
1

A Kernel-based PCA Approach to Model Reduction
of Linear Parameter-varying Systems

Syed Z. Rizvi, Student Member, IEEE, Javad Mohammadpour, Member, IEEE, Roland Tóth, Member, IEEE,
Nader Meskin, Member, IEEE

Abstract—This paper presents a model reduction method
for linear parameter-varying (LPV) systems using kernel-based
principal component analysis (PCA). For state space LPV models
that are affine or rational in the scheduling variables, and the
variation of these variables is confined in a polytope, controller
synthesis can be elegantly realized by solving the synthesis
problem only at the vertices of the polytope. To exploit the
computational simplicity of this approach, it is highly desirable to
obtain LPV models of systems of interest in an affine or rational
form. In this respect, kernel PCA allows to extract principal
components of a given data set of scheduling variables in a
high-dimensional feature space, reducing complicated coefficient
dependencies that otherwise might not be easily reducible in
a linear subspace; this gives kernel PCA an advantage over
its linear PCA counterpart. We show that high dimensional
scheduling variables can be mapped into a set of low dimensional
variables through a nonlinear kernel PCA-based mapping. Since
the kernel PCA mapping is nonlinear, finding the inverse mapping
in order to represent the original scheduling variables requires
solving a nonlinear optimization problem; consequently, the
reduced LPV model is no longer affine in the reduced scheduling
variables. To address this, we formulate an optimization problem
to obtain a reduced model that is either affine or rational in
the reduced scheduling variables. We apply the proposed model
reduction method on a robotic manipulator system and use the
reduced LPV model to design a gain-scheduled controller that
satisfies an induced L2 gain performance. Numerical simulations
are used to demonstrate the performance of the resulting LPV
controller on the nonlinear manipulator model. The achieved
performance of the LPV controller with the kernel PCA-based
reduced model is also compared with its linear PCA-based
counterpart.

Index Terms—Kernel Principal Component Analysis, model
reduction, linear parameter-varying systems.

I. INTRODUCTION

Linear parameter-varying (LPV) systems are a class of
dynamic systems, in which nonlinear models can be described
or approximated using a linear dynamic relationship between
the inputs and outputs of the system. This linear signal relation
is considered to be dependent on another set of measurable
signals, the so-called scheduling variables, which represent
the varying operating conditions of the system. The ability of
LPV models to capture nonlinearities in the system dynamics

Syed Z. Rizvi and Javad Mohammadpour are with the Complex Sys-
tems Control Laboratory (CSCL), College of Engineering, The Univer-
sity of Georgia, Athens, GA 30602, USA. Corresponding author email:
javadm@uga.edu

Roland Tóth is with the Dept. of Electrical Engineering, Eindhoven
University of Technology, The Netherlands.

Nader Meskin is with the Dept. of Electrical Engineering, Qatar University,
Qatar.

by using linear dynamical relationships that are dependent on
time-varying measurable signals makes it possible to apply
linear optimal control techniques to nonlinear systems repre-
sented by LPV models. However, the number of scheduling
variables in an LPV model has a significant impact on the
LPV controller design process, often leading to increased
computational complexity, conservatism, and overbounding in
the scheduling region [1]. In polytopic LPV systems, the com-
plexity of controller synthesis has an exponential dependence
on the number of scheduling variables, directly resulting in a
high computational complexity for controller synthesis as the
number of scheduling variables increases. A common objective
for deriving an LPV model is, therefore, to limit the number
of scheduling variables to a few [2], [3]. This elevates the
problem of LPV model reduction to a significant one. Model
reduction in the LPV case refers to both a reduction in the
number of state variables (model order), as well as reduction
of scheduling dependency. These two aspects of complexity
are strongly related [3]. In particular, reduction of model order
can result in an increased complexity of the dependence, while
reduction of dependency is often available via the introduction
of extra state variables [3]. Here, we address the problem
of reduction in the complexity of the dependency while the
model order is preserved. To this end, we employ multivariate
data analysis techniques that can capture those components
based on a data set and synthesize a simplified scheduling
dependency at the cost of a minimal loss of model accuracy.

Principal component analysis (PCA) is a mathematical tool
that extracts a set of linearly uncorrelated variables from an
observation of possibly correlated variables using orthogonal
transformations. The extracted variables are sorted with re-
spect to their variance in the data, making it then possible to
extract the components that contain the principal information,
measured by their corresponding eigenvalues. This means that
the data components with very small variance can be neglected
without losing much useful information, making PCA a viable
mathematical tool for dimensionality reduction [4]. The ability
of PCA to reduce the data dimension makes it ideal for reduc-
ing the number of scheduling variables, and consequently, the
scheduling dependency in LPV models. This is evident from a
few papers that have successfully demonstrated the use of PCA
for reducing the scheduling variables dimension to represent
the same underlying dynamical behavior (see [1], [5]).

A new generation of data processing techniques has ap-
peared in the literature with the emergence of kernel-based
methods. Kernels are nonlinear functions that enable to per-
form linear operations in a high-dimensional feature space,

2

Fig. 1: (a) Original nonlinear system representation. (b) LPV model
representation. (c) Resulting behaviors (set of signal trajectories as
the solution of the corresponding dynamical model).

where it is much simpler to separate components in the
data. Employing what is now widely known as the kernel
trick, kernel functions perform extractions in the feature space
without mapping the original data to the feature space, making
component extraction much more efficient and realizable [4].
The variety in choosing kernel functions has further increased
the flexibility of exploring different regions of the data more
thoroughly. The main contribution of the present paper lies in
the use of kernel-based PCA for attaining efficient LPV models
with lower dimensional scheduling variables. We examine the
advantages of kernel-based PCA over linear PCA and discuss
the difficulties associated with kernel PCA in obtaining a pre-
image of the reduced variables in the feature space.

