Squares Support Vector Machine for Nonlinear System Identification, Automatica, Vol. 54, (2015), pp 340-347. (pdf) (link)
- Piga, D., P. Cox, R. Tóth and V. Laurain: LPV system identification under noise corrupted scheduling and output signal observations, Automatica , Vol. 53, (2015), pp. 329-338. (pdf) (link)
- Rojas, C. R., R. Tóth and H. Hjalmarsson: Sparse estimation of polynomial and rational dynamic models, special issue, IEEE Transactions on Automatic Control, Vol. 59, No. 11, (2014), pp. 2962-2977. (pdf) (link)
- Piga, D. and R. Tóth: A bias-corrected estimator for nonlinear systems with output-error type model structures, Automatica, Vol. 50, No. 9, (2014), pp. 2373-2380. (pdf) (link)
- Bachnas, A. A., R. Tóth, A. Mesbah, J. H. A. Ludlage: A review on data-driven linear parameter-varying modeling approaches: A high-purity distillation column case study, Journal of Process Control, Vol. 24, No. 4, (2014), pp. 272–285. (pdf) (errata) (link)
- Piga, D. and R. Tóth: An SDP approach for l_0-minimization: application to ARX model segmentation, Automatica, Vol. 49, No. 12, (2013), pp. 3646–3653. (pdf) (link)
- Tóth, R., V. Laurain, M. Gilson and H. Garnier: Instrumental variable scheme for closed-loop LPV model identification, Automatica, Vol. 48, No. 9, (2012), pp. 2314-2320. (pdf) (link)
- Tóth, R., M. Lovera, P. S. C. Heuberger, M. Corno and P. M. J. Van den Hof: On the discretization of linear fractional representations of LPV systems, IEEE Transactions on Control Systems Technology, Vol. 20, No. 6, (2012), pp. 1473-1489. (pdf) (link) (tech report)
- Tóth, R., H. Abbas and H. Werner: On the state-space realization of LPV input-output models: practical approaches, IEEE Transactions on Control Systems Technology, Vol. 20, No. 1, (2012), pp. 139-153. (pdf) (errata) (link)
- Laurain, V., R. Tóth, M. Gilson and H. Garnier: Direct identification of continuous-time LPV input/output models, special issue, IET Control Theory & Applications, Vol. 5, No. 7, (2011), pp. 878-888. (pdf) (link)
- Tóth, R., J. C. Willems, P. S. C. Heuberger and P. M. J. Van den Hof: The behavioral approach to linear parameter-varying systems, IEEE Transactions on Automatic Control, Vol. 56, No. 11, (2011), pp. 2499-2514. (pdf) (link)
- Tóth, R., P. S. C. Heuberger and P. M. J. Van den Hof: Discretisation of linear parameter-varying state-space representations, IET Control Theory & Applications, Vol. 4, No. 10, (2010), pp. 2082-2096. (pdf) (link)
- Laurain, V., M. Gilson, R. Tóth and H. Garnier: Refined instrumental variable methods for identification of LPV Box-Jenkins models, Automatica, Vol. 46, No. 6, (2010), pp. 959-967. (pdf) (errata) (link)
- Tóth, R., P. S. C. Heuberger and P. M. J. Van den Hof: Asymptotically optimal orthonormal basis functions for LPV system Identification, Automatica, Vol. 45, No. 6, (2009), pp. 1359-1370. (pdf) (link)
- Tóth, R. and D. Fodor: Speed sensorless mixed sensitivity linear parameter variant H_inf control of the induction motor, Journal of Electrical Engineering, Vol. 6, No. 4, (2006), pp. 12/1-6. (link)
- Tóth, R.: Simulation results on the asymptotic periodicity of compartmental systems with lags, Functional Differential Equations, Vol. 11, No. 1-2, (2004), pp. 195-202. (pdf) (link)
Submitted Journal Papers (9)
- Verhoek, C., J. Berberich, S. Haesaert, R. Tóth and H. S. Abbas: A Linear Parameter-Varying Approach to Data Predictive Control, Submitted, IEEE Transactions on Automatic Control (2024). (ERC, ARNL) (pdf is available upon request)
- Koelewijn, P.J.W., S. Weiland, and R. Tóth: Equilibrium-Independent Control of Continuous-Time Nonlinear Systems via the LPV Framework, Submitted to IEEE Transactions on Automatic Control (2024). (ERC, ARNL) (pdf is available upon request)
- Verhoek, C., R. Tóth and H. Abbas: Direct Data-Driven State-Feedback Control of Linear Parameter-Varying Systems. International Journal of Robust and Nonlinear Control (2022). (ERC, ARNL) (pdf is available upon request)
- Koelewijn, P.J.W., R. Tóth, H. Nijmeijer and S. Weiland: Nonlinear Tracking and Rejection using Linear Parameter-Varying Control, Submitted to International Journal of Robust and Nonlinear Control (2024). (ERC, ARNL) (pdf is available upon request)
- Liu, Y., P. Wang, and R. Tóth: Learning For Predictive Control: A Dual Gaussian Process Approach. Submitted to Automatica (2024). (ELKH) (pdf is available upon request).
- Markovsky, I., C. Verhoek, and R. Tóth: The most powerful unfalsified linear parameter-varying model, Submitted to Automatica (2024). (pdf is available upon request)
- Bevanda, P., B. Driessen, L. C. Iacob, R. Tóth, S. Sosnowski, and S. Hirche: Nonparametric Control-Koopman Operator Learning: Flexible and Scalable Models for Prediction and Control, SIAM Journal on Applied Dynamical Systems (2024). (pdf is available upon request)
- Kon, J., R. Tóth, J. van de Wijdeven, M. Heertjes, and T. Oomen: Unconstrained Parametrizations of Discrete-Time Linear Input-Output Models: Stability and Dissipativity by Construction, Submitted to IEEE Transactions on Automatic Control (2024).
- Verhoek, C., I. Markovsky, S. Haesaert, and R. Tóth: The behavioral approach for LPV data-driven representations, Submitted to IEEE Transactions on Automatic Control (2024) (ERC, ARNL) (pdf is available upon request)
Conference Proceedings (143)
- Verhoek, C., J. Eising, F. Dörfler, and R. Tóth: Merging informativity and parameter-varying Lyapunov functions in data-driven LPV control, Invited paper, Proc. of the 63rd IEEE Conference on Decision and Control, (2024), Milan, Italy, pp. 6761-6766. (ARNL)
- Broens, Y., H. Butler and R. Tóth: Frequency Domain Auto-tuning of Structured LPV Controllers for High-Precision Motion Control, Invited paper, Proc. of the 63rd IEEE Conference on Decision and Control , (2024), Milan, Italy, pp. 2025-2030. (ARNL)
- Kon, J., R. Tóth, J. van de Wijdeven, M. Heertjes, T. Oomen: Structured Linear Input-Output Models with Stability Guarantees, Proc. of the 63rd IEEE Conference on Decision and Control , (2024), Milan, Italy.
- Szécsi, M., B. Györök, Á. Weinhardt-Kovács, G.I. Beintema, M. Schoukens, T. Péni, R. Tóth: Deep learning of vehicle dynamics, Invited paper, Proc of the 20th IFAC Symposium on System Identification, (2024), Boston, USA, pp. 283-288. (JKK, FARADAI, AFOSR)
- Koelewijn, P.J.W., R. Singh, P. Seiler, R. Tóth: Learning Reduced-Order Linear Parameter-Varying Models of Nonlinear Systems, Proc of the 20th IFAC Symposium on System Identification, (2024), Boston, USA, pp. 265-270. (Mathworks, ARNL)
- Liu, Y., R. Tóth, M. Schoukens: Physics-Guided State-Space Model Augmentation Using Weighted Regularized Neural Networks, Invited paper, Proc of the 20th IFAC Symposium on System Identification, (2024), Boston, USA, pp. 295-300.
- Kiss, M., R. Tóth, M. Schoukens: Space-Filling Input Design for Nonlinear State-Space Identification, Proc of the 20th IFAC Symposium on System Identification, (2024), Boston, USA, pp. 562-567.
- Weigand, J., G. I. Beintema, J. Ulmen, D. Görges, R. Tóth, M. Schoukens, M. Ruskowski: State Derivative Normalization for Continuous-Time Deep Neural Networks, Proc of the 20th IFAC Symposium on System Identification, (2024), Boston, USA, pp. 253-258.
