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SUMMARY

This paper describes a new robust model predictive control (MPC) scheme to control discrete-time linear

parameter-varying (LPV) input-output (IO) models subject to input and output constraints. Closed-loop

asymptotic stability is guaranteed by including a quadratic terminal cost and an ellipsoidal terminal set,

which are solved offline, for the underlying online MPC optimization problem. The main attractive feature

of the proposed scheme in comparison with previously published results is that all offline computations are

now based on convex optimization problem, which significantly reduces conservatism and computational

complexity. Moreover, the proposed scheme can handle a wider class of LPV-IO models than those

considered by previous schemes without increasing the complexity. For illustration, predictive control of

a continuously stirred tank reactor is provided with the proposed method. Copyright c© 2017 John Wiley &

Sons, Ltd.
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1. INTRODUCTION

Increasing complexity of processes operation, due to the rapid changes of operating conditions

and high performance requirements necessitate the design and implementation of controllers with

advanced control solutions capable of meeting with these challenges. Among such controllers,

linear parameter-varying (LPV) control [1] has gained significant interest where the controller

gains are adapted based on a so-called scheduling variable which is a priori synthesized function of

some measurable signals in the system. The resulting scheduling variable can indicate the specific

operating point of a process, space coordinates, environmental conditions, etc. The strength of LPV-

based design methods lies in the fact that they permit the design of nonlinear/time-varying (NL/TV)

controllers based on linear design methods provided that a valid LPV representation of the system

to be controlled is available. The LPV approach has been applied successfully to many practical

systems, e.g., [2], [3], [4].

Identifying LPV models in input-output (IO) form from data has become well supported as

powerful identification approaches have been recently developed in the literature, e.g., [5], with

several successful applications specially for process systems [6], [7]. The main feature of the model

identification in the IO framework is its capability to capture low-complexity and yet highly accurate

LPV models for NL/TV systems by solving, generally, a low-complexity estimation problem based

on the extension of the well-developed LTI approaches. LPV-IO identification offers powerful

tools to estimate models under real-world assumptions on the disturbances and measurement noise

affecting the captured data. However, LPV controller design methods are often developed for state-

space (SS) models, i.e., [8]. Conversion of LPV-IO models into reliable LPV-SS representation

is associated with the so-called dynamic-rational dependence problem related to LPV realization

theory [9], [10], which hinders the applicability of LPV-SS control due to the significant complexity

increase of the realized models. Moreover, LPV-SS identification is still underdeveloped [11]
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AN IMPROVED ROBUST MPC FOR LPV INPUT-OUTPUT MODELS 3

due to challenges related to addressing real-word assumption on disturbances and computational

complexity. These problems give the motivation to consider synthesize controllers directly based on

LPV-IO models.

Model predictive control (MPC) has been introduced and extensively used in industry as a real-

time control approach to solve control problems that have constraints and time delay. MPC design

relies on solving online an open-loop constrained optimization problem over a sequence of control

actions (control horizon) that govern the future evolution of the system for a given period of time,

called the prediction horizon. This problem is solved at each time instant and only the first control

move is implemented; this is known as receding horizon control. In the SS setting, the MPC problem

has received considerable attention both in the linear and nonlinear cases, see, e.g., [12]. The

stability issue of MPC in the SS settings has been intensively studied as well, resulting in several

different stabilizing MPC schemes that fit in the framework introduced in [13]. Linear parameter-

varying systems have been also examined in the MPC community and various techniques have been

developed for discrete-time LPV-SS models. The control law in most of theses techniques, e.g., the

quasi-min-max MPC approach of [14], is calculated by repeatedly solving a convex optimization

problem based on linear matrix inequalities (LMIs) to minimize an upper bound on a worst-case

function. A common property of most introduced MPC techniques based on LPV-SS models is that

they depend on the availability of the system states during control implementation, which introduces

extra complexity to measure or to estimate them. If the scheduling variable also depends on some

state variables, as it is often the case in LPV-SS modeling, then one needs to design a joint nonlinear

observer to back up both the scheduling variable estimation and state estimation for an LPV-SS

representation-based MPC solution. That can lead to possible loss of internal stability. Moreover,

the use of observers to estimate the states may also deteriorate closed-loop performance significantly

in terms of input disturbance rejection when input constraints become activated [15]. To handle this,

a subspace-based predictive control for LPV systems has been proposed in [16] without stability

guarantee. However, the complexity of this scheme increases exponentially with the order and

number of scheduling variables.
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As an alternative to control systems described with an IO form based model, generalized

predictive control (GPC) has been introduced [17]. It is an optimization method that incorporates

the concept of a control horizon, as well as the consideration of weighting of control increments

in the cost function. It has found wide applications in the process control industry mainly due to

its features such as the time-domain formulation, receding horizon scheme and constraint-handling

capability. However, it has been mainly formulated for LTI-IO models with few results guaranteeing

stability, such as the infinite horizon GPC [18] or using zero terminal set [19].