The paper is organized as follows: Section II gives an
introduction to LPV systems and formulates the problem of
interest. In Section III, we describe the use of kernel-based
PCA to determine a reduced scheduling dependency and its
advantages and pitfalls. An example of an LPV model of a
robotic manipulator is considered for model reduction and
LPV controller design in Section IV in order to demonstrate
the utilization of the proposed method. Throughout this paper,
unless otherwise specified, for a given vector βi ∈ Rn, we use
the notation βi,j to denote the jth entry of βi.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider a continuous-time nonlinear system Q shown
in Figure 1. Consider that the system is connected to its
environment via the signals µ : R → Rµ, Rµ ⊆ Rs, whose
entries are related to each other via a (possibly) nonlinear
dynamic relation. These signals can be considered as input
and output ports of the system. Assume that the set B denotes
the set of all trajectories of µ that are compatible with Q,
i.e., valid solutions of the underlying dynamical equations.
For a given time instant t, we introduce auxiliary variables
θt = p(µt), p : Rs → Rl, which reformulates the system
representation of Q as shown in Figure 1(b), where given the
trajectory of θ : R → Rθ, Rθ ⊆ Rl, substitution of θ into
the representation of Q gives a linear dynamic system. Let
us denote by Θ all possible trajectories of θ that are allowed
in Q. The reformulated θ-dependent linear system will have a
solution set B′ = {(θ, µ)|θ ∈ Θ, µ : R→ Rµ}, and the behav-
ior B′ contains B, i.e., more specifically B ⊆ {µ| ∃ θ ∈ Θ
s.t. the reformulated system description is satisfied}, giving
a linear, but θ-dependent description of Q. The reformulated
system now represents an LPV system. A particular objective
is to choose θ such that this embedding of B is as tight as
possible. In principle, the auxiliary variables θ are functions

of the measurable signals µ and allow to write the nonlinear
system Q as a linear dynamic, but θ-dependent, mapping
between the inputs and the outputs; the entries of θ are also
known as the scheduling variables. This enables us to use
various linear control design tools formulated in the form of
convex problems for the nonlinear system described by an
LPV representation. In case θ is measurable in the considered
system, then such a controller can be directly implemented. In
real world applications, there can be several different relations
between the scheduling variables θ and the measurable signals
µ. Variables θ might even be free variables with respect
to Q; however, often θ depends on other signals, in which
case, the resulting system is often referred to as a quasi-LPV
system [6]. In principle, however, the LPV framework and
control synthesis problem remains invariant while only the
representation of the nonlinear behavior becomes conservative,
as indicated in Figure 1.

Consider an LPV system in continuous-time, described by
a state space representation as

ẋt = A(θt)xt +B(θt)ut,

yt = C(θt)xt +D(θt)ut, (1)
where xt ∈ Rnx , ut ∈ Rnu , and yt ∈ Rny represent the
states, inputs, and outputs at time instant t, respectively. The
state space matrices are continuous functions of the scheduling
variables θt ∈ Rθ, Rθ ⊆ Rl. The dependence of the
scheduling variables on the measurable signals available from
the system can be written as

θt = p(µt), p : Rs → Rl. (2)
An LPV state space representation is considered to be affine
in the scheduling variables if

Q(θt) = Q0 +

l∑
i=1

Qiθt,i, (3)

where θt,i is the ith entry of θt, and Q(θt) is a compact
representation of the system Q(θt) =

[
A(θt) B(θt)
C(θt) D(θt)

]
. Next,

consider the compact convex set Rθ ⊆ Rl, θt ∈ Rθ,∀t > 0,
i.e., the considered scheduling region or operating region for
the system, defined by the vertices Rθ := Co{θv1 · · · θvN },
where Co denotes the minimal convex hull and N = 2l

denotes the number of vertices defining the polytope of the
scheduling variable θt ∈ Rl. Hence, θt at any time t can be
obtained by a convex combination of the vertices as

θt =

N∑
i=1

βiθvi , with βi ≥ 0,

N∑
i=1

βi = 1. (4)

Given the fact that θt can be obtained by a convex combination
of the vertices θvi , and that Q(θ) depends affinely on the
scheduling variables, i.e., conditions (3)-(4), it follows that the
system can be represented by a linear combination of multiple
LTI systems at the vertices. Such a representation of the system
is referred to as a polytopic state space LPV representation
[7]. The same applies to a desired reduced LPV model of (1).
The affine dependence condition, along with the fact that the
reduced scheduling variables vary in a polytope is important to
be preserved during model reduction as this makes it possible
to represent the reduced model as a convex combination of

3

LTI systems at the vertices of this polytope, and hence, makes
controller synthesis problem computationally tractable due to
the need to solve the controller design problem only at the
vertices [7]. Similar tractability can be achieved when the
LPV representation is rationally dependent on the scheduling
variables [8]. Therefore, given the system representation (1),
with measurable signals µt, and scheduling variables defined
in (2), the problem of LPV model reduction explored in this
paper can be stated as follows: Find a mapping defined by

ρt = q(µt), q : Rs → Rm, (5)
where m < l, such that the trajectories of the reduced model
represented by the following equations

˙̂xt = Ã(ρt)x̂t + B̃(ρt)ut,

yt = C̃(ρt)x̂t + D̃(ρt)ut, (6)
can accurately follow the trajectories of (1) and
Ã(·), B̃(·), C̃(·), and D̃(·) are either affine or rationally
dependent on the reduced variables ρt. We use kernel PCA to
provide a solution for finding lower dimensional scheduling
variables ρt ∈ Rρ, where Rρ ⊆ Rm and m < l As will be
shown, this leads to an efficient tradeoff between accuracy
and complexity of the reduced model.