- Champneys, M., G. I. Beintema, R. Tóth, M. Schoukens, T. Rogers: Baseline Results for Selected Nonlinear System Identification Benchmarks, Proc of the 20th IFAC Symposium on System Identification, (2024), Boston, USA, pp. 474-479.
- Huijgevoort, B.C. van, C. Verhoek, R. Tóth, S. Haesaert: Direct data-driven control with signal temporal logic specifications, Accepted to the 8th IFAC Conference on Analysis and Design of Hybrid Systems, (2024) Boulder, Colorado, USA, pp. 177-182.
- Kon, J., J. van de Wijdeven, D. Bruijnen, R. Tóth, M. Heertjes, and T. Oomen: Unconstrained Parameterization of Stable LPV Input-Output Models: with Application to System Identification, Proc of the 22nd European Control Conference, (2024) Stockholm, Sweden, pp. 2143-2148.
- Antal, P., T. Péni, and R. Tóth: Computationally Efficient Sampling-Based Algorithm for Stability Analysis of Nonlinear Systems, Proc of the 22nd European Control Conference, (2024) Stockholm, Sweden, pp. 180-185. (ARNL)
- Floch, K., T. Péni, and R. Tóth: Gaussian Process Based Adaptive Trajectory Tracking Control for Autonomous Ground Vehicles, Proc of the 22nd European Control Conference, (2024) Stockholm, Sweden, pp. 464-471. (FARADAI, AFOSR)
- Spin, L.M. , C. Verhoek, W.P.M.H. Heemels, N. van de Wouw, and R. Tóth: Unified Behavioral Data-Driven Performance Analysis A Generalized Plant Approach, Invited paper, Proc of the 22nd European Control Conference, (2024) Stockholm, Sweden, pp. 894-899. (ARNL)
- Hoekstra, J. H., B. Cseppento, G. I. Beintema, M. Schoukens, Zs. Kollár, and R. Tóth: Computationally efficient predictive control based on ANN state-space models, Proc. of the 62nd IEEE Conference on Decision and Control, (2023) Marina Bay Sands, Singapore, pp. 6330-6335. (ELKH, ARNL)
- Broens, Y., H. Butler and R. Tóth: On improved commutation for moving-magnet planar actuators, Proc. of the 62nd IEEE Conference on Decision and Control, (2023) Marina Bay Sands, Singapore, pp. 3688-3693. (IT2, ARNL)
- Verhoek, C., P. J. W. Koelewijn, S. Haesaert, and R. Tóth: Direct data-driven state-feedback control of general nonlinear systems, Proc. of the 62nd IEEE Conference on Decision and Control, (2023) Marina Bay Sands, Singapore, pp. 3688-3693. (ERC, ARNL)
- Petreczky, M., R. Tóth, and G. Mercère: Minimal realizations of input-output behaviors by LPV state-space representations with affine dependency, Proc. of the 62nd IEEE Conference on Decision and Control, (2023) Marina Bay Sands, Singapore, pp. 3694-3699. (ARNL)
- Shakib, M. F., R. Tóth, A. Y. Pogromsky, A. Pavlov, N. van de Wouw: Kernel-based learning of nonlinear state-space models with stability guarantees. Proc. of the 62nd IEEE Conference on Decision and Control, (2023) Marina Bay Sands, Singapore, pp. 2897-2902. (ELKH) (pdf is available upon request)
- Kon, J., J. van de Wijdeven, D. Bruijnen, R. Tóth, M. Heertjes, and T. Oomen: Direct Learning for Parameter-Varying Feedforward Control: A Neural-Network Approach, Proc. of the 62nd IEEE Conference on Decision and Control, (2023) Marina Bay Sands, Singapore, pp. 3720-3725. (pdf is available upon request)
- C. Verhoek, R. Wang, and R. Tóth: Learning Stable and Robust Linear Parameter-Varying State-Space Models, Proc. of the 62nd IEEE Conference on Decision and Control, (2023) Marina Bay Sands, Singapore, pp. 1348-1353. (ERC, ARNL) (pdf is available upon request)
- Iacob, L.C., M. Schoukens, and R. Tóth: Finite Dimensional Koopman Form of Polynomial Nonlinear Systems. Proc. of the IFAC World Congress, (2023) Yokohama, Japan, pp. 6423-6428. (ERC, AI4GNC) (pdf is available upon request)
- Ramkannan, R., G. I. Beintema, R. Tóth, and M. Schoukens: Initialization Approach for Nonlinear State-Space Identification via The Subspace Encoder Approach. Proc. of the IFAC World Congress, (2023) Yokohama, Japan, pp. 5146-5151. (ELKH) (pdf is available upon request)
- Moradi S., N. Jaensson, R. Tóth, and M. Schoukens: Physics-Informed Learning Using Hamiltonian Neural Networks with Output Error Noise Models. Proc. of the IFAC World Congress, (2023) Yokohama, Japan, pp. 5152-5157. (DAMOCLES) (pdf is available upon request)
- Verhoek, C., H. S. Abbas, and R. Tóth: Direct data-driven LPV control of nonlinear systems: An experimental result. Proc. of the IFAC World Congress, (2023) Yokohama, Japan, pp. 2263-2268. (ERC, AI4GNC) (pdf is available upon request)
- Vinjarapu, A.S.H., Y. Broens and R. Tóth: Exploring the use of deep learning in task-flexible ILC extension, Proc. of the American Control Conference, (2023), San Diego, CA, USA, pp. 2751-2756. (IT2, ARNL) (pdf is available upon request)
- Hewing, L., D. Gramlich, C. Verhoek, R. Polonio, J. Veenman, C. Ardura, R. Tóth, C. Ebenbauer, C. Scherer, and V. Preda: Enhancing the Guidance, Navigation and Control of Autonomous Parafoils using Machine Learning Methods, Proc. of the 12th International Conference on Guidance, Navigation & Control Systems, (2023), Sopot, Poland.
- Beintema, G.I., M. Schoukens, and R. Tóth: Continuous-Time Identification of Dynamic State-Space Models by Deep Subspace Encoding, Proc. of the International Conference on Learning Representations (ICLR), (2023), Kigali, Rwanda.
- Iacob, L. C., R. Tóth, M. Schoukens: Optimal Synthesis of LTI Koopman Models for Nonlinear Systems with Inputs, Proc. of the 5th IFAC Workshop on Linear Parameter-Varying Systems, (2022), Montreal, Canada, pp. 250-255. (ERC, ARNL)
- de Lange, M. H., C. Verhoek, V. Preda, and R. Tóth: LPV Modeling of the Atmospheric Flight Dynamics of a Generic Parafoil Return Vehicle, Proc. of the 5th IFAC Workshop on Linear Parameter-Varying Systems, (2022), Montreal, Canada, pp. 238-243. (AI4GNC, ARNL)
- Verhoek, C., G. I. Beintema, S. Haesaert, M. Schoukens, and R. Tóth: Deep-Learning-Based Identification of LPV Models for Nonlinear Systems, Proc. of the 61st IEEE Conference on Decision and Control, Cancun, (2022), Cancun, Mexico, pp. 3274-3280. (AI4GNC, ERC)
- Broens, Y., H. Butler and R. Tóth: On modal observers for beyond rigid body H_inf control in high-precision mechatronics, Proc. of the 61st IEEE Conference on Decision and Control, Cancun, (2022), Cancun, Mexico, pp. 1722-1727. (IT2, ARNL)
- Antal, P., T. Péni and R. Tóth: Nonlinear Control Method for Backflipping with Miniature Quadcopters, Proc. of the IFAC Symposium on Intelligent Autonomous Vehicles, (2022), Prague, Czech Republic. (ELKH, ARNL)
- Bloemers, T.A.H., T.A.E. Oomen and R. Tóth: Frequency Response Data-driven LPV Controller Synthesis for MIMO Systems, Proc. of the American Control Conference, (2022), Atlanta, GA, USA, pp. 5205-5210. (ERC, ARNL)
- Broens, Y., H. Butler and R. Tóth: LPV sequential loop closing for high-precision motion systems, Proc. of the American Control Conference, (2022), Atlanta, GA, USA, pp. 3178-3183. (IT2, ARNL)
- Verhoek, C. R. Tóth, S. Haesaert and A. Koch: Fundamental Lemma for Data-Driven Analysis of Linear Parameter-Varying Systems, Proc. of the 60th IEEE conference on Decision and Control, (2021), Austin, Texas, USA, pp. 5033-5039. (ERC, AI4GNC)
- Liu, Y. and R. Tóth: Learning Based Model Predictive Control for Quadcopters with Dual Gaussian Process, Proc. of the 60th IEEE conference on Decision and Control, (2021), Austin, Texas, USA, pp. 1515-1521. (ARNL)
- Bosman Barros, C. P., H. Butler, R. Tóth, J. van de Wijdeven: On feedforward control of piezoelectric dual-stage actuator systems, Proc. of the 60th IEEE conference on Decision and Control, (2021), Austin, Texas, USA, pp. 5581-5587 .