To cope with some of the critical issues discussed above, a robust MPC approach with stability

guarantee for LPV-IO models has been developed in [20] and [21]. Such a control approach enables

MPC control design directly based on LPV-IO representations with constraints, for which only past

values of the system output and input are required during implementation. The stability framework

of [13] has been considered in [21], which is based on three ingredients: a terminal cost, a terminal

constraint set and an offline controller. The main difficulty of the approach in [21] is related to

the computation of the terminal cost term and the offline controller, which are accomplished offline

using a stability condition for LPV-IO models based on bilinear matrix inequality (BMI) constraints.

Moreover, the terminal set considered in [21] has been constructed such that it contains all steady-

state targets for reference tracking problem. This can be conservative and computationally highly

demanding.

In this paper, we take advantage of the results of [21] and propose an improved robust MPC

scheme that guarantees closed-loop asymptotic stability to control LPV-IO models subject to IO

constraints. To overcome the difficulties of [21], the problem of computing the terminal cost

term and the offline controller is reformulated into a convex optimization problem subject to LMI

constraints. Moreover, a terminal set associated with each steady-state target is considered. These

improvements reduce significantly the design conservatism of [21], which enhances the overall

performance of such MPC approach and reduces all offline computations. Furthermore, in contrast

with the problem formulation of [21], which has been carried out for strictly proper SISO LPV-IO

models for simplicity, the approach proposed here can handle biproper MIMO models.
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The significance of the proposed control approach lies in the fact that it enables MPC control

design directly based on LPV-IO representations with constraints where the optimal control action

is computed online based on the solution to an LMI problem. Moreover, it offers an asymptotically

stabilizing MPC design method for reference tracking with built-in integral action. In contrast with

the state-space models based MPC framework, which requires the availability of the system states

during implementation or estimating them, here only past values of the system outputs and inputs

are required.

The paper is organized as follows: Some preliminaries related to LPV-IO models are presented

in Section 2. The LPV-MPC scheme is developed in Section 3, where the problem setup is first

introduced and stability guarantees are formulated. The extension to the robust case is presented

in Section 4. A practical example, which is a continuously stirred tank reactor (CSTR), is used to

demonstrate the applicability of the proposed MPC scheme in Section 5. Finally, conclusions and

possible future development are described in Section 6.

Notation: Let z(k) denote the value of a discrete-time signal z : Z→ R at the sampling instant

k. Introduce z[k+i,k+j] ∈ R|i−j|+1 to be a column vector that consists of the values of the signal z

ordered from the sampling instant k + i to k + j. The symmetric completion of a matrix is denoted

by ∗. A column vector of dimension n with all entries equal to one is denoted by 1n ∈ R
n. The

matrix In ∈ Rn×n stands for an (n× n) identity matrix while I indicates an identity matrix of

appropriate dimension. In addition, we denote by 0 a matrix of appropriate dimension with all entries

equal to zero. The notation ∆ ⋆ L stands for the star product between the matrices ∆ and L with

appropriate dimensions. For example, if ∆ ∈ R
n1×m1 and L ∈ R

n2×m2 with m2 > n1, n2 > m1,

then ∆ ⋆ L indicates an upper linear fractional transformation (LFT), which is defined as

∆ ⋆






L11 L12

L21 L22




 = L22 + L21∆(I − L11∆)−1L12, (1)

where L11 ∈ Rm1×n1 , L21 ∈ R(n2−m1)×n1 , L12 ∈ Rm1×(m2−n1), L22 ∈ R(n2−m1)×(m2−n1) and

(I − L11∆)−1 is well defined. The notations X � Y and X ≺ Y are used, respectively, to represent

negative/positive (semi) definiteness between symmetric matrices X and Y . The notation Co(·)
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denotes the convex hull of a set. For any vector x ∈ R
n, ‖x‖ denotes the 2-norm and the weighted

norm ‖x‖P is defined by ‖x‖2P := x⊤Px, where P = P⊤, P ∈ Rn×n. Finally, the Kronecker

product is denoted by ⊗.