III. KERNEL PCA FOR LPV MODEL REDUCTION

In order to perform model reduction on LPV scheduling
variables, one first needs to collect data from measurements
or simulations. Given the LPV model (1), the scheduling
variables θt ∈ Rl are computed and collected as Θ =
[θ1 ··· θn] = [p(µ1) ··· p(µn)] ∈ Rl×n, where n denotes the
number of collected samples and n ≥ l. For linear PCA, a
covariance matrix of the scheduling variation is then calculated
as C̄ = 1

nΘΘ> after centering the data around zero mean [9].
We then solve an eigenvalue problem that gives the new lower-
dimensional scheduling variables ρt ∈ Rm,m < l, such that
the resulting reduced model state space matrices are affine in
ρt. Details on the use of linear PCA for LPV model reduction
are reported in [1] and are not repeated here for brevity.

Kernel-based PCA, more simply known as kernel PCA, is
an extension of the traditional linear PCA approach, in which
the linear dot product operation is performed in a higher
dimensional feature space [4]. Kernel PCA first maps the
data into a possibly high-dimensional feature space F via
a usually nonlinear map Φ : RN → F , and then takes the
dot product there [10]. Due to the high dimension of this
feature space, separation of features or components in the
data is much easily realizable. The effectiveness of kernel-
based methods primarily lies in the now-famous kernel trick,
which allows performing linear operations in the feature space
without explicitly mapping the parameters into the feature
space. This has led to various applications of kernel PCA
such as feature extraction in facial recognition [11] and
denoising [10], among several others. For LPV modeling,
the use of kernel PCA can lead to reduced complexity of
the models/system representations by reducing the number of
scheduling variables.

Let us assume that the scheduling variables of the consid-
ered LPV description (1) are mapped into the feature space as

Φ(θ1),Φ(θ2), · · · ,Φ(θn), where n is the number of samples.
At this point, we also assume that the mapped parameters are
centered, i.e.,

∑n
j=1 Φ(θj) = 0. To perform traditional PCA

on this data, we derive the covariance matrix as

C̄ =
1

n

n∑
j=1

Φ(θj)Φ
>(θj). (7)

In order to select the principal components, the relation λv =
C̄v should hold. We can, therefore, deduce the following

λ(v · Φ(θi)) = (C̄v · Φ(θi)), ∀ i = 1, · · · , n, (8)

where (a ·b) = a>b denotes dot product. Note that (7) implies
that there exist coefficients αw for w = 1, · · · , n, such that
the eigenvectors of C̄ belong to the span of Φ(θj) for all j.
Substituting v =

∑n
w=1 αwΦ(θw) and (7) in (8), we get [4]

λ

n∑
w=1

αw(Φ(θw) · Φ(θi)) =

1

n

n∑
j=1

n∑
w=1

αw (Φ(θj) · Φ(θw)) (Φ(θj) · Φ(θi)) , (9)

for i = 1, · · · , n. Next, we define a Gram or kernel matrix
K ∈ Rn×n as

Kij = (Φ(θi) · Φ(θj)) = k(θi, θj), (10)
where k(·, ·) is a nonlinear kernel function; later, we shall
elaborate on the choice of these kernels. Substituting (10) in
(9) and writing it in matrix form, we obtain nλα = Kα for
non-zero eigenvalues, where α = [α1 · · ·αn]>. Each solution
αr corresponding to the non-zero eigenvalue λr is needed to
be normalized. We skip the details here for brevity and refer
the interested reader to [4]. Lastly, for principal component
extraction, we compute the projections of the image of a test
point θt onto the eigenvector vr in the feature space as

ρt,r = (vr · Φ(θt)) =

n∑
j=1

αr,j(Φ(θj) · Φ(θt))

=

n∑
j=1

αr,j k(θj , θt) =

n∑
j=1

αr,j k(θj , p(µt)) = q(µt), (11)

where ρt,r is the projection of Φ(θt) on vr, and is the rth entry
of ρt. It is noteworthy to mention that the above equation does
not explicitly require the computation of feature space map
Φ(θj), but requires only the characterization of the dot product
in the feature space which can be defined using a kernel
function k. Kernel functions can be chosen from a variety of
different functions like polynomial kernels k(θi, θj) = ((θi ·
θj)+1)d, radial basis function k(θi, θj) = exp

(
− || θi−θj ||

2

σ2

)
,

and sigmoid kernels k(θi, θj) = tanh(κ(θi·θj)+b). Parameters
d, σ κ, and b denote the degree of the polynomial, the spread of
the radial basis function, and sigmoid kernel parameters; these
are essentially tuning parameters chosen by the user [12]. We
shall further discuss choosing of appropriate kernel functions
in the case study presented in the next section.