- Iacob, L. C., G. I. Beintema, M. Schoukens and R. Tóth: Deep Identification of Nonlinear Systems in Koopman Form, Proc. of the 60th IEEE conference on Decision and Control, (2021), Austin, Texas, USA, pp. 2284-2289. [TC-SIAC/IC Outstanding Student Paper Prize], (MILAB)
- Koelewijn, P. J.W. and R. Tóth: Incremental Dissipativity based Control of Discrete-Time Nonlinear Systems using the Linear Parameter-Varying Framework, Proc. of the 60th IEEE conference on Decision and Control, (2021), Austin, Texas, USA, pp. 3277-3282. (ERC)
- Verhoek, C., H. S. Abbas, R. Tóth, and S. Haesaert: Data-Driven Predictive Control for Linear Parameter-Varying Systems. Proc. of the 4th IFAC Workshop on Linear Parameter-Varying Systems, (2021), Padova, Italy, pp. 101-108. (ERC, AI4GNC)
- Koelewijn, P. J.W., R. Tóth, S. Weiland: Incremental Stability and Performance Analysis of Discrete-Time Nonlinear Systems using the LPV Framework. Proc. of the 4th IFAC Workshop on Linear Parameter-Varying Systems, (2021), Padova, Italy, pp. 75-82. (ERC)
- Bloemers, T., R. Tóth, T. Oomen: Frequency-Domain Data-Driven Controller Synthesis for Unstable LPV Systems. Proc. of the 4th IFAC Workshop on Linear Parameter-Varying Systems, (2021), Padova, Italy, pp. 109-115. (ERC)
- G. Rödönyi, R. Tóth, D. Pup, A. Kisari, Zs. Vígh, P. Kőrös,J. Bokor: Data-driven linear parameter-varying modelling of the steering dynamics of an autonomous car. Proc. of the 4th IFAC Workshop on Linear Parameter-Varying Systems, (2021), Padova, Italy, pp. 20-26.
- den Boef, P., P. B. Cox and R. Tóth: LPVcore: MATLAB Toolbox for LPV Modelling, Identification and Control Of Non-Linear Systems, Proc. of the 19th IFAC Symposium System Identification: learning models for decision and control, (2021), Padova, Italy. (ERC)
- Nechita, S.-C., R. Tóth, D. Khandelwal and M. Schoukens: Toolbox for Discovering Dynamic System Relations via TAG Guided Genetic Programming, Proc. of the 19th IFAC Symposium System Identification: learning models for decision and control, (2021), Padova, Italy.
- Nechita, S.-C., R. Tóth and K. van Berkel: Data-driven System Identification of Thermal Systems using Machine Learning, Proc. of the 19th IFAC Symposium System Identification: learning models for decision and control, (2021), Padova, Italy.
- Beintema, G. I., R. Tóth and M. Schoukens: Non-linear State-space Model Identification from Video Data using Deep Encoders, Proc. of the 19th IFAC Symposium System Identification: learning models for decision and control, (2021), Padova, Italy. (ERC)
- G. Rödönyi, G. I. Beintema, R. Tóth, M. Schoukens, D. Pup, A. Kisari, Zs. Vígh, P. Kőrös, A. Soumelidis, J. Bokor: Identification of the nonlinear steering dynamics of an autonomous vehicle, Proc. of the 19th IFAC Symposium System Identification: learning models for decision and control, (2021), Padova, Italy.
- Beintema, G. I., R. Tóth and M. Schoukens: Nonlinear state-space identification using deep encoder networks. Proc. of Machine Learning Research (3rd Annual Learning for Dynamics & Control Conference), (2021) Zurich, Switzerland, Vol. 144, pp. 1-10.
- Proimadis, I., Y. Broens, R. Tóth and Hans Butler: Learning-based feedforward augmentation for steady state rejection of residual dynamics on a nanometer-accurate planar actuator system. Proc. of Machine Learning Research (3rd Annual Learning for Dynamics & Control Conference), (2021) Zurich, Switzerland, Vol. 144, pp. 1-12. (IT2)
- Bosman Barros, C. P. , H. Butler and R. Tóth: On the Use of the Smith-McMillan Form in Decoupling System Dynamics, Proc. of the American Control Conference, (2021), New Orleans, Louisiana, USA, pp. 2065-2070.
- Liu, Z., Z. Wu and R. Tóth: SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint Estimation, Proc. of the Conference on Computer Vision and Pattern Recognition (CVPR), Workshop on Autonomous Driving, Seattle, Washington, USA, 2020.
- Schoukens, M. and R. Tóth: On the Initialization of Nonlinear LFR Model Identification with the Best Linear Approximation, Proc. of the IFAC World Congress, Berlin, 2020. (ERC)
- Shakib, M.F., R. Tóth, A.Y. Pogromsky, A. Pavlov and N. van de Wouw: State-Space Kernelized Closed-Loop Identification of Nonlinear Systems, Proc. of the IFAC World Congress, Berlin, (2020).
- Sadeghzadeh, A. and R. Tóth: Linear Parameter-Varying Embedding of Nonlinear Models with Reduced Conservativeness, Proc. of the IFAC World Congress, Berlin, (2020). (ERC)
- Koelewijn, P.J.W. and R. Tóth: Scheduling Dimension Reduction of LPV Models – A Deep Neural Network Approach, Proc. of the American Control Conference, (2020), Denver, USA, pp. 1111-1117. (ERC) (link)
- Koelewijn, P.J.W., G. S. Mazzoccante, R. Tóth and S. Weiland: Pitfalls of Guaranteeing Asymptotic Stability in LPV Control of Nonlinear Systems, Proc. of the European Control Conference, (2020), Saint Petersburg, Russia, pp. 1573-1578. (ERC) (link)
- Wang, R., R. Tóth and I. R. Manchester: A Comparison of LPV Gain Scheduling and Control Contraction Metrics for Nonlinear Control, Proc. of the 3rd IFAC Workshop on Linear Parameter-Varying Systems, (2019), Eindhoven, The Netherlands, pp. 38-43. (ERC)
- Schoukens, M. and R. Tóth: Frequency Response Functions of Linear Parameter-Varying Systems, Proc. of the 3rd IFAC Workshop on Linear Parameter-Varying Systems, (2019), Eindhoven, The Netherlands, pp. 32-37. (ERC)
- Bloemers, T., R. Tóth and T. Oomen: Data-Driven LPV Reference Tracking for a Control Moment Gyroscope, Proc. of the 3rd IFAC Workshop on Linear Parameter-Varying Systems, (2019), Eindhoven, The Netherlands, pp. 134-139. (ERC)
- Koelewijn, P.J.W., R. Tóth and H. Nijmeijer: Linear Parameter-Varying Control of Nonlinear Systems based on Incremental Stability, Proc. of the 3rd IFAC Workshop on Linear Parameter-Varying Systems, (2019), Eindhoven, The Netherlands, pp. 38-43. (ERC)
- Gángó, D., T. Péni and R. Tóth: Learning based Approximate Model Predictive Control for constrained qLPV systems, Proc. of the 3rd IFAC Workshop on Linear Parameter-Varying Systems, (2019), Eindhoven, The Netherlands, pp. 152-157. (ERC)
- Boef, den P., R. Tóth and M. Schoukens: On Behavioral Interpolation in Local LPV System Identification, Proc. of the 3rd IFAC Workshop on Linear Parameter-Varying Systems, (2019), Eindhoven, The Netherlands, pp. 20-25. (ERC)
- Bloemers, T.A.H., R. Tóth and T. Oomen: Towards Data-Driven LPV Controller Synthesis based on Frequency Response Function, Proc. of the 58th IEEE Conference on Decision and Control, (2019), Nice, France, pp 5680-5685. (ERC)
- Custers, C.H.H.M., I. Proimadis, J.W. Jansen, H. Butler, R. Tóth, E.A. Lomonova and P.M.J. van den Hof: Active Compensation of the Deformation of a Magnetically Levitated Mover of a Planar Motor, Proc. of the IEEE International Electric Machines and Drives Conference, (2019), San Diego, USA, pp. 854-861.
