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Abstract: Linear parameter-varying (LPV) models form a powerful model class to analyze and
control a (nonlinear) system of interest. Identifying an LPV model of a nonlinear system can be
challenging due to the difficulty of selecting the scheduling variable(s) a priori, especially if a
first principles based understanding of the system is unavailable. Converting a nonlinear model
to an LPV form is also non-trivial and requires systematic methods to automate the process.
Inspired by these challenges, a systematic LPV embedding approach starting from multiple-
input multiple-output (MIMO) linear fractional representations with a nonlinear feedback block
(NLFR) is proposed. This NLFR model class is embedded into the LPV model class by an
automated factorization of the (possibly MIMO) static nonlinear block present in the model. As
a result of the factorization, an LPV-LFR or an LPV state-space model with affine dependency
on the scheduling is obtained. This approach facilitates the selection of the scheduling variable
and the connected mapping of system variables. Such a conversion method enables to use
nonlinear identification tools to estimate LPV models. The potential of the proposed approach
is illustrated on a 2-DOF nonlinear mass-spring-damper example.
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1. INTRODUCTION

The Linear-Parameter Varying (LPV) framework offers a
powerful tool set to model and control nonlinear systems
(Mohammadpour and Scherer, 2012). Many control ap-
plications depend on the availability of high-quality LPV
models, fueling the need for LPV identification algorithms.
LPV identification has been studied in detail (T6th, 2010;
dos Santos et al., 2011) in the past. However, in the
majority of these works it is assumed that the scheduling
signals are known a priori, relying on the user’s expertise to
design them for the considered system. Furthermore, often
the noise in the measured version of the scheduling signals
are left unattended in LPV identification, leading to a
possible bias of the estimates (for approaches to handle
this see (Piga et al., 2015)).

Embedding nonlinear models into the LPV model class
offers an alternative approach to obtain LPV models of
nonlinear systems without having to identify an LPV
model directly. This avoids the selection of appropriate
scheduling signals during LPV identification: the schedul-
ing signal(s) are obtained as a result of the nonlinear
embedding. Although embedding of nonlinear systems into
the LPV framework is a popular approach in nonlinear
systems control, only a few systematic embedding methods
are discussed in the literature (Chisci et al., 2003; T6th,
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2010; Young, 2011; Mohammadpour and Scherer, 2012;
Abbas et al., 2014, 2017).

LPV embedding of NLFR structures, sometimes called
Lur’e systems, has been studied in prior works (Seron and
De Dond, 2015; Hanafi et al., 2018; Schoukens and Téth,
2018). However, these works are limited to single-input-
single-output static nonlinearities. This paper presents a
systematic embedding approach for MIMO nonlinear sys-
tems represented by NLFRs with a MIMO static nonlinear
block (see Figure 1) (Schoukens and Tiels, 2017). It is
shown how one can embed this model in an automated
and systematic way into a MIMO LPV representation such
that an LPV-LFR, or alternatively an affine state-space
LPV model results, without introducing new singularity
points in the representation.

The considered MIMO NLFR system class is discussed
in Section 2. Section 3 discusses the embedding of these
nonlinear systems into an LPV representation using a sys-
tematic embedding algorithm. Finally, a 2-DOF nonlinear
mass-spring-damper system is analyzed to illustrate the
developed embedding process.

2. NLFR SYSTEM CLASS

In this work, we considered the class of nonlinear sys-
tems that can be represented by a MIMO continuous-time
NLFR. The NLFR system class is a general system class
comprising a, possibly MIMO, localized static nonlinearity
(see Figure 1). Identification of such NLFR structures
is considered in (Vandersteen and Schoukens, 1999; Hsu
et al., 2008; Novara et al., 2011; Vanbeylen, 2013). General-
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Fig. 1. The NLFR structure represented by (a) a MIMO
LTT block G, and (b) an equivalent block-oriented
structure with 4 MIMO LTI blocks GI1 and the
MIMO static nonlinear function f(z).

ity of this representation is based upon the fact that widely
used block-oriented Hammerstein, Wiener and Wiener-
Hammerstein structures are special cases of the NLFR
structure (see (Giri and Bai, 2010; Schoukens and Tiels,
2017) for more information on the identification of block-
oriented structures and some of their applications).

The input-output relation of a continuous-time MIMO
NLFR can be expressed via a (minimal) state-space form
as:

#(t) = Azx(t) + [Bu Bd] [Z((f

{;Eiﬂ - [gy} a(t) + [gx gyj {15((;5))} R
w(t) = f(z(t)),

where u(t) € R™*! is the input of the NLFR, w(t) €
R™ <1 is the output of the static nonlinearity, z(t) €
R"= %1 are the system states, y(t) € R™*! is the output
of the NLFR, z(t) € R™*! is the input of the static
nonlinearity, f(z(¢)), R"* — R" is a multi-dimensional,
static and bounded nonlinear function, and A, ... Dy, are
real constant matrices of appropriate dimensions.