We recall that the data was initially assumed to be centered
in the feature space, which is not always true. Since one
cannot, in general, center the data because of the unavailability
of feature maps, the centered Gram matrix can be calculated
by replacing Φ(θi) with Φ̃(θi) := Φ(θi)− 1

n

∑n
i=1 Φ(θi) and

deriving the Gram matrix again as detailed in [13]; here, we

4

reproduce the centered Gram matrix as
K̃ = K − 1nK −K1n + 1nK1n, (12)

where 1n ∈ Rn×n with its each entry being 1/n.

A. Accuracy of the estimated LPV model

The accuracy of the estimated model can be gauged from
the fraction of total data variation calculated as

a(m) =

∑m
i=1 λi∑m̄
i=1 λi

, (13)

where m is the number of reduced variables, and λi denotes
the ith eigenvalue of the kernel matrix K̃ in (12); m can be
chosen by the user based on significant eigenvalues. Variable
m̄ is equal to n and l for kernel and linear PCA, respectively.
The rationale for using this accuracy measure comes from
[13], which states that the first m principal components,
i.e., projections on eigenvectors, carry more variance than
any other m orthogonal directions. It is, therefore, logical to
measure accuracy in terms of the variance (energy) represented
by the corresponding m eigenvalues.

B. The pre-imaging problem

For linear PCA, the reduced LPV model is affine in the new
scheduling variables ρt, as shown in [1]. Kernel PCA, however,
suffers from two problems when it comes to reconstructing
the original scheduling variables. Firstly, given the reduced
variables ρt, there is no systematic way of reconstructing the
original variables θt, and the problem of finding the “pre-
image” of the reduced scheduling variable in the input space
is unsolvable in the general case. Schölkopf et al. argued in
[10] that instead, it is often feasible to find an estimate of
the pre-image θ̃t. Secondly, to find the estimate θ̃t, one has
to solve a nonlinear optimization problem [10] whose con-
vergence depends highly on factors such as initial conditions
and the choice of kernel function [14]. Moreover, running an
optimization problem to find θ̃t at each sampling instant t in
real-time is not practical for online control implementation due
to heavy computation power needed for such an approach.

Since in most cases, θ̃t denotes an estimate of θt, we can
write the following for the kernel PCA-based reduced model

Q̃(ρt) =

[
Ã(ρt) B̃(ρt)

C̃(ρt) D̃(ρt)

]
≈
[
A(θ̃t) B(θ̃t)

C(θ̃t) D(θ̃t)

]
= Q(θ̃t).

(14)
Using (3) and (14), we can relate the reduced model to the
full-order LPV model as follows:

Q̃(ρt) ≈ Q(θ̃t) = Q0 +

l∑
i=1

Qiθ̃t,i = Q0 +

l∑
i=1

Qifi

(
ρt, θ̃t

)
,

(15)

where f(ρt, θ̃t) is a nonlinear pre-image function as derived
in [14].

C. Optimizing the reduced LPV model for controller synthesis

The reduced model in (15) depends on ρt through a nonlin-
ear function. In our problem statement in Section II, we aimed
at finding a reduced model with affine or rational dependence
on ρt; this was desired for ease of controller synthesis detailed
in the next section. Now, suppose that the kernel PCA-based

reduced model is represented by state space matrices Ă(ρt),
B̆(ρt), C̆(ρt), and D̆(ρt) that have affine dependence on ρt.
According to Apkarian et al. [7], the vertex property implies
that for such an LPV representation, the state space matrices
for any ρt belong to a matrix polytope as[
Ă(ρt) B̆(ρt)

C̆(ρt) D̆(ρt)

]
∈ P := Co

{[
Ăvi B̆vi
C̆vi D̆vi

]
, i = 1, · · · , 2m

}
,

where m is the number of scheduling variables, and Ăvi
denotes the matrix corresponding to Ă(ρt) at the ith vertex of
the polytope. Therefore, for any given ρt, the system matrices
can be described as a convex combination of the matrices
at the vertices of the polytope. For a polytopic LPV system
with affine dependence, we only need to solve the controller
synthesis problem, detailed in the next section, with respect
to the vertices of the polytope of scheduling region to ensure
closed-loop system stability and quadratic H∞ performance
for all variations of ρt within the polytope. Scherer showed
in [8] that a similar property for LPV controller synthesis
holds if the defining state space matrices of the LPV model
depend rationally on ρt. In such a case, a linear fractional
representation is admitted by the system. In both cases, the
controller synthesis problem needs to be solved with respect
to the vertices of the polytope and stability and quadratic H∞
performance satisfied at each vertex means that it is satisfied
for any ρt within the polytope. The same holds true for the
performance and stability of the closed-loop system. If, on
the other hand, the dependence is not affine or rational, then
performance is not guaranteed for any ρt; our best bet in that
case is to solve the controller synthesis problem over a fine
grid across the polytope. A coarse grid will lead to degraded
performance while a fine grid will lead to a massive increase in
computational complexity. By performing kernel PCA-based
model reduction, we have reduced the number of vertices of
the polytope from 2l to 2m; henceforth, we need to make sure
that the dependence is affine or rational in order to exploit this
reduction. This will enable us to solve the controller synthesis
problem only at these reduced number of vertices. To ensure
affine or rational dependence on ρt, we avoid pre-imaging by
recasting the projection w.r.t. the system matrices as

min
Ri,Pi,Si i=0,1,··· ,m

1

n

n∑
t=1

‖Q(θt)−R(ρt)‖2F , (16)

where Q(θt) is as defined in (3), ‖·‖F represents
the Frobenius norm, m is the number of reduced
scheduling variables, n is the total number of
time samples, and R(ρt) = R0 +