- Khandelwal, D., M. Schoukens and R. Tóth: Data-driven Modelling of Dynamical Systems Using Tree Adjoining Grammar and Genetic Programming, Proc. of the IEEE Congress on Evolutionary Computation, (2019), Wellington, New Zealand, pp. 2673-2680.
- Khandelwal, D., M. Schoukens and R. Tóth: Grammar-based Representation and Identification of Dynamical Systems, Proc. of the European Control Conference, (2019), Naples, Italy, pp. 1318-1323.
- Mejari, M., D. Piga, R. Tóth and A. Bemporad: Kernelized Identification of Linear Parameter-Varying Models with Linear Fractional Representation, Proc. of the European Control Conference, (2019), Naples, Italy, pp. 337-342.
- Khandelwal, D., M. Schoukens and R. Tóth: On the Simulation of Polynomial NARMAX Models, Proc. of the 57th IEEE Conference on Decision and Control, (2018), Miami Beach, FL, USA, pp. 1445-1550. (arxiv)
- Wiel, T. T. R. van de, R. Tóth and V. I. Kiriouchine: Comparison of Parameter-Varying Decoupling Based Control Schemes for a Quadcopter, Proc. of the IFAC Workshop on Linear Parameter Varying Systems, (2018), Florianopolis, Brazil, pp. 156-162. (ERC) (pdf) (link)
- Koelewijn, P. J. W., P. S. G. Cisneros, H. Werner and R. Tóth: LPV Control of a Gyroscope with Inverted Pendulum Attachment, Proc. of the IFAC Workshop on Linear Parameter Varying Systems, (2018), Florianopolis, Brazil, pp. 150-155. (ERC) (pdf) (link)
- Abbas, H. S., J. Hanema, R. Tóth, J. Mohammadpour and N. Meskin: A New Approach to Robust MPC Design for LPV Systems in Input-Output Form, Proc. of the IFAC Workshop on Linear Parameter Varying Systems, (2018), Florianopolis, Brazil, pp. 392-397. (pdf) (link)
- Schoukens, M. and R. Tóth: Linear Parameter Varying Representation of a class of MIMO Nonlinear Systems, Proc. of the IFAC Workshop on Linear Parameter Varying Systems, (2018), Florianopolis, Brazil, pp. 271-276. (ERC) (pdf) (script) (link) (arxiv)
- Bloemers, T.A.H., I.Proimadis, Y. Kasemsinsup and R. Tóth: Parameter-Dependent Feedforward Strategies for Motion Systems, Proc. of the American Control Conference, (2018) Milwaukee, WI, USA, pp. 2017-2022. (pdf) (link)
- Schoukens, M. and R. Tóth: From Nonlinear Identification to Linear Parameter Varying Models: Benchmark Examples, Proc. of the IFAC Symposium on System Identification, (2018), Stockholm, Sweden, pp. 419-424. (ERC) (pdf) (link) (arxiv)
- Hanema, J., R. Tóth, M. Lazar: Stabilizing Non-linear MPC Using Linear Parameter-Varying Representations, Proc. of the 56th IEEE Conference on Decision and Control, (2017), Melbourne, Australia, pp. 3582-3587. (pdf) (link)
- Schulz, E., P. B. Cox, H. Werner, R. Tóth: LPV state-space identification via IO methods and efficient model order reduction in comparison with subspace methods, Proc. of the 56th IEEE Conference on Decision and Control, (2017), Melbourne, Australia, pp. 3575-3581. (pdf) (link)
- Darwish, M.A.H., J. Lataire and R. Tóth: Bayesian Frequency Domain Identification of LTI Systems with OBFs Kernels, Proc. of the 20th IFAC World Congress, (2017), Toulouse, France, pp. 6412-6417. (pdf) (link)
- Hanema, J., M. Lazar and R. Tóth: Tube-based LPV constant output reference tracking MPC with error bound, Proc. of the 20th IFAC World Congress, (2017), Toulouse, France, pp. 8942-8947. (pdf) (link)
- Chitraganti, S., R. Tóth, N. Meskin and J. Mohammadpour: Stochastic model predictive control for LPV systems, Proc. of the American Control Conference, (2017) Seattle, WA, USA, pp. 5654-5659. (pdf) (link)
- Hanema, J., R. Tóth, M. Lazar: Tube-based anticipative model predictive control for linear parameter-varying systems, Proc. of the 55th IEEE Conference on Decision and Control, (2016) Las Vegas, USA, pp. 1458-1463. (pdf) (link)
- Cox, P. B. and R. Tóth: Alternative Form of Predictor Based Identification of LPV-SS Models with Innovation Noise, Proc. of the 55th IEEE Conference on Decision and Control, (2016) Las Vegas, USA, pp. 1223-1228. (pdf) (link)
- Hanema, J., R. Tóth, M. Lazar and H. S. Abbas: MPC for Linear Parameter-Varying Systems in Input-Output Representation, IEEE International Symposium on Intelligent Control, (2016) Buenos Aires, Argentina, pp. 354-359. (pdf) (link)
- Golabi, A., M. Davoodi, N. Meskin, R. Tóth and J. Mohammadpour: Event-triggered Fault Detection for Discrete-time LPV Systems, Proc. of the conference on Event-Based Control, Communication and Signal Processing, (2016) Krakow, Poland. (pdf) (link)
- Cox, P., R. Tóth and M. Petreczky: LPV State-Space Model Identification in a Bayesian Setting: a 3-step Procedure, Proc. of the American Control Conference, (2016) Boston, MA, USA, pp. 4604-4610. (pdf) (link) (Matlab example)
- Golabi, A., N. Meskin, R. Tóth, J. Mohammadpour and T. Donkers: Event-triggered Control for Discrete-time LPV Systems, Proc. of the American Control Conference, (2016) Boston, MA, USA, pp. 3680-3685. (pdf) (link)
- Liu, Q., J. Mohammadpour, R. Tóth, and N. Meskin: Non-Parametric Identification of Parameter-Varying Spatially-Interconnected Systems Using an LS-SVM Approach, Proc. of the American Control Conference, (2016) Boston, MA, USA, pp. 4592-4597. (pdf) (link)
- Baştuğ, M., M. Petreczky, R. Tóth, R. Wisniewski, J. Leth and Denis Efimov: Moment Matching Based Model Reduction for LPV State-Space Models, Proc. of the 54th IEEE Conference on Decision and Control, (2015) Osaka, Japan, pp. 5334-5338. (pdf) (link)
- Bachnas, A.A., S. Weiland and R. Tóth: Data Driven Predictive Control Based on OBF Model Structures, Proc. of the 54th IEEE Conference on Decision and Control, (2015) Osaka, Japan, pp. 3026-3031. (pdf) (link)
- Abbas, H.S., R. Tóth, Nader Meskin, Javad Mohammadpour and Jurre Hanema: An MPC Approach for LPV Systems in Input-Output Form, Proc. of the 54th IEEE Conference on Decision and Control, (2015) Osaka, Japan, pp. 91-96. (pdf) (link)
- Darwish, M., P. Cox, G. Pillonetto and R. Tóth: Bayesian Identification of LPV Box-Jenkins Models, Proc. of the 54th IEEE Conference on Decision and Control, (2015) Osaka, Japan, pp. 66-71. (pdf) (link)
- Darwish, M., G. Pillonetto and R. Tóth: Perspectives of Orthonormal Basis Functions Based Kernels in Bayesian System Identification, Proc. of the 54th IEEE Conference on Decision and Control, (2015) Osaka, Japan, pp. 2713-2718. (pdf) (link)
- Abbasi, F., J. Mohammadpour, R. Tóth and Nader Meskin: A Bayesian Approach for Model Identification of LPV Systems with Uncertain Scheduling Variables, Proc. of the 54th IEEE Conference on Decision and Control, (2015) Osaka, Japan, pp. 789-794. (pdf) (link)
- Rizvi, S. Z., J. Mohammadpour, R. Tóth and Nader Meskin: An IV-SVM-based Approach for Identification of State-space LPV Models under Generic Noise Conditions, Proc. of the 54th IEEE Conference on Decision and Control, (2015) Osaka, Japan, pp. 7380-7385. (pdf) (link)
- Rahme, S., H. S. Abbas, N. Meskin, R. Tóth and J. Mohammadpour: Reduced LPV Model Development and Control of a Solution Copolymerization Reactor, Proc. of the IEEE Multi-Conference on Systems and Control, (2015) Sydney, Australia, pp. 1044-1050. (pdf) (link)
- Rahme, S., H.S. Abbas, N. Meskin, C. Hoffmann, R. Tóth and J. Mohammadpour: Linear Parameter-Varying Control of a Copolymerization Reactor, Proc. of the 1st IFAC Workshop on Linear Parameter-Varying Systems, (2015) Grenoble, France, pp. 200-206. (pdf) (link)