The signal transfers corresponding to eq. (1) can be also
eqﬁivalently represented by MIMO LTT transfer matrices
GU:

where s € C denotes the complex frequency (Laplace
variable).

Substituting z(t) into (1) results in:

x(t)=Az(t)+ Byu(t)
+Bwf(czx(t)+Dzuu(t>+Dzww(t))a

y(t) =Cyx(t)+Dyyu(t) (3)
+ Dy [ (Crx(t) + Dyuu(t) + Dyew(t)),

w(t)= f(Crx(t) + Dyyu(t) + Dyww(t)).

To simplify our problem setting the following assumption
is taken:

Assumption 1. G is strictly proper (in other words,
D, =0).

Under Assumption 1, it is possible to eliminate w(t). This
results in the following simplified expression:

2(t) = Az(t)+ Buu(t)+ By f (Coz(t) + Duu(t)), )
y(t)=Cyx(t)+Dyyu(t) +Dyw f(Crx(t)+Dyyu(t)).

Analogously, similar expressions can be obtained in
discrete-time form in a straightforward manner.

Assumption 1 forces the nonlinearity f(z) to be explicit.
The presence of a direct feedthrough term D,, would allow
the nonlinearity to present itself in as an implicit function.

3. LPV EMBEDDING
8.1 Embedding Concept

The static nonlinearity that is present in the nonlinear
model needs to be factorized to obtain an LPV repre-
sentation. Multiple factorization approaches are possible.
Here, the nonlinear function f(z(t)) is decomposed as

F(2()z(t) +c.

Denote P as the set of values that can be reached by z(t)
for a specified class of inputs u(t) € U with ¢ € [0 c0) and
initial conditions z(0) € X.

Assumption 2. The static nonlinear function f(z(t)) can
be represented as: f(z(t))z(t) + ¢, such that f(z(t)) does
not contain singular points for z(¢) € P, and c is finite.

This assumption excludes for instance functions f(z(t))
that have singularities in the region of interest (e.g. %, if
z = 0 lies within the range of interest). Note that decom-
position of a function in the form given in Assumption 2 is
non-unique. The function f(z(t)), R™= — R™w*"= ig called
the scheduling map in the sequel.

8.2 Constant Offset

Assumption 8. All linear subsystems Gl (see Eq. (2)) are
bounded-input bounded-output stable.

Assumption 3 is only required for the offset propagation
algorithm. If no constant offset (f(0) = 0) is present in the
static nonlinearity, this assumption is not required. Note
that this assumption does not impose stability of the total
NLFR system.

Under Assumptions 2 and 3, the NLFR structure with
D,y = 0 can be represented by:

(t) = Az(t) + Bui(t) + By f(Coz(t) + Dyua(t)),

§(t) = Cya(t) + Dywult) + Dsf(Coa(t) + Douia(1)), ®)
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a(t) = u(t) — G2 G, (6)

where G([)i I'is obtained by evaluating the steady-state gain

of Glil(s), i.e. Gg] = lim,_,o Gl(s). Eq. (7) to hold, all
-1 - —1

G([)z] G([)4] and (Ggﬂ +G£)1]G([)2] G([)4]) should exist and

be finite. In the case n, < n, and the rank of GEZ] is equal

to n,, the Moore-Penrose left-inverse of the matrix Gg]
can be used (Golub and Van Loan, 1996). This is however
a conservative requirement. It suffices that the following
assumption holds:

Assumption 4. The vector G([)4]c is part of the column
space of the matrix GBQ].

Under Assumption 4 one can always find a vector d
such that G([)Z]d = G([)4 ]c, resulting in the following offset
mitigation equations:
a(t) = u(t) —d, @)
§(t) = y(t) = Gg'e = Gy d,

Note that Assumption 4 is only required for the offset
propagation algorithm.

The constant offset at both the input and the output
can be dealt with during the LPV control design process
as a disturbance or by using input or output trimming
methods.

3.8 Fuactorization

The time-dependent notation z(¢) is simplified to z to
lighten the notation in this section.

This subsection introduces a systematic approach to per-

form the factorization f(z) = f(z)z for z € P. One can
write:

f(z) = f(z1,22,..
= iﬁ(zl,@, e ,zi)zi.
=1

Assumption 5. All the first order partial derivatives:

0f ()
0% )

y Zn.)

(8)

z=(z1,..,2i-1,0,...,0)

of f(2), z € P exist.