2. PRELIMINARIES

In this section we introduce representations of LPV systems and important results that will be used in

the sequel. We consider MIMO LPV systems in discrete time represented by a parameter-dependent

difference equation or so called IO representation as

G : A(q−1, p(k))y(k) = B(q−1, p(k))u(k), (2)

where

A(q−1, p(k)) = Iny +

na∑

i=1

ai(p(k))q
−i, (3a)

B(q−1, p(k)) =

nb∑

j=0

bj(p(k))q
−j , (3b)

with q−1 is the backward time-shift operator, na, nb ≥ 0, u(k) : Z→ Rnu and y(k) : Z→ Rny are

the control inputs and the measured outputs, respectively. Furthermore, the coefficient matrices

ai ∈ R
ny×ny and bj ∈ R

ny×nu are analytic and bounded (static) functions of the time-varying

scheduling variable p(k) = [p1(k) . . . pnp(k)]
⊤ ∈ P, which is assumed to be online measurable.

Assume that the set P is convex and given by the polytope

P := Co({pv1, . . . , pvnv
}), (4)

where pvi ∈ Rnp correspond to its vertices, which are determined by all combinations of pmax and

pmin.

Moreover, let the rate of variation of the scheduling variable dp(k) = p(k)− p(k − 1) be bounded

as follows:

dp(k) ∈ Pd := {dp ∈ R
np | dpmin ≤ dp ≤ dpmax}. (5)
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Note that Pd is a convex set if and only if P is convex. In contrast with [21], we consider proper

and biproper MIMO systems, therefore, the feedthrough term is allowed to be non-zero, i.e.,

b0(p(k)) 6= 0.

The LPV system represented by (2) has also an infinite impulse response (IIR) representation in

the form

y(k) =

∞∑

i=0

hi(p[k,k−i])u(k − i), (6)

where hi(·) : Pi+1 → Rny×nu are the Markov coefficients of the LPV system. Furthermore, the

infinite series (6) is convergent for asymptotically stable systems. For simplicity of the notation, we

use the following short form

hi(k) = hi(p[k,k−i]).

Based on (2), the Markov coefficients can be computed recursively as

hi(k)=







bi(p(k))−
min(i,na)∑

j=1

aj(p(k))hi−j(k − j), i ≤ nb;

−
min(i,na)∑

j=1

aj(p(k))hi−j(k − j), else.

(7)

In the next section, the Markov coefficients will be used to derive the prediction equation for the

proposed MPC scheme.

In order to provide a controller with integral action, which allows to achieve zero steady-state

tracking error, an incremental IO model can be defined by introducing a new input signal as

v(k) = u(k)− u(k − 1). (8)

Therefore, the LPV model can be rewritten as

GI : A(q−1, pk)y(k) = B(q−1, pk)(v(k) + u(k − 1)), (9)

which corresponds to the augmented plant shown in Fig. 1.

A non-minimal (extended) state-space realization of (9) can be defined as

[

x(k + 1)

y(k)

]

=

[

A(p(k)) B(p(k))

C(p(k)) D(p(k))

][

x(k)

v(k)

]

, (10)

where x(k) : Z→ Rnx , nx = nyna + nunb, is the state vector given as

x(k) =
[
y⊤(k − 1) · · · y⊤(k − na) u⊤(k − 1) · · · u⊤(k − nb)

]⊤
(11)
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GI
u(k) y(k)v(k)

G1
1−q−1

Figure 1. Augmented plant with an integrator.

and

[

A(p(k)) B(p(k))

C(p(k)) D(p(k))

]

=
























−a1(p) · · · −ana−1(p) −ana(p) b0(p) + b1(p) · · · bnb−1(p) bnb
(p) b0(p)

Iny · · · 0 0 0 · · · 0 0 0

...
. . .

...
...

...
. . .

...
...

...

0 · · · Iny 0 0 · · · 0 0 0

0 · · · 0 0 Inu · · · 0 0 Iny

0 · · · 0 0 Inu · · · 0 0 0

...
. . .