- Rizvi, S.Z., J. Mohammadpour, R. Tóth and N. Meskin: A Kernel-based Approach to MIMO LPV State-space Identification and Application to a Nonlinear Process System Proc. of the 1st IFAC Workshop on Linear Parameter-Varying Systems, (2015) Grenoble, France, pp. 85-90. (pdf) (link)
- Cox, P.B., R. Tóth and M. Petreczky: Estimation of LPV-SS Models with Static Dependency using Correlation Analysis, Proc. of the 1st IFAC Workshop on Linear Parameter-Varying Systems, (2015) Grenoble, France, pp. 91-96. (pdf) (link)
- Formentin, S., D. Piga, R. Tóth and S. Savaresi: Nonparametric LPV data-driven control, Proc. of the 1st IFAC Workshop on Linear Parameter-Varying Systems, (2015) Grenoble, France, pp. 146-151. (pdf) (link)
- Larimore, W.E., P.B. Cox, R. Tóth: CVA Identification of Nonlinear Systems with LPV State-Space Models of Affine Dependence, Proc. of the American Control Conference, (2015) Chicago, IL, USA, pp. 831-837. (pdf) (link)
- R. Duijkers, R. Tóth, D. Piga and V. Laurain: Shrinking Complexity of Scheduling Dependencies in LS-SVM Based LPV System Identification, Invited paper, Proc. of the 53rd IEEE Conference on Decision and Control, (2014) Los Angeles, CA, USA, pp. 2561-2566. (pdf) (link)
- A. Golabi, N. Meskin, R. Tóth and M. Mohammadpour: A Bayesian Approach for Estimation of LPV Linear-Regression Models, Invited paper, Proc of the 53rd IEEE Conference on Decision and Control, (2014) Los Angeles, CA, USA, pp. 2555-2560. (pdf) (link)
- Abbas, H.S., R. Tóth, M. Petreczky, N. Meskin and J. Mohammadpour: Embedding of Nonlinear Systems in a Linear Parameter-Varying Representation, Proc. of the 19th IFAC World Congress, (2014) Cape Town, South Africa, pp. 6907-6913. (pdf) (link)
- Lataire, J., D. Piga and R. Tóth: Frequency-domain least-squares support vector machines to deal with correlated errors when identifying linear time-varying systems, Proc. of the 19th IFAC World Congress, (2014) Cape Town, South Africa, pp. 10024-10029. (pdf) (link)
- Rizvi, S. Z., J. Mohammadpour, R. Tóth and N. Meskin: Parameter Set-mapping using Kernel-based PCA for Linear Parameter Varying Systems, Proc. of the 13th European Control Conference, (2014) Strasbourg, France, pp. 2744-2749. (pdf) (link)
- Abbasi, F., J. Mohammadpour, R. Tóth and N. Meskin: A support vector machine-based method for LPV-ARX identification with noisy scheduling parameters. Proc. of the 13th European Control Conference, (2014) Strasbourg, France, pp. 370-375. (pdf) (link)
- Wollnack, S., H. S. Abbas, H. Werner and R. Tóth: Fixed-Structure LPV Controller Synthesis based on Implicit Input Output Representations, Proc. of the 52nd IEEE Conference on Decision and Control, (2013) Florence, Italy, pp. 2103-2108. (pdf) (link)
- Piga, D. and R. Tóth: LPV model order selection in an LS-SVM setting, Invited paper, Proc. of the 52nd IEEE Conference on Decision and Control, (2013) Florence, Italy, pp. 4128-4133. (pdf) (link)
- Formentin, S., D. Piga, R. Tóth and S. M. Savaresi: Direct data-driven control of linear parameter-varying systems, Invited paper, Proc. of the 52nd IEEE Conference on Decision and Control, (2013) Florence, Italy, pp. 4110-4115. (pdf) (link)
- Bachnas, A. A., R. Tóth, A. Mesbah and J. Ludlage: Perspectives of data-driven LPV modeling of high-purity distillation columns, Invited paper, Proc. of the European Control Conference, (2013) Zurich, Switzerland, pp. 3776-3783. (pdf) (link)
- Tóth, R., H. Hjalmarsson and C. R. Rojas: Order and Structural Dependence Selection of LPV-ARX Models Revisited, Invited paper, Proc. of the 51st IEEE Conference on Decision and Control, (2012) Maui, Hawaii, USA, pp. 6271-6276. (pdf) (link)
- Siraj, M. M., R. Tóth, S. Weiland: Joint order and dependency reduction for LPV state-space models, Invited paper, Proc. of the 51st IEEE Conference on Decision and Control, (2012) Maui, Hawaii, USA, pp. 6291-6296. (pdf) (link)
- Cerone, V., D. Piga, D. Regruto and R. Tóth: Fixed order LPV controllers design for LPV models in input-output form, Invited paper, Proc. of the 51st IEEE Conference on Decision and Control, (2012) Maui, Hawaii, USA, pp. 6297-6302. (pdf) (link)
- Tóth, R., H. Hjalmarsson and C. R. Rojas: Sparse estimation of polynomial dynamical models, Invited paper, Proc. of the 16th IFAC Symposium on System Identification, (2012) Brussels, Belgium, pp. 983-988 . (pdf) (link)
- Laurain, V., R. Tóth, W-X. Zheng and M. Gilson: Nonparametric identification of LPV models under general noise conditions: an LS-SVM based approach, Invited paper, Proc. of the 16th IFAC Symposium on System Identification, (2012) Brussels, Belgium, pp. 1761-1766. (pdf) (link)
- Cerone, V., D. Piga, D. Regruto and R. Tóth: Input-output LPV model identification with guaranteed quadratic stability, Invited paper, Proc. of the 16th IFAC Symposium on System Identification, (2012) Brussels, Belgium, pp. 1767-1772. (pdf) (link)
- Cerone, V., D. Piga, D. Regruto and R. Tóth: Minimal LPV state-space realization driven set-membership identification. Proc. of the American Control Conf., (2012) Montréal, Canada, pp. 3421-3426. (pdf) (link)
- Dankers, A. G., R. Tóth, P. S. C. Heuberger, X. Bombois and P. M. J. Van den Hof: Informative data and identifiability in LPV-ARX prediction error identification, Proc. of the 50th IEEE Conference on Decision and Control, (2011) Orlando, Florida, USA, pp. 799-804. (pdf) (link)
- Laurain, V., W-X. Zheng and R. Tóth: Introducing instrumental variables in the LS-SVM based identification framework, Proc. of the 50th IEEE Conference on Decision and Control, (2011) Orlando, Florida, USA, pp. 3198-3203. (pdf) (link)
- Tóth, R., V. Laurain, W-X. Zheng and K. Poolla: Model structure learning: A support vector machine approach for LPV linear-regression models, Proc. of the 50th IEEE Conference on Decision and Control, (2011) Orlando, Florida, USA, pp. 3192-3197. (pdf) (errata) (link)
- Tóth, R., B. M. Sanandaji, K. Poolla and T. L. Vincent: Compressive system identification in the linear time-invariant framework, Proc. of the 50th IEEE Conference on Decision and Control, (2011) Orlando, Florida, USA, pp. 783-790. (pdf) (link)
- Sanandaji, B. M., T. L. Vincent, M. B. Wakin, R. Tóth and K. Poolla: Compressive system identification of LTI and LTV ARX models: The limited data set case, Proc. of the 50th IEEE Conference on Decision and Control, (2011) Orlando, Florida, USA, 791-798. (pdf) (link)
- Tóth, R., V. Laurain, M. Gilson and H. Garnier: On the closed loop identification of LPV models using instrumental variables. Proc. of the 18th IFAC World Congress, (2011), Milano, Italy, pp. 7773-7778 (pdf) (link)
- Kulcsár, B. and R. Tóth: On the similarity state transformation for linear parameter-varying systems. Proc. of the 18th IFAC World Congress, (2011), Milano, Italy, pp. 4155-4160. (pdf) (link)
- Tóth, R., M. van de Wal, P. S. C. Heuberger and P. M. J. Van den Hof: LPV Identification of High Performance Positioning Devices. Invited paper, Proc. of the American Control Conf., (2011) San Francisco, California, USA, pp. 151-158. (pdf) (link)