∑m
i=1Riρt,i =[

Ă(ρt) B̆(ρt)

C̆(ρt) D̆(ρt)

]
for an affine approximation, or R(ρt) ={

P0 +
∑m
i=1 Pi (ρt,i)

j
}−1 {

S0 +
∑m
i=1 Si (ρt,i)

j
}

=[
Ă(ρt) B̆(ρt)

C̆(ρt) D̆(ρt)

]
for a rational approximation, where j ∈ Z+ is

a non-negative integer. This gives the state space matrices Ă,
B̆, C̆, and D̆ of the reduced LPV model. It is important to
note that this optimization problem is solved offline. If the
considered scheduling trajectories in defining the data-driven
mapping have sufficient information content about all the
operating regions of the modeled system, then the reduced

5

Algorithm 1 Applying kernel PCA for LPV model reduction

Step 1: Obtain a set of measurable signals using measurements or
simulations, covering the desired range of operation.
Step 2: Compute the trajectories of the corresponding scheduling
variables θt for t = 1, · · · , n.
Step 3: Compute the kernel matrix K using (10).
Step 4: Center the data in the feature space to find K̃ using (12).
Step 5: Diagonalizing K̃, normalize eigenvectors α, and save α
for projecting scheduling variables θt and extracting ρt.
Step 7: Compute ρt for t = 1, · · · , n using (11).
Step 8: Solve the optimization problem (16) and obtain a reduced
LPV state space model.

model is expected to provide a good estimate of the actual
model with m < l. The proposed model reduction method is
summarized in Algorithm 1.

IV. ROBOTIC MANIPULATOR EXAMPLE

The dynamic model of a two-link planar robotic manipulator
is considered here with its configuration shown in Figure 2.
Detailed nonlinear model and the associated parameters have
been taken from [15]. The lower arm of the robot is known as
the shoulder, while the upper part is simply known as the arm,
to which the actuator is attached. The two joints are connected
via a gear servo mechanism. Following the ideas in [1], [15],
a state space LPV model is derived. For the sake of brevity,
we denote the scheduling variables θt and ρt simply as θ and
ρ, dropping the time index. The state space matrices of the
derived LPV model are given as

A(θ) =

0 0 1 0
0 0 0 1
cdθ3 −beθ4 θ5 bθ6

−bdθ7 aeθ8 θ9 θ10

 , C = I4×4,

B(θ) =

0 0
0 0

cnkmθ1 −bnkmθ2

−bnkmθ2 ankmθ1

 , D = O4×2, (17)

where variables θ = [θ1 · · · θ10]> represent the time-varying
scheduling variables and km is the motor constant linking
current to torque and is taken as unity. For details about the
model constants and the variables θ1, · · · , θ10, see [1], [15].
The state vector is given by x = [q1 q2 q̇1 q̇2]

>. Angles of the
two links with respect to the vertical reference frame give the
first two states, while the angular velocities make up the other
two states. Motor torques for the two joints make up the two
control inputs u for this plant. This LPV model has a total of
l = 10 scheduling variables. The objective here is to reduce
the number of scheduling variables in order to reduce the
over-parametrization in the given LPV model. The measurable
signals µ in this case are the states, and hence, s = 4. Using
PCA, we seek to reduce the number of variables to m, with
m < l, such that the reduced LPV model can achieve an
efficient trade-off between accuracy and complexity.

A set of trajectories is generated with open-loop simulation
of the LPV model using sinusoidal inputs u and the resulting
scheduling variables are computed using the states. We apply
linear and kernel PCA on the scheduling variable data and then
compare the accuracy criterion (13) of the approximated LPV
models as a function of the dimension of reduced variables.

Fig. 2: Configuration of the 2-DoF robotic manipulator

A. Choosing the kernel function

The general question of how to choose a kernel function
is still an open problem [16]. Jolliffe et al. argued in [9] that
finding the first eigenvector w.r.t. the centered data, in this case,
Θc = C(Θ) = Θ − θmean, can also be formulated as finding
the direction which exhibits the most variance w.r.t. the data.
The next eigenvectors form an orthonormal basis where each
eigenvector satisfies a similar property w.r.t. the remaining
subspace. Schölkopf argued in [4] that the same reasoning can
be applied in case of kernel PCA. Owing to this, we measure
the direction with maximum variance using the corresponding
eigenvalues formulating the accuracy measure (13). Different
kernel functions are used on the collected data. The accuracy
measure obtained as a function of number of components
extracted shows that polynomial kernels provide the maximum
measure of accuracy for m = 1 or m = 2 components.
Different values of kernel parameters are searched over a
fine grid. Polynomial kernel of degree 2 gives an accuracy of
65.5%; degree 7 gives an accuracy of around 94%, after which,
increasing the degree of the polynomial kernel shows little
improvement. Radial basis function (RBF) gives a maximum
accuracy of 67% after tuning the kernel parameter σ over a
fine grid. Sigmoid kernel provides around 71% accuracy after
fine-tuning its parameters. Detailed results for various kernels
with the tuned parameters are tabulated in Table I. Accuracy
results for polynomial, RBF, and sigmoid kernels as functions
of extracted component m are shown in Figure 3, where it
can be seen that the polynomial kernel is the only kernel that
provides better than 90% accuracy for m = 1; this occurs
for polynomial kernel of order d = 5 and higher. We finally
choose a 7th order polynomial kernel for model reduction. We
once again recall that there is not a single way of “optimally”
choosing a kernel function, and the problem of kernel selection
remains an open and most commonly, application-specific
problem [16]. The results obtained for kernel PCA with the
chosen degree 7 polynomial kernel are shown in comparison
with linear PCA in Figure 4(a). Higher accuracy is clearly
observed in case of kernel PCA for m ≤ 5.