...
...

...
. . .

...
...

...

0 · · · 0 0 0 0 Inu 0 0

−a1(p) · · · −ana−1(p) −ana(p) b0(p) + b1(p) · · · bnb−1(p) bnb
(p) b0(p)
























. (12)

The SS realization (10) with (12) will be used to give stability guarantees for the proposed MPC

scheme whereas the LPV-IO representation will be used for prediction and optimization of the

control inputs. Note that there are some critical issues related to the utilization of such extended SS

model in an LPV-SS based MPC schemes proposed in the literature, e.g., [14]. The most critical

issue is the size of the extended SS realization, for example in case of a 3× 3 MIMO system with

order 4, realization via (12) requires a state-dimension of nx = 36, which cannot be easily handled

by LPV-MPC schemes based on state-space representation in case of more than one scheduling

variable (note that the memory and computational effort increase exponentially in np and at least

polynomially in nx). Hence we need a dedicated method to accommodate LPV-IO models.

Finally, the full-block S-procedure [22] is introduced as it will be used frequently in our

derivations:

Lemma 1 (Full-Block S-Procedure [22])

Consider an uncertain operator L(δ) = ∆ ⋆ L, see (1), where δ = [δ1 δ2 . . . δnδ
]⊤ ∈ Rnδ is an

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2017)
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uncertain parameter vector,

∆ = blkdiag{δ1IrL1 , δ2IrL2 , . . . , δnδ
IrLnδ

},

and ∆ ∈∆, with
∑nδ

i=1 rLi = nδ, IrLi
indicates the repetition of each parameter δi in the block

diagonal matrix ∆ and

∆ = {∆ ∈ R
nδ×nδ | δi,min ≤ δi ≤ δi,max, i = 1, 2, . . . , nδ}.

Then,

L⊤(δ)WL(δ) ≺ 0, ∀∆ ∈∆, (13)

holds for a W real matrix with appropriate dimension if and only if there exists a real full-block

multiplier Ξ = Ξ⊤ such that

[
∗
∗

]⊤



Ξ 0

0 W










L11 L12

I 0

L21 L22




 ≺ 0, (14a)

[
∗
∗

]⊤

Ξ

[

I

∆

]

� 0, ∀∆ ∈∆. (14b)

See the proof of the Lemma in [22] and [23].

3. LPV-MPC SCHEME

In this section, the proposed MPC technique is developed. Temporarily, assume that the future

trajectory of p over the prediction horizon is available. Next, the key prediction equation is derived

to compute the future output sequence, and then the MPC problem is formulated with stability

guarantees.

3.1. The Prediction Equation

The prediction equation used for the MPC formulation is established to express prediction of the

future output sequence based on the past measurements generated by the model (2) that describes

the system. In case of no additional disturbances, given the current value and the future trajectory of

both the scheduling variable and the system input, i.e., p[k,k+N−1] and u[k,k+N−1], respectively, the

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2017)
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current and future output sequence of G can be computed in terms of the Markov coefficients (7) as

follows:

y(k + j) = θ⊤(k + j)x(k) +

j
∑

i=0

hi(k + j)u(k + j − i), (15)

for j = 0, 1, 2, . . . , N − 1, where N is the prediction horizon, x(k) is given as in (11) and θ(k + j) ∈

Rnx×ny is computed recursively by

θ(k + j) =
−→
Ij θ̄(k + j) −

min(j,na)∑

i=1

ai(p(k + j))θ(k + j − i), (16)

for j = 0, 1, 2, . . . , N − 1, with

θ̄(k + j) =
[
− a1(p(k + j)) − a2(p(k + j)) . . . − ana(p(k + j)) b1(p(k + j))

b2(p(k + j)) . . . bnb
(p(k + j))

]⊤
(17)

and

−→
Ij =






−→
Ija 0

0
−→
I
j
b




 , (18)

where
−→
Ija ∈ Rnyna×nyna and

−→
I
j
b ∈ Rnunb×nunb are calculated by shifting identity matrices of the

corresponding dimensions, respectively, with jny and jnu columns to the right. Note that the

proposed MPC scheme is based on N − 1 step ahead output prediction.