- Laurain, V., M. Gilson, R. Tóth and H. Garnier: Direct identification of continuous-time LPV models. Invited paper, Proc. of the American Control Conf., (2011) San Francisco, California, USA, pp. 159-164. (pdf) (link)
- Tóth, R., P. M. J. Van den Hof, J. H. A. Ludlage and P. S. C. Heuberger: Identification of nonlinear process models in an LPV framework. Proc. of the 9th International Symp. on Dynamics and Control of Process Systems, (2010) Leuven, Belgium, pp. 869-874. (pdf) (link)
- Tóth, R., P. S. C. Heuberger and P. M. J. Van den Hof: A prediction-error identification framework for linear parameter-varying systems. Invited paper, Proc. of the 19th International Symposium on Mathematical Theory of Networks and Systems, (2010) Budapest, Hungary, pp. 1351-1352. (pdf)
- Abbas H., R. Tóth, and H. Werner, State-space realization of LPV input-output models: practical methods for the user, Invited paper, Proc. of the American Control Conf., (2010) Baltimore, Maryland, USA, pp. 3883-3888. (pdf) (link)
- Laurain, V., M. Gilson, R. Tóth, and H. Garnier, Identification of LPV Output-Error and Box-Jenkins Models via Optimal Refined Instrumental Variable Methods, Invited paper, Proc. of the American Control Conf., (2010) Baltimore, Maryland, USA, pp. 3865-3870. (pdf) (link)
- Tóth, R., M. Lovera, P. S. C. Heuberger and P. M. J. Van den Hof: Discretization of Linear Fractional Representations of LPV systems, Proc. of the 48th IEEE Conference on Decision and Control, (2009) Shanghai, China, pp. 7424-7429. (pdf) (link)
- Tóth, R., C. Lyzell, M. Enqvist, P. S. C. Heuberger and P. M. J. Van den Hof: Order and Structural Dependence Selection of LPV-ARX Models Using a Nonnegative Garrote Approach, Proc. of the 48th IEEE Conference on Decision and Control, (2009) Shanghai, China, pp. 7406-7411. (pdf) (link)
- Tóth, R., Jan C. Willems, P. S. C. Heuberger and P. M. J. Van den Hof: A behavioral approach to LPV systems, Proc. of the European Control Conference, (2009) Budapest, Hungary, pp. 2015-2020. (pdf) (link)
- Tóth, R., P. S. C. Heuberger and P. M. J. Van den Hof: An LPV identification Framework Based on Orthonormal Basis Functions. Proc. of the 15th IFAC Symposium on System Identification, (2009) St. Malo, France, pp. 1328-1333. (pdf) (link)
- Khalate, A. A., X. Bombois, R. Tóth and R. Babuška: Optimal experimental design for LPV identification using a local approach. Proc. of the 15th IFAC Symposium on System Identification, (2009) St. Malo, France, pp. 162-167. (pdf) (link)
- Tóth, R., P. S. C. Heuberger and P. M. J. Van den Hof: Flexible model structures for LPV identification with static scheduling dependency, Invited paper, Proc. of the 47th IEEE Conference on Decision and Control, (2008) Cancun, Mexico, pp. 4522-4527. (pdf) (link)
- Tóth, R., F. Felici, P. S. C. Heuberger and P. M. J. Van den Hof: Crucial aspects of zero-order hold LPV state-space system discretization, Proc. of the 17th IFAC World Congress, (2008) Seoul, Korea, pp. 4952-4957. (pdf) (link)
- Tóth, R., P. S. C. Heuberger and P. M. J. Van den Hof: LPV system identification with globally fixed orthonormal basis functions, Proc. of the 46th IEEE Conference on Decision and Control, (2007) New Orleans, USA, pp. 3646-3653. (pdf) (link)
- Tóth, R., F. Felici, P. S. C. Heuberger and P. M. J. Van den Hof: Discrete time LPV I/O and state-space representations, differences of behavior and pitfalls of interpolation, Proc. of the European Control Conference, (2007) Kos, Greece, pp. 5418-5425. (pdf) (errata) (link)
- Tóth, R., P. S. C. Heuberger and P. M. J. Van den Hof: Orthonormal basis selection for LPV system identification, the Fuzzy-Kolmogorov c-Max approach, Proc. of the 45th IEEE Conf. on Decision and Control, (2006) San Diego, USA, pp. 2529-2534. (pdf) (link)
- Tóth, R., P. S. C. Heuberger, and P. M. J. Van den Hof: Optimal pole selection for LPV system identification with OBFs, a clustering approach, Proc. of the 14th IFAC Symposium on System Identification, (2006) Newcastle, Australia, pp. 356-361. (pdf) (link)
- Tóth, R. and D. Fodor: Speed Sensorless mixed sensitivity linear parameter variant H_inf control of the induction motor, Proc. of the 43rd IEEE Conference on Decision and Control, (2004) Nassau, The Bahamas, pp. 4435-4440. (pdf) (link)
Submitted Conference Papers (6)
- Antal, P., T. Péni, and R. Tóth: Hook-Based Aerial Payload Grasping from a Moving Platform, Submitted to the IEEE International Conference on Robotics & Automation, (2025) Atlanta, USA.
- Krebbekx, J. P. J., R. Tóth, A. Das: SRG Analysis of Lur’e Systems and the Generalized Circle Criterion, Submitted to the European Control Conference, (2025) Thessaloniki, Greece.
- Hoekstra, J. H., C. Verhoek, R. Tóth, and M. Schoukens: Learning-based model augmentation with LFRs, Submitted to the European Control Conference, (2025) Thessaloniki, Greece.
- van Otterdijk, G. J. E., S. Moradi, S. Weiland, R. Tóth, N.O. Jaensson and M. Schoukens: Learning Subsystem Dynamics in Nonlinear Systems via Port-Hamiltonian Neural Networks, Submitted to the European Control Conference, (2025) Thessaloniki, Greece.
- Györök, B.M., J.H. Hoekstra, J. Kon, T. Péni, M. Schoukens, and R. Tóth: Orthogonal projection-based regularization for efficient model augmentation, Submitted to the 7th Annual Learning for Dynamics & Control Conference, (2025) Ann Arbor, MI, USA.
- Olucha, E. J., V. Preda, A. Das and R. Tóth: Gaussian process-based grid point allocation for robust control, Submitted to the Inter-Agency GNC V&V Workshop, (2025) Toulouse, France.
Plenary Talks and Keynotes (4)
R. Tóth: Data-driven surrogate modeling: The Tale of Linear Parameter-Varying Methods, Keynote at the Workshop on Nonlinear System Identification Benchmarks, Lugano, Switzerland, 2024.
R. Tóth and C. Verhoek: Towards data-driven control of nonlinear systems with performance guarantees, Keynote at the workshop on “Theory of Data Driven Safe Machine-Decisions”, 29th Nordic Congress of Mathematicians (with EMS), Aalborg, Denmark, 2023.
R. Tóth: Nonlinear Tracking & Rejection Using LPV Control: Towards LPV 2.0. Plenary talk at the 4th IFAC Workshop on Linear Parameter-Varying Systems, (2021) Milan, Italy.
R. Tóth: Finding the golden mean in data-driven modeling. Plenary talk at the 16th IFAC Symposium on System Identification, (2012) Brussels. (pptx)
Abstracts (63)
- Moradi, S., N. Jaensson, R. Tóth and M. Schoukens: Learning physical models using Hamiltonian Neural Networks with output error noise models, Proc. of the 42nd Benelux Meeting, (2023) Elspeet, The Netherlands, pp. 37.
- Beintema, G. I., R. Tóth and M. Schoukens: Meta-state-space: A new perspective on
representing and identifying stochastic systems, Proc. of the 42nd Benelux Meeting, (2023) Elspeet, The Netherlands, pp. 98. - Spin, L. M., R. Tóth, N. Van de Wouw and W. P. M. H. Heemels: Performance Shaping for Data-Driven Generalized plants, Proc. of the 42nd Benelux Meeting, (2023) Elspeet, The Netherlands, pp. 130.
- Iacob, L. C., M. Schoukens and R. Tóth: Embedding of Polynomial Nonlinear Systems into Finite Dimensional Koopman Representations, Proc. of the 42nd Benelux Meeting, (2023) Elspeet, The Netherlands, pp. 149.