This assumption holds, for example, for all continuously
differentiable functions Ci™ (R"=).

Under assumptions 2 and 5, the functions f; are given by:

.fTi(ZlazZa---aZi):
f(zl,...,zi70,...70)—f(zl7...,zi,l,O,...,O)
zi
8f(2’1,...,2:i,0,...,0) lel:(]
azi

z:(zl,‘..,zi,l,o,“.,o)
(10)

and }
f(Zl,O,...,O) lle#()
_ z
@) =4 9f(:1,0,...,0) | (1
_ 7 ifz; =0
le

z=0
Theorem 1. The function fi(z1,...,2) is continuous at all
z € Pif f(z) is continuous at all z = (z1, .. ,0),
z € P and if Assumption 5 holds.

.,zi,l,O,...

Proof 1. The quotient of two continuous functions Z;Ez; is

continuous everywhere, except in the zeros of ha(z).

The function f;(z1,...,2;) is given by Eq. (10), where
both the numerator and the denominator are formed by
continuous functions by assumption. Hence, f;(z1,...,2;)
is continuous everywhere, except in the point z; = 0.

For fi(z1,...,2) to be continuous in z; = 0 we need that:

Zliigloﬁ(zl,...,zi):ﬁ(zl,...,zi_l,()) (12)
and Eq. (13) should be finite. It is easy to observe that:
Z{iinoﬁ(zl, cey 2i)
_ 8f(zl,...,zi,0,...,0) (13)
0z;

z=(21,..,2i—1,0,...,0)
which exists and is finite (see Assumption 5).

Hence, fi(z1,...,2;) is continuous everywhere and no
singularities are introduced by the factorization.

It can be observed that for a polynomial (or rational)
function f(z), also the functions f;(z1, 22, . . . , z;) are poly-
nomial (rational) (remember that f(z) never contains a
constant term: f(0) = 0).

In case the function f(z) is not partially differentiable in
the points of interest, but its left and right derivative
are finite in those points, the partial derivatives can
be replaced by a finite constant without introducing a
singularity in f(z). However, the continuity of f(z) is lost.

The proposed factorization is not unique. By changing the
order in which the variables z; are considered, different
factorizations of the multivariate nonlinearity could be
obtained.

3.4 Embedded Representation

Under Assumption 2 we can represent the NLFR struc-
ture as an LPV affine state-space representation with an
additional constant offset at the input and/or output:
z(t)=Ax(t)+ Byu(t)+ Byp(t) (Cox(t)+ D,utu(t)) ,

§(t) = Cya(t)+ Dyuu(t) + Dywp(t) (Cox(t) + Dontlt)) ,
where p(t) is given by the scheduling map:

p(t) = f(z(t)) = f(Co(t)+ Dant(t))- (15)

This results in the following affine state-space LPV struc-
ture:

(1) = (A + Ap(p(t))z(t) + (Bu + Bp(p(t)))u(t),
y(t) = (Cy + Cp(p(1))x(t) + (Dyu + Dp(p(t)))ul(?),

(14)

(16)
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Fig. 2. The considered 2 DOF mass-spring-damper system
where y; denotes the position, and F; the force applied
on mass M.

with:
Ap(p(t)) = Bup(t)Cs,  Cp(p(t)) = Dywp(t)Ci,
Bp(p(t)) = Bwp(t)Dau,  Dp(p(t)) = Dywp(t) Do
Note that the expressions in Eq. (17) are linear in p(t).

(17)

3.5 Remarks

The resulting affine state-space LPV representation is
not unique, a state transformation can be introduced.
Also the latent variables z(¢) and w(t) are non-uniquely
defined, similar to the non-uniqueness that is present in
block-oriented systems (Schoukens et al., 2015; Schoukens,
2015). This non-uniqueness can be further explored for the
scheduling variables selection. From a control design point
of view it is desirable for the scheduling signals p(t) or the
input of the static nonlinearity z(t) to be measurable or
observable. This will be explored in future research.

Note that the proposed algorithm, including the constant
offset removal and the nonlinear function factorization can
be completely automated starting from a NLFR represen-
tation. However, in some cases it can be worthwhile to
search for an ’optimal’ factorization. As discussed above,
multiple factorizations of a multivariate nonlinear function
are possible. Hence, the search for an 'optimal’ factoriza-
tion is more difficult to automate and requires more study.