Once the reduced scheduling variables are obtained, cost
function (16) is minimized to obtain an affine reduced model.
As we will see later, for the given robotic manipulator ex-
ample, the resulting affine reduced model provides a high
accuracy in terms of predicting open-loop model output and
controller performance. Therefore, we do not attempt to fit
a rational reduced model. Once the model reduction is per-
formed, the reduced models are then simulated using a fresh
set of sinusoidal torque input signals, different from the signals
used for training. Figure 4(b) shows the states of the open-
loop robotic manipulator over a period of 10 seconds. It

6

TABLE I: Accuracy measure for different kernels as a function of number of scheduling variables m.
kernel fcn parameters accuracy (%)

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10
d = 2 65.55 82.09 86.57 90.79 92.88 94.84 96.42 97.88 98.85 99.32
d = 4 87.89 92.74 95.98 97.50 98.10 98.61 98.93 99.20 99.39 99.51
d = 5 91.41 95.03 97.70 98.82 99.20 99.44 99.55 99.66 99.74 99.79

polynomial d = 6 93.04 97.01 98.37 99.34 99.64 99.74 99.82 99.86 99.89 99.91
d = 7 94.19 98.57 99.33 99.69 99.90 99.94 99.96 99.97 99.98 99.98
d = 8 94.36 98.88 99.57 99.76 99.93 99.97 99.98 99.99 99.99 99.99
d = 9 94.44 99.06 99.70 99.85 99.95 99.98 99.99 99.99 100 100
σ = 5 49.96 74.49 83.77 89.20 93.08 95.24 96.70 97.70 98.49 98.94

RBF σ = 10 63.93 84.12 91.66 95.23 97.21 98.22 98.91 99.38 99.63 99.77
σ = 15 67.17 86.03 93.21 96.44 98.06 98.80 99.34 99.66 99.82 99.89

κ = 0.05 b = 0.01 70.09 89.01 96.40 99.63 99.98 100 100 100 100 100
sigmoid κ = 0.05 b = 0.05 70.55 89.30 96.69 99.92 99.99 99.99 99.99 100 100 100

κ = 0.05 b = 0.1 71.14 89.66 97.06 99.99 99.99 100 100 100 100 100
κ = 0.1 b = 0.1 71.43 91.76 99.82 100 100 100 100 100 100 100

Fig. 3: From left to right: Accuracy plots as functions of number of scheduling variables m for (a) polynomial kernel (b) radial basis
function kernel and (c) sigmoid kernel. In each case, the y-axis shows the kernel parameters.

should be noted here that by a “full-order” LPV model, we
refer to the LPV model with all the original 10 scheduling
variables. The output of the full-order LPV model (solid blue
line), linear PCA-based reduced LPV model (red dashed line),
and the kernel PCA-based reduced LPV model (black dotted
line) are compared. All three models were excited with the
same sinusoidal inputs and both reduced LPV models use
m = 1 scheduling variable. These results illustrate that the
time response of the open loop kernel PCA-based reduced
model with a single scheduling variable mimics the response
of the full order LPV model. The output of the linear PCA-
based reduced model diverges from the full order model output
after a few seconds. We define the Best Fit Ratio criterion as

BFR := 100% ·max

(
‖x− x̂‖2
‖x− x̄‖2

, 0

)
, (18)

where x̂ represents the simulated states of the approximated
model while x̄ is the mean value of the states of the original
system denoted by x, and ‖·‖2 denotes L2 norm, respectively.
Monte-Carlo simulations are run for 50 different trajectories
of the input torque with randomly generated magnitudes and
frequencies, different from the signals used for data collection
and training; mean BFR value of each state is computed over
the 50 runs. The mean BFR values for the states are then
averaged over the four states and tabulated in Table II, in which
kPCA and lPCA denote kernel and linear PCA, respectively.

To examine the closed-loop performance of LPV controllers
designed based on the full-order, as well as reduced LPV mod-

els, we explore LPV controller design in the next subsection.