Now, consider GI in (9); given the current value and the future trajectory of the scheduling

variables and the input of the system, the current and future output of GI can be computed as follows:

y(k + j) = θ̃⊤(k + j)x(k) +

j
∑

i=0

i∑

l=0

hl(k + j)v(k + j − i), (19)

for j = 0, 1, 2, . . . , N − 1, where θ̃(k + j) ∈ Rnx×ny is computed as in (16) except its rows from

(1 + nyna) to (nu + nyna) are given by

θ̃[1+nyna,nu+nyna](k + j) = θ[1+nyna,nu+nyna](k + j) +

j
∑

i=0

hi(k + j). (20)

Note that this is the coefficient matrix of u(k − 1) in (19). Therefore, the key prediction equation

for GI can be given by

y[k,k+N−1] = H(k)v[k,k+N−1] + Γ(k), (21)
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where y[k,k+N−1] ∈ R
Nny is a vector of the current and future values of the output, v[k,k+N−1] ∈

RNnu is a vector of the current and future values of v and H(k) ∈ RNny×Nnu is a lower triangular

Toeplitz matrix with the Markov coefficients of the system:

H(k) =














h0(k) 0 · · · 0

∑1
0 hi(k + 1) h0(k + 1) · · · 0

...
...

. . .
...

∑N−1
0 hi(k +N − 1)

∑N−2
0 hi(k +N − 1) · · · h0(k +N − 1)














, (22)

and

Γ(k) = Θ(k)x(k), (23)

with Θ(k) ∈ R
Nny×nx given by

Θ(k) =














θ̃⊤(k)

θ̃⊤(k + 1)

...

θ̃⊤(k +N − 1)














. (24)

The term Γ(k) in (21) represents the contribution of the past values of u, v and y to the current and

future values of y. The matrices H(k) and Θ(k) are functions of p(k), p(k + 1), . . . , p(k +N − 1).

Note that in the formulation of [21], the sample y(k) was not considered in the prediction equation,

which might deteriorate the closed-loop performance as the MPC was used to compute the control

input v[k,k+N−1] only based on y[k+1,k+N ].

Remark 2

In (21), it is possible to consider future values of v till v(k +Nc), where Nc ≤ N is referred to as

the control horizon. In case Nc < N , the tail of the vector v[k,K+N ] is set to zero, i.e., v(k + j) = 0,

for j > Nc.

3.2. MPC for LPV-IO Representation with Stability Guarantees

Next, the problem of designing an MPC law that guarantees asymptotic internal stability of the

closed-loop behavior for LPV-IO models given by (9) is formulated. Consider the discrete-time

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2017)
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r(k)
1

1−q−1

−
GK

y(k)u(k)v(k)e(k)

Figure 2. Closed-loop interconnection with integral action for reference tracking.

reference tracking problem depicted in Fig. 2, where K is the controller to be designed that satisfies

the constraints v(k) ∈ V, u(k) ∈ U and y(k) ∈ Y, where V, U and Y are compact constraint sets

defined, respectively, as

V := {v(k) ∈ R
nu | − vmax ≤ v(k) ≤ vmax}, (25a)

U := {u(k) ∈ R
nu | − umax ≤ u(k) ≤ umax}, (25b)

Y := {y(k) ∈ R
ny | − ymax ≤ y(k) ≤ ymax}, (25c)

where vmax ∈ Rnu , umax ∈ Rnu and ymax ∈ Rny are upper bounds on the values of the respective

signals. The set V should contain the origin. The constraints defined by U and Y can be expressed

in terms of a state constraint set as

X := {x(k) ∈ R
nx | − xmax ≤ x(k) ≤ xmax}, (26)

where

xmax =






1na ⊗ ymax

1nb
⊗ umax




 .

Let the reference trajectory r(k) ∈ Rny be a piecewise constant signal with a target steady-state

value rs. For y = rs, let us ∈ U be the corresponding steady-state input, which can be computed at

a frozen scheduling variable ps ∈ P via

(

Iny +

na∑

i=1

ai(ps)

)

rs =

( nb∑

j=0

bj(ps)

)

us(ps). (27)

Furthermore, consider x̃(k) ∈ Rnx as the deviation of the state x(k) from xs, which is defined as

x̃(k) = x(k) − xs, (28)

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2017)
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AN IMPROVED ROBUST MPC FOR LPV INPUT-OUTPUT MODELS 13

where

xs =






1na ⊗ rs

1nb
⊗ us






such that xs ∈ X and x̃(k) ∈ X̃,

X̃ := {x̃(k) ∈ R
nx | − (xmax − xs) ≤ x̃(k) ≤ (xmax − xs)}. (29)

Remark 3

In (27), if nu = ny, then, there exists a unique consistent steady-state solution (us, rs). If nu > ny,

multiple consistent steady-state solutions can be obtained; whereas, if nu < ny, it is in general not

possible to determine a consistent pair (us, rs), see [24], [25] and [26] for more details. In practice,

to deal with such situation, the number of elements of rs, which can be freely chosen, should be

restricted.