- Verhoek, C., S. Haesaert, and R. Tóth: An experimental result on direct data-driven control of nonlinear systems using the LPV framework, Proc. of the 42nd Benelux Meeting, (2023) Elspeet, The Netherlands, pp. 214.
- Broens, Y., H. Butler and R. Tóth: Data-based electromagnetic calibration approaches for moving-magnet planar actuator systems, Proc. of the 42nd Benelux Meeting, (2023) Elspeet, The Netherlands, pp. 222.
- Retzler, A., R. Tóth, J. Swevers, J.-P. Noe, Zs. Kollár, G. I. Beintema, J. Weigand and M. Schoukens: Augmented model identification for forward simulation of a robot arm, Proc. of the 42nd Benelux Meeting, (2023) Elspeet, The Netherlands, pp. 213.
- Iacob, L. C., G. I. Beintema, M. Schoukens and R. Tóth: Deep Learning-based Identification of Koopman Models with Inputs, Proc. of the 41st Benelux Meeting, (2022) Brussels, Belgium, pp. 49.
- Beintema, G. I., R. Tóth and M. Schoukens: Continuous-time system identification by deep subspace encoders, Proc. of the 41st Benelux Meeting, (2022) Brussels, Belgium, pp. 51.
- Verhoek, C., G. Beintema, S. Haesaert, M. Schoukens and R. Tóth: Learning-Based Model-Augmentation of Nonlinear Approximative Models using the Sub-Space Encoder, Proc. of the 41st Benelux Meeting, (2022) Brussels, Belgium, pp. 52.
- Moradi, S., N. Jaensson, R. Tóth and M. Schoukens: Learning Constitutive Laws in Engineering Systems, Proc. of the 41st Benelux Meeting, (2022) Brussels, Belgium, pp. 83.
- Broens, Y., H. Butler and R. Tóth: On discretization of continuous-time LPV control solutions, Proc. of the 41st Benelux Meeting, (2022) Brussels, Belgium, pp. 199.
- Retzler, A., G. I. Beintema, M. Schoukens, R. Tóth, J. Swevers, and Zs. Kollár: Learning-based augmentation of mechatronic system models by deep subspace encoders, Proc. of the 41st Benelux Meeting, (2022) Brussels, Belgium, pp. 53.
- Iacob, L. C., R. Tóth and M. Schoukens: Learning Linear Surrogate Models of Nonlinear Systems, Proc. of the 40th Benelux Meeting, (2021) Rotterdam, The Netherlands.
- Verhoek, C., R. Tóth and S. Haesaert: Data-Driven Predictive Control of Linear Parameter-Varying Systems, Proc. of the 40th Benelux Meeting, (2021) Rotterdam, The Netherlands.
- Beintema, G. I., R. Tóth and M. Schoukens: Dynamical system identification from video using sub-space encoders, Proc. of the 40th Benelux Meeting, (2021) Rotterdam, The Netherlands.
- Broens, Y., H. Butler and R. Tóth: Improved commutation methods for moving-magnet planar actuators, Proc. of the 40th Benelux Meeting, (2021) Rotterdam, The Netherlands.
- Y. Liu and R. Tóth: Gaussian Processes Based Learning Control for Quadcopters. Proc. of the 39th Benelux Meeting, (2020) Elspeet, The Netherlands, pp. 68.
- Iacob, L.C., R. Tóth and M. Schoukens: LPV Modeling Using the Koopman Operator. Proc. of the 39th Benelux Meeting, (2020) Elspeet, The Netherlands, pp. 133.
- Shakib, F., R. Tóth, S. Pogromsky, A. Pavlov and N. van de Wouw: Non-Parametric Kernelized Identification of Closed Loop Nonlinear Systems. Proc. of the 39th Benelux Meeting, (2020) Elspeet, The Netherlands, pp. 55.
- Sadeghzadeh, A. and R. Tóth: Linear Parameter-Varying Embedding of Nonlinear Models Based on Polynomial Approximation. Proc. of the 39th Benelux Meeting, (2020) Elspeet, The Netherlands, pp. 79.
- Koelewijn, P. J. W., R. Tóth and S. Weiland: Incremental Stability based Analysis and Control of Nonlinear Systems using the LPV Framework. Proc. of the 39th Benelux Meeting, (2020) Elspeet, The Netherlands, pp. 77.
- G. Beintema, R. Tóth and M. Schouken: Comparison of deep learning methods for system identification. Proc. of the 39th Benelux Meeting, (2020) Elspeet, The Netherlands, pp. 157.
- Bloemers, T.A.H., R. Tóth and T. Oomen: Data-Driven Rational LPV Controller Synthesis for Unstable Systems using Frequency Response Functions. Proc. of the 39th Benelux Meeting, (2020) Elspeet, The Netherlands, pp. 144.
- Bosman Barros, C. P., H. Butler , R. Tóth and K. van Berkel: Motion control of Piezo-electric actuators for nanopositioning. Proc. of the 39th Benelux Meeting, (2020) Elspeet, The Netherlands, pp. 125.
- Verhoek, C., P. J. W. Koelewijn and R. Tóth: Incremental Dissipativity Analysis of Nonlinear Systems using the Linear Parameter-Varying Framework. Proc. of the 39th Benelux Meeting, (2020) Elspeet, The Netherlands, pp. 75.
- Bloemers, T.A.H., R. Tóth and T. Oomen:
Data-driven LPV controller synthesis in the frequency-domain. Proc. of the European Research Network on System Identification, (2019), Maastricht, The Netherlands. - Barros, C. P. B., R. Tóth and H. Butler: Modeling and Identification of Piezoelectric Actuators: Vibration, Creep and Hysteresis. Proc. of the European Research Network on System Identification, (2019), Maastricht, The Netherlands.
- Khandelwal, D., M. Schoukens and R. Tóth: Automating System Identification Using Grammar and Genetic Programming, Proc. of The Workshop on Nonlinear System Identification Benchmarks, (2019) Eindhoven, pp. 41.
- Schoukens, M. and R. Tóth: Identification of Nonlinear LFR Systems starting from the Best Linear Approximation, Proc. of The Workshop on Nonlinear System Identification Benchmarks, (2019) Eindhoven, pp. 44.
- Bloemers, T., R. Tóth and T. Oomen: Data-driven LPV synthesis: FIR controller case, Proc. of the 38th Benelux Meeting, (2019) Lommel, pp. 111.
- Koelewijn, P. and R. Tóth: Modeling for LPV Control, Proc. of the 38th Benelux Meeting, (2019) Lommel, pp. 152.
- Mazzoccante, G.S., R. Tóth and S. Weiland: On guaranteeing asymptotic output tracking and disturbance rejection for nonlinear systems with LPV control, Proc. of the 38th Benelux Meeting, (2019) Lommel, pp. 88.
- Khandelwal, D., M. Schoukens and R. Tóth: Automating System Identification: A Linguistic Approach, Proc. of the 38th Benelux Meeting, (2019) Lommel, pp. 21.
- Bosman Barros, C.P., H. Butler, R. Tóth and K. van Berkel: Modeling and control of a piezo-electric short-range stage, Proc. of the 38th Benelux Meeting, (2019) Lommel, pp. 174.
- Cox, P. B., R. Tóth and P. M. J. Van den Hof: Subspace Identification for Linear Parameter-Varying Systems, Proc. of the 37th Benelux Meeting, (2018) Soesterberg, The Netherlands, pp. 19.
- Schoukens, M. and R. Tóth: From Nonlinear Identification to Linear Parameter Varying Models: Benchmark Examples, Proc. of the 37th Benelux Meeting, (2018) Soesterberg, The Netherlands, pp. 68.
- Hanema, J., R. Tóth, M. Lazar: Tube-based linear parameter-varying MPC for a thermal system, Proc. of the 37th Benelux Meeting, (2018) Soesterberg, The Netherlands, pp. 106.
- Mazzoccante, G. S., R. Tóth and S. Weiland: On guaranteeing tracking performance and stability with LPV control for nonlinear systems, Proc. of the 37th Benelux Meeting, (2018) Soesterberg, The Netherlands, pp. 146.
- Khandelwal, D., R. Tóth, P.M.J. Van den Hof: Grammar-based Encoding of Well-posed Model Structures for Data-Driven Modeling, Proc. of the 37th Benelux Meeting, (2018) Soesterberg, The Netherlands, pp. 69.