B. LPV controller design

The LPV controller design configuration is illustrated in
Figure 5 (a). The polytopic gain-scheduled controller Kc(ρ)
is designed based on the reduced LPV model G(ρ). Variables
z, w, and y denote controlled outputs, external disturbance,
and measurements. We design Kc(ρ) such that it satisfies an
induced L2 gain performance and is described as

Kc(ρ) :

{
ζ̇t = AK(ρ)ζt +BK(ρ)yt,

ut = CK(ρ)ζt +DK(ρ)yt.
(19)

This control methodology is specific to LPV models that
have affine dependence on the scheduling variables ρ with
the scheduling variables ranging within a fixed polytope and
available for measurement [7]. We define the induced L2 gain
and the induced L2 gain performance as follows.
Definition 1 (Induced L2 gain for LPV systems) [7]: For the
closed-loop LPV system shown in Figure 5 (a), the energy-to-
energy gain, or induced L2 gain, from external disturbance w
to controlled outputs z is defined as

‖Twz‖i,2 = sup
ρ

sup
w 6=0

‖z‖L2

‖w‖L2

, (20)

where i denotes that the norm is “induced”. This gain indicates
the worst-case output energy ‖z‖L2

over all bounded energy
disturbances ‖w‖L2

for all admissible values of the scheduling
variables ρ.

7

TABLE II: Open-loop simulation Monte-Carlo statistics for linear and kernel PCA
m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

kPCA lPCA kPCA lPCA kPCA lPCA kPCA lPCA kPCA lPCA kPCA lPCA
BFR (%) 84.13 62.31 89.08 71.53 93.71 78.41 96.06 85.15 97.67 91.22 98.72 96.01

Fig. 4: (Top) Accuracy of the approximation (13) as a function of the
number of scheduling variables m for linear PCA (*) and polynomial-
based kernel PCA (�). (Bottom) States of the robotic manipulator
full order LPV model (solid blue line), linear PCA-based reduced
LPV model (red dashed line), and kernel PCA-based reduced LPV
model (black dotted line) for m = 1.

Definition 2 (Induced L2 gain performance) [7]: The closed-
loop LPV system of Figure 5 (a) has an induced L2 gain
performance less than γ if there exists a symmetric positive-
definite matrix X such thatA>cl(ρ)X +XAcl(ρ) XBcl(ρ) C>cl (ρ)

? −γI D>cl(ρ)
? ? −γI

 ≺ 0, (21)

for all admissible trajectories of ρ, where Acl, Bcl, Ccl, and
Dcl are the closed-loop state space matrices. This holds
true for systems with fixed values of ρ. In the case of a
polytopic LPV system, the matrix X in the inequality (21) is
found by solving a finite number of linear matrix inequalities
(LMIs). The vertex property implies that for polytopic LPV
representation with affine dependence on ρ, the inequality (21)
holds for all trajectories of ρ within the polytope, if it holds
true at the vertices (for proof, see [7]). Therefore, we can
achieve a closed-loop L2 gain performance γ if (21) holds
true at all vertices ρvi of the polytope of scheduling variables.
One can see the benefit of model reduction at this point; for
a reduced LPV model with a lower number of scheduling
variables and affine dependence, the number of LMIs that need
to be solved in order to design an LPV controller based on a
reduced model decreases exponentially. In case of the reduced

Fig. 5: (Top) Generalized configuration of closed-loop system com-
posed of reduced LPV model, LPV controller, and design weights.
(Bottom) Control of the robotic manipulator using an LPV controller
Kc(ρ) based on the reduced LPV model.

robot model, we need to solve only two LMIs.
The design objective is for the measured output y, which

consists of the first two states, i.e., the two joint positions,
to track the desired reference trajectories given by r. For
controller synthesis based on polytopic LPV models, the plant
input and output matrices, B and C, need to be independent
of the scheduling variables (for details, see [7]). This is not
the case for the manipulator example considered here; both
the full order LPV model (17) and the reduced model have an
input matrix B̆(ρ) that is a function of ρ. This restriction can
be worked around as shown in Figure 5 (top), by augmenting
the plant with a low pass filter Wu(s) having sufficiently
large bandwidth [7]. A first order filter is selected for this
purpose. Filters W1(s) and W2(s) are loop-shaping filters,
where W1(s) is selected to be a first order low pass filter with
a pole close to the origin in order to minimize the steady-
state tracking error, and W2(s) is chosen as a static gain.
These filters are selected and tuned by trial and error, seeking
the minimization of the induced L2 gain from the external
disturbance wt = [r1 r2 w1 w2]

> to the controlled outputs
zt = [z1 z2]

> in order to enforce the performance requirement
‖Twz‖i,2 < γ.

Using the kernel PCA-based reduced LPV model with
m = 1 scheduling variable, the LPV controller matrices at
the vertices of the polytope are obtained using the MATLAB
robust control toolbox command hinfgs. An 8th order
controller is designed and a minimum value of γ = 0.11 is
obtained. The designed controller is then placed in the control
loop (see Figure 5 (bottom)) to control the robotic manipulator
model. Reduced scheduling variables are obtained using (11)
in order to schedule the controller Kc(ρ). Process noise w
is added to the system input such that a signal-to-noise ratio
(SNR) of 20dB is maintained. A saturation limit of |ui| < 30
N-m, for i = 1, 2, is imposed on the controller outputs in order
to mimic the physical constraints on the motor torques at the
two joints.

8

Fig. 6: Closed-loop control results from left to right: (a) Reference trajectory (blue solid line) in comparison with controlled outputs based
on linear PCA-based reduced model (red dashed line) and kernel PCA-based reduced model (black dotted line); (b) Outputs of the gain
scheduled controllers designed using linear PCA-based reduced model (red dashed line) and kernel PCA-based reduced model (black dotted
line); (c) Close-up view of controller outputs.