4. SIMULATION EXAMPLE: 2-DOF NONLINEAR
MASS-SPRING-DAMPER SYSTEM

4.1 Nonlinear System Equations

A 2-DOF mass-spring-damper system with unit masses
(M; = My = 1 in Figure 2) a nonlinear spring x(y;)
and nonlinear position-dependent damping ~(y1,91) is
considered:

SHER R
N [v(q1,d1)0+ fﬂ(ql)} _ [?j

where the nonlinear damping and spring are given by:
Y(q1,d1) = c1d1+essin(caqr)dr+csd3
k(@) = k1qu+ksq?,

with ]ﬂl = 7T2, kg = (1.27‘1’)27 k3 = 107 c1 = 0.1, Cy = 001,
C3 = 0.1, Cq = 107 Cy; = 0.2.

(19)

4.2 NLFR Representation

A NLFR representation can be obtained using the notation
as in Eq. (1):

iAx+wWRJﬁy

20
J_jal]. (20)
y| Cy ’
where
_ | q1
«=[a] o= [a)
. 4T
r=[q ¢ ¢1 ¢ ,
[:cl] (21)
z= ,
€3
w= f(z)
= c3sin(cq21)22 + c5z§ + kgzi)’,
and
r 0 0 1 0
. 0 0 0 1
A= —kil—kig kig —C1 — Cy C2 ’
L ) —k» C2 —C2
[0 00
s _|o] 5 _|oo (22)
v -1 P o)
L 0 01
1000 1000
CZ:_0010]’ Cy:[moo}’

where z; denotes the i-th entry from the vector z and the
matrices Dy, Dyy, Dyw, Dyy are all zero matrices.

4.3 LPV Embedding
It can be observed that no offset handling is required since

it holds for the nonlinearity in the NLFR that f(0) = 0.

Multiple factorizations are possible using the factorization
scheme presented in this paper. By first factorizing z;, and
2o next, we obtain:

f(2) = f(2)z = [fi(z1) falz1,2)] [21}

Z2

-
_ kng 21
" |essin(eqz1) 4 522 2|

Note that the functions k3z% and czsin(cyz1) + c529 are

the resulting scheduling maps of the LPV embedding.

(23)

Another possibility (first factorize zo, and 27 next) is:

k32?4 c3sinc(cyz1) 22 T 21
o) = [Fot Fesseles)z] a0
Many more factorizations are possible, beyond the ones
obtained with the proposed factorization scheme. For
instance:
T
_ [kszi4+(1—a)essine(cazr) 20| [21
f(z)= { acgsin(eqzy)+c522 29 (25)

for any finite « results in an equivalent representation.

Using the choice (23), the equivalent LPV representation
of the considered system is given by:
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Fig. 3. Time domain output: the NLFR output, y1 = ¢1
and y2 = o, (blue circles) coincides perfectly with the
embedded NLFR output (red line), as is illustrated
by the residual error (orange) that is equal to zero or
below Matlab precision.
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Fig. 4. Frequency domain output (y; = ¢; in blue, and
Y2 = g2 in orange): the NLFR output (circles, lighter
color) coincides perfectly with the embedded NLFR

output (line, darker color)

&= Az + A, (p(t))x + Byu,

y=Cya, (26)
where
0O 0 0 O
Ap(p(0) = —p?(t) 8 pg( t) 8 ’ 27)
0O 0 0 O
with pi () = fi(q1(t)), pa(t) = fa(q1(t), ¢1(t)) provided in
Eq. (23).
4.4 Results

The output responses of the NLFR representation and by
the embedding obtained LPV representation are depicted
in the time- and frequency domain in Figures 3 and
4 respectively. A perfect match between both can be
observed.

The scheduling signals p are obtained by applying the
scheduling map on the trajectories z and u obtained by
the nonlinear simulation.

The system nonlinearity that is present in the NLFR
representation (see Figure 5) is factorized in 2 nonlinear
functions fi(z1), fa(z1,22) shown in Figures 6 and 7
respectively.
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Fig. 5. Surface plot of the original nonlinearity:

c3sin(caqr)gr + c5G3 + ksqs.

Fig. 6. The scheduling map (factorized nonlinearity fi(z1))
of p; in the LPV representation.

05

Fig. 7. The scheduling map (factorized nonlinearity
fa(z1, z2)) of py in the LPV representation.

5. CONCLUSION

This paper demonstrates how the class of MIMO NLFR
systems can be exactly represented by an affine state-space
LPV model under 3 mild assumptions. A systematic and
automated embedding procedure is proposed for the un-
derlying conversion problem. By this procedure an NLFR
system is embedded in an LPV representation without
introducing any new singularities. The effectiveness of the
proposed approach is illustrated on a 2-DOF nonlinear
mass-spring-damper example.

Further research will explore the optimal selection of
the scheduling map based upon the various possibilities
provided by the factorization, by taking into account the
control objectives in the modeling process, in terms of
achievable performance and measures of conservativeness.
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