- Hanema, J., R. Tóth, M. Lazar: Tube-based anticipative linear parameter-varying MPC: application to non-linear systems, Proc. of the 36th Benelux Meeting, (2017) Spa, Belgium, pp. 115.
- Proimadis, I., and R. Tóth: Modelling of a nanometer-accurate planar actuation system, Proc. of the 36th Benelux Meeting, (2017) Spa, Belgium, pp. 92.
- Darwish, M.A.H., J. Lataire, R. Tóth and P. M. J. Van den Hof: Bayesian Frequency Domain Identification of LTI Systems with OBFs Kernels, Proc. of the 36th Benelux Meeting, (2017) Spa, Belgium, pp. 18.
- Proimadis, I., and R. Tóth: Nanometer-accurate planar actuation system (NAPAS), Proc. of the 36th Benelux Meeting, (2016) Soesterberg, The Netherlands, pp. 156.
- Bachnas, A.A., S. Weiland and R. Tóth: Characterization of the tracking error for OBF based MPC, Proc. of the 36th Benelux Meeting, (2016) Soesterberg, The Netherlands, pp. 119.
- Khandelwal, D., and R. Tóth: Data-driven modelling using symbolic regression, Proc. of the 36th Benelux Meeting, (2016) Soesterberg, The Netherlands, pp. 111.
- Darwish, M.A.H., S. Chitraganti, T.B. Schön, R. Tóth and P.M.J. van den Hof: Maximum likelihood estimation of LPV-SS models: A Sequential Monte-Carlo approach, Proc. of the 36th Benelux Meeting, (2016) Soesterberg, The Netherlands, pp. 81.
- Cox, P.B., R. Tóth and P.M.J. van den Hof: On the connection between different noise structures for LPV-SS models, Proc. of the 35th Benelux Meeting, (2016) Soesterberg, The Netherlands, pp. 78.
- Hanema, J., R. Tóth, M. Lazar and S. Weiland: Towards anticipative LPV tube model predictive control, Proc. of the 35th Benelux Meeting, (2016) Soesterberg, The Netherlands, pp. 67.
- Cox, P., R. Tóth and P.M.J. Van den Hof: Estimation of LPV-SS Models with Static Dependency, Proc. of the 34th Benelux Meeting, (2015) Lommel, Belgium.
- Darwish M.A.H., R. Tóth and P.M.J. Van den Hof: Selecting Shaping Kernels in Bayesian Identification of LTI Systems: An Orthonormal Basis Functions Approach, Proc. of the 34th Benelux Meeting, (2015) Lommel, Belgium.
- Hanema J., R. Tóth M. Lazar and S. Weiland: Anticipative linear parameter-varying model predictive control, Proc. of the 34th Benelux Meeting, (2015) Lommel, Belgium.
- Bachnas, A.A., S.Weiland and R. Tóth: Data driven MPC based on OBF model structures, Proc. of the 34th Benelux Meeting, (2015) Lommel, Belgium.
- Cox, P., R. Tóth and P.M.J. Van den Hof: Identification of Linear Parameter Varying Input-Output Models with Noisy Measurements of the Scheduling Variable, Proc. of the 33rd Benelux Meeting, (2014) Heijden, The Netherlands, pp. 75.
- Darwish, M. A. H., R. Tóth and P.M.J. Van den Hof: Learning Models and Controllers from Data, Proc. of the 33rd Benelux Meeting, (2014) Heijden, The Netherlands, pp. 68.
- Bachnas, A. A., S. Weiland and R. Tóth: Uncertainty reduction techniques via orthonormal basis function based control synthesis, Proc. of the 33rd Benelux Meeting, (2014) Heijden, The Netherlands, pp. 90.
- Tóth, R., V. Laurain and D. Piga: An Instrumental Least Squares Support Vector Machine for System Identification, Workshop on Machine Learning for System Identification, (2013) Atlanta, Georgia, USA.
- Siraj, M.M. and R. Tóth: On The Problem of Model Reduction of LPV Systems, Proc. of the 31st Benelux Meeting, (2012) Heijderbos, The Netherlands, pp. 146.
- Dankers, A. G., R. Tóth, P. S. C. Heuberger and P. M. J. Van den Hof: Informativity of Data Sets for LPV Prediction-Error Identification, Proc. of the 30th Benelux Meeting, (2011) Lommel, Belgium, pp. 70.
- Tóth, R., J.C. Willems, P. S. C. Heuberger and P. M. J. Van den Hof: Extension of the behavioral approach to linear parameter-varying systems, Proc. of the 28th Benelux Meeting, (2009) Spa, Belgium, pp. 131.
- Tóth, R., P. S. C. Heuberger and P. M. J. Van den Hof: (In)equivalence of discrete time LPV state-space and input/output representations, Proc. of the 26th Benelux Meeting, (2007) Lommel, Belgium, pp. 34.
- Tóth, R., P. S. C. Heuberger and P. M. J. Van den Hof: Robust and optimal selection of OBFs based model structures, Proc. of the 25th Benelux Meeting, (2006) Heeze, The Netherlands, pp. 27.
- Tóth, R., P. S. C. Heuberger and P. M. J. Van den Hof: Identification of LPV systems using orthonormal basis functions, Proc. of the 24th Benelux Meeting, (2005) Houffalize, Belgium, pp. 70.
Technical Reports (13)
- Verhoek, C., S. Haesaert, and R. Tóth: Another note on persistency of excitation, The linear parameter-varying case, Eindhoven University of Technology, 2023.
- Koelewijn, P.J.W. and R. Tóth: Physical Parameter Estimation of an Unbalanced Disc System, Eindhoven University of Technology, 2019. (ERC) (pdf)
- Koelewijn, P.J.W. and R. Tóth: Incremental Gain of LTI Systems, Eindhoven University of Technology, 2019. (ERC) (pdf)
- Darwish, M. A. H., P. B. Cox, I. Proimadis, G. Pillonetto and R. Tóth: Prediction-Error Identification of LPV Systems: A Nonparametric Gaussian Regression Approach, Eindhoven University of Technology, TUE-CS-2017-001, 2016. (pdf)
- Cox, P. B. and R. Tóth: On the Connection Between Different Noise Structures for LPV-SS Models, Eindhoven University of Technology, TUE-CS-2016-003, 2016. (pdf)
- R. Tóth: IO realization of an LPV-SS form with static dependency, TUE–CS-2015-001, 2015. (pdf)
- Wollnack, S, A. S. Hossam, Herbert Werner, and R. Tóth: Using Implicit IO Representations for Stability Analysis and LPV-IO Controller Synthesis. Eindhoven University of Technology, TUE–CS-2014-003, 2014. (pdf)
- Laurain, V., R. Tóth, D. Piga: Instrumental Variables Based Least Squares Support Vector Machine for Identification of Nonlinear Systems, Eindhoven University of Technology, TUE–CS-2013-005, 2013. (pdf)
- Formentin, S., D. Piga, R. Tóth, and S. Savaresi. LPV control system design from data, Eindhoven University of Technology, TUE–CS-2013-004, 2013. (pdf)
- R. Tóth: Maximum LPV-SS realization in a static form, Eindhoven University of Technology, TUE–CS-2013-003, 2013. (pdf)
- Piga, D. and R. Tóth: Data-driven LPV modeling of continuous pulp digesters, Eindhoven University of Technology, TUE–CS-2013-002, 2013. (pdf)
- Laurain, V., R. Tóth, D. Piga: An Instrumental Least Squares Support Vector Machine for Nonlinear System Identification: enforcing zero-centering constraints, Eindhoven University of Technology, TUE–CS-2013-001, 2013. (pdf)
- Tóth, R., M. Lovera, P. S. C. Heuberger, M. Corno and P. M. J. Van den Hof: On the Discretization of Linear Fractional Representations of LPV Systems: Detailed Derivation of the Formulas, Tech. Report, Delft University of Technology, R-11-037, 2011. (pdf)
Lecture notes (2)
- Tóth, R. and A. Balogh: Collection of problems and solutions for electrical circuits, Lecture Notes in Electrical Engineering, in Hungarian, Pannon University, 2002.
- Fodor, D. and R. Tóth: Digital Signal Processing, Lecture Notes in Electrical Engineering, in Hungarian, Pannon University, 2002.
PhD Thesis
- Tóth, R.: Modeling and Identification of Linear Parameter-Varying Systems, an Orthonormal Basis Function Approach, Phd. Thesis, Delft University of Technology, 2008.