For the sake of comparison, a similar controller is designed
based on linear PCA-based reduced model with m = 1. An
optimal value of γ = 0.18 is achieved after tuning the filters.
Figure 6(a) shows the reference tracking results. Reference
trajectories are chosen to be different from the trajectories
used in the data-driven kernel PCA reduction. These reference
trajectories are represented by blue solid line; linear and
kernel PCA-based controlled outputs are shown by red dashed
and black dotted lines, respectively. Figure 6(b) shows the
controller outputs for the linear and kernel PCA cases. Figure
6(c) shows a magnified view of the linear and kernel-PCA
based controller outputs using red dashed and black solid
lines, respectively. The results demonstrate efficient reference
tracking achieved by the controller designed using kernel
PCA-based reduced model, and shows improvement over its
linear PCA counterpart.

V. CONCLUDING REMARKS

In this paper, we have explored the use of kernel-based
PCA for dimensionality reduction of the scheduling variables
in LPV models. Reducing the number of scheduling vari-
ables directly results in reduction of computational complexity
for LPV controller design and implementation. Kernel PCA
has been known to be efficient in extracting components of
data because of its ability to perform extraction in a high
dimensional feature space; it does so using nonlinear kernel
functions. This makes the reduced LPV model nonlinear in
the reduced scheduling variables. We overcome this problem
by solving an optimization problem and obtaining an affine or
rational representation with respect to the reduced scheduling
variables. We infer that the reduced model is suitable for con-
troller design purpose. In the case of the robotic manipulator
example considered in this paper, kernel PCA has been able
to reduce the number of scheduling variables from l = 10
to m = 1, thereby reducing significantly the number of
LMIs to be solved for LPV controller synthesis, as well as
the controller implementation time. Closed-loop simulations
show promising reference tracking, disturbance attenuation
and improved settling time. Results in this paper provide
encouraging insights into the use of kernel PCA for LPV
dependency reduction.

ACKNOWLEDGMENT

This work was made possible by the NPRP grant # NPRP
5-574-2-233 from Qatar National Research Fund (QNRF), a
member of Qatar Foundation. The statements made here are
solely the responsibility of the authors.

REFERENCES

[1] A. Kwiatkowski and H. Werner, “PCA-based parameter set mappings
for LPV models with fewer parameters and less overbounding,” IEEE
Trans. Control Syst. Tech., vol. 16, no. 4, pp. 781–788, 2008.

[2] M. Siraj, R. Tóth, and S. Weiland, “Joint order and dependency reduction
for LPV state-space models,” in 51st IEEE Conf. Decision and Control,
2012, 2012, pp. 6291–6296.

[3] R. Tóth, H. Abbas, and H. Werner, “On the state-space realization of
LPV input-output models: practical approaches,” IEEE Trans. Control
Syst. Tech., vol. 20, no. 1, pp. 139–153, 2012.

[4] B. Schölkopf and A. Smola, Learning with Kernels. Cambridge, MA:
MIT Press, 2002.

[5] M. Meisami-Azad, J. Mohammadpour, K. Grigoriadis, M. Harold,
and M. Franchek, “LPV gain-scheduled control of SCR aftertreatment
systems,” Int. J. Control, vol. 85, no. 1, pp. 114–133, 2012.

[6] R. Tóth, J. Willems, P. Heurberger, and P. V. den Hof, “The behav-
ioral approach to linear parameter-varying systems,” IEEE Trans. Auto.
Control, vol. 65, no. 11, pp. 2499–2514, 2011.

[7] P. Apkarian, P. Gahinet, and G. Becker, “Self-scheduled H∞ control
of linear parameter-varying systems: a design example,” Automatica,
vol. 31, no. 9, pp. 1251–1261, 1995.

[8] C. Scherer, “LPV control and full block multipliers,” Automatica,
vol. 37, no. 3, pp. 361–375, 2001.

[9] I. Jolliffe, Principal component analysis. Wiley Online Library, 2002.
[10] B. Schölkopf, S. Mika, C. Burges, P. Knirsch, K. Müller, G. Ratsch, and

A. Smola, “Input space versus feature space in kernel-based methods,”
IEEE Trans. Neural Networks, vol. 10, no. 5, pp. 1000–1016, 1999.

[11] Q. Wang, “Kernel principal component analysis and its applications in
face recognition and active shape models,” ArXiv e-prints, 2012, eprint
no. 1207.3538.

[12] B. Boser, I. Guyon, and V. Vapnik, “A training algorithm for optimal
margin classifiers,” in Fifth ACM Annual Workshop on Computational
Learning Theory, Pittsburg, PA, 1992, pp. 144–152.

[13] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear component
analysis as a kernel eigenvalue problem,” Neural computation, vol. 10,
no. 5, pp. 1299–1319, 1998.

[14] S. Rizvi, J. Mohammadpour, R. Tóth, and N. Meskin, “Parameter set-
mapping using kernel-based PCA for linear parameter-varying systems,”
in 13th European Control Conf., Strasbourg, France, 2014, pp. 2744–
2749.

[15] Z. Yu, H. Chen, and P. Woo, “Gain scheduled LPV H∞ control based on
LMI approach for a robotic manipulator,” J. Rob. Syst., vol. 19, no. 12,
pp. 585–593, 2002.

[16] B. Schölkopf, A. Smola, and K.-R. Müller, “Kernel principal component
analysis,” in Artificial Neural Networks ICANN’97. Springer, 1997, pp.
583–588.