Now, define the cost function

VN (x̃0, v[k,k+N−1], r[k,k+N−1], p[k,k+N−1]) =

N−1∑

i=0

‖e(k + i− 1)‖2M + ‖v(k + i)‖2R
︸ ︷︷ ︸

ℓ(e,v)

+Vf(x̃(k +N))
︸ ︷︷ ︸

terminal cost

,

(30)

where x̃0 is the deviation of the state vector at the time instant k, i.e., x̃0 = x̃(k), e(k) = r(k) − y(k)

is the tracking error of the closed-loop as shown in Fig. 2 and r[k,k+N−1] ∈ RNny gathers the

current and future values of r(k). The terminal cost Vf(x̃(k +N)) penalizes the deviation of the

states of the system at the end of the prediction horizon, whereas the stage cost ℓ(e, v) (see (30))

specifies the desired control performance based on the design parameters N , M � 0 and R ≻ 0,

where M ∈ Rny×ny and R ∈ Rnu×nu . Note that ℓ(e, v) = ℓ(x̃, v) is continuous, positive definite for

all e(k), v(k) and ℓ(0, 0) = 0. It is possible also to reformulate the cost function VN (·) in (30) in

terms of the state x given in (11) or its deviation x̃.

Remark 4

The cost function VN (·) is chosen as in (30) so that the stage cost depends on the state deviation

from x̃(k) upto x̃(k +N − 1) and the terminal cost depends on x̃(k +N); this is inspired by the

representation of the cost function in the context of the MPC formulation for state-space models,
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e.g., [27]. At the same time the cost function depends on the future values of the output and input

signals of the system as in the MPC formulation for input-output models. Moreover, at each instant

k, at which the MPC problem is solved, VN (·) depends on the given values of x̃0, r[k,k+N−1] and

p[k,k+N−1].

To simplify the notation, in the following we drop the argument of VN .

Next, the MPC control problem considered in this work can be given as follows:

min
v[k,k+N−1]

VN , (31a)

subject to v(k + i) ∈ V, i = 0, 1, . . . , N − 1, (31b)

u(k + i) ∈ U, i = 0, 1, . . . , N − 1, (31c)

y(k + i) ∈ Y, i = 0, 1, . . . , N − 1, (31d)

x̃(k +N) ∈ X̃f , (31e)

under the LPV system dynamics represented by (9), where X̃f ⊂ X̃ ⊆ Rnx specifies the terminal

set constraint. Note that the constraints (31b-e) are implicit constraints on v[k,k+N−1]; this will be

shown later. The MPC control law is obtained by solving (31) at each sampling time instant and

applying it to the system in a receding horizon manner. Note that the output constraint (31d) has not

been considered in the MPC formulation of [21] to reduce complexity of online computations.

Let V ∗
N (x0, r[k,k+N−1], p[k,k+N−1]) be the optimal solution of (31) at time instant k with

v∗[k,k+N−1] being the optimizer. Then, the MPC control law at time instant k is given by

u(k) = κN (x0, r[k,k+N−1], p[k,k+N−1]) = v∗(k) + u(k − 1). (32)

Now, consider the following assumptions:

A.1 There is no model error and no disturbance, and the trajectories r[k,k+N−1], as well as

p[k,k+N−1] are known at each time instant k.

A.2 The reference trajectory r is a piecewise constant signal, such that for any target output y = rs,

rs ∈ Y and us ∈ U and hence xs ∈ X.

A.3 The function Vf(x̃(k)) is continuous, positive definite for all x̃(k) and Vf(0) = 0.
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A.4 The set X̃f is closed and contains the origin.

A.5 The scheduling variable p takes a constant value ps ∈ P in steady-state, i.e., p(k) = ps for all

x̃s ∈ X̃f .

Remark 5

Note that, as us is a parameter-dependent function and it is represented in xs, the requirement that

p in steady-state takes a constant value ps can be relaxed in case rs = 0, see (27). Thus, if p is an

exogenous signal of the system, it should be a piecewise constant, whereas, if it is an endogenous

signal of the system, it can be assumed that as y approaches a steady-state value, then, p reaches

some steady value as well. This is the case in many applications, e.g., position depending, operating

point based scheduling, etc.

In general, the closed loop system can be asymptotically stabilized by the MPC law κN (·) if there

exists a terminal feedback controller v(k) = κf(x̃(k))
† such that the following sufficient conditions

are satisfied [13], [27]:

C.1 Vf(·) is a Lyapunov function on the terminal set X̃f under the controller κf(·) and satisfy:

Vf(x̃(k + 1))− Vf(x̃(k)) ≤ −ℓ(x̃(k), κf(x̃(k))) < 0, ∀x̃(k) ∈ X̃f , ∀p(k) ∈ P, ∀k > N.

(33)

C.2 The set X̃f is positively invariant under the controller κf(·), i.e., if x̃(k) ∈ X̃f , then x̃(k + 1) ∈

X̃f , for all p(k) ∈ P.

C.3 κf(x̃) ∈ V, ∀x̃ ∈ X̃f , i.e., control input constraint is satisfied in X̃f .

C.4 The set X̃f is inside the set X̃, i.e., X̃f ⊂ X̃.

Note that the stage cost in (33) is represented as a function of x̃ and v = κf(x̃). Conditions C.1-C.4

are sufficient conditions for MPC to imply asymptotic stability. Under these conditions, the optimal

cost function V ∗
N is a Lyapunov function for the closed-loop system and its domain of attraction is

the set of initial state x̃0 where the optimization problem is feasible given r[k,k+N−1] and p[k,k+N−1];

†It will be shown later how such a controller can be computed.
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let such domain of attraction be denoted by X̃N . The invariance condition imposed on the terminal

region makes the optimization problem feasible if the initial values are in the domain of attraction,

c.f., [13], [27], [28] for more details.

Next, we show how Vf(·) and X̃f can be chosen to satisfy the above conditions. Due to (33),

the function Vf(·) can be chosen to be an upper bound on the value function of the unconstrained

infinite horizon cost of the system states starting from X̃f and controlled by the terminal controller

κf(·) [27], [28]. To verify this we need to satisfy

Vf(x̃(k + i+ 1))− Vf(x̃(k + i)) ≤ −
(
‖e(k + i− 1)‖2M + ‖κf(k + i)‖2R

)
< 0, (34)

for all e(k + i− 1) 6= 0, v(k + i) 6= 0, i ≥ N and for all p ∈ P together with Assumptions A.3

and A.5. Consequently, Condition C.1 can be verified if there exists a function Vf(·) that satisfies

Assumption A.3 along with (34).

Next, we see how (34) can be attained. If there exists a function Vf(·) that satisfies Assumption

A.3 and the inequality (34), then it can serve as a Lyapunov function for the closed-loop system.

On the other hand, this also implies the existence of a control law κf(·) that can drive any x̃ ∈ X̃f

into its origin, i.e., limk→∞ ‖x(∞)− xs‖ = 0. Therefore, we need to derive a controller such that

(33) holds for all i ≥ N , and consequently, it guarantees that x̃(∞) approaches 0 and Vf(x̃(∞)) = 0,

which guarantees asymptotic stability. In other words, we employ (34) to design the controller κf(·),

the existence of which implies that Vf(·) is a Lyapunov function for the closed-loop system. This

suggests that Vf(·) could be a quadratic function as

Vf(x̃(k)) = x̃⊤(k)P x̃(k), P = P⊤ ≻ 0. (35)

In the following section, we show how κf(·) can be obtained as well as the matrix P , which is used

to construct the online terminal cost function.

To guarantee asymptotic internal stability of the proposed MPC controller, we further need to

verify Conditions C.2-C.4. For C.2, it is required to specify X̃f to be a positive invariant set with

the controller κf(·) [27]. One way to achieve this is to choose X̃f as a sub-level set of Vf(·) [27], as
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follows:

X̃f := {x̃(k) ∈ R
nx | x̃⊤(k)P x̃(k) ≤ α}, α > 0. (36)

By this choice, X̃f is an ellipsoidal terminal set constraint, which can be enlarged by α. It is

positive invariant for the closed-loop system with the controller κf(·) if KfX̃f ⊂ V. This provides

that condition C.3 holds. Usually, the constant α is chosen as the largest value such that Kf x̃ ∈ V,

∀x̃ ∈ X̃f and X̃f ⊂ X, the latter satisfies condition C.4, which implies that the constraints on u and

y are satisfied in the future time instants due to the positive invariance property. It will be shown in

the sequel how α can be maximized to satisfy both C.3 and C.4.

3.3. Synthesizing the Offline Controller

In this section, LMI conditions are derived to design the offline controller. Note that in [21], it has

been designed based on BMI conditions, which is usually difficult to satisfy. This is one of the main

improvements realized by the proposed approach in comparison with that in [21].

Inspired by some ideas from [29], in this section, it is shown how κ(·) can be computed such that

(34) holds, and consequently, Condition C.1 is satisfied. Note that ‖e(k − 1)‖2M = ‖x̃(k)‖2Q with

Q = diag(M, 0), Q ∈ Rnx×nx , then, (34) can be written as

x̃⊤(k + 1)P x̃(k + 1)− x̃⊤(k)P x̃(k) ≤ −
(
x̃⊤(k)Qx̃(k) + v⊤(k)Rv(k)

)
. (37)

Consider a state feedback control law

v(k) = κ(x̃(k)) = −Kx̃(k), (38)

where K ∈ Rnu×nx is the state feedback gain, and κ(·) can asymptotically stablilze the LPV-SS

representation (10) of the model GI at a steady state corresponding to p = ps ∈ P (see Assumption

A.5) if there exists a Lyapunov function for the closed-loop system with the system matrix

A(ps)−B(ps)K . Moreover, κ(·) can asymptotically stabilize the representation (10) for all ps ∈ P

if there exists a Lyapunov function for the closed-loop system with A(ps)−B(ps)K for all ps ∈ P,

and hence κ(·) is a robust state feedback controller.

The function Vf(x̃(k)) is a Lyapunov function for the closed-loop system A(ps)−B(ps)K for all

ps ∈ P, if there exists a controller κf (·) such that
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(i) Vf(x̃(k)) > 0 for all x̃(k) 6= 0 and ps ∈ P,

(ii) Vf(x̃(k + 1))− Vf(x̃(k)) < 0 for all x̃(k) and for all ps ∈ P satisfying the closed-loop system

with A(ps)−B(ps)K .

The quadratic form of Vf(x̃(k)) with P ≻ 0 in (35) implies (i), and the existence of a controller

so that (37) is satisfied for all x̃(k), ps ∈ P satisfying the closed-loop system with A(ps)−B(ps)K

implies (ii). Substituting−Kx̃(k) for v(k) and (A(ps)−B(ps)K)x̃(k) for x̃(k + 1) in (37) yields

(
∗)⊤P (A(ps)−B(ps)K

)
− P +Q+K⊤RK � 0. (39)

Therefore, existence of the controller κf(·) satisfying (39) for all ps ∈ P such that P = P⊤ ≻ 0

guarantees that Vf(x̃(k)) given by (35) is a Lyapunov function satisfying (34), which implies

Condition C.1. Now, the problem of designing κf(·) satisfying (39) with P ≻ 0 for all ps ∈ P is

a standard robust state feedback problem. Using Schur complement and congruence transformation

turns (39) into an LMI condition as














−P̃ 0 0 A(ps)P̃ −B(ps)Y

∗⊤ −R−1 0 Y

∗⊤ ∗⊤ −I Q
1
2 P̃

∗⊤ ∗⊤ ∗⊤ −P̃














� 0, (40)

where P̃ = P−1 and Y = KP−1. However, (40) should be satisfied for all ps ∈ P, which results

in an infinite number of LMI constraints. Next, we employ Lemma 1 to provide a finite number

of LMI constraints based on (40) that allows also affine, polynomial and rational dependence on

ps ∈ P. First, we formulate the constraint (40) in a form similar to (13) as

Z⊤(ps)WZZ(ps) � 0, (41)

where

Z(ps) =









A(ps) 0 0 0 I 0 B(ps)

0 I 0 0 0 0 −I
Q

1
2 0 I 0 0 0 0

0 0 0 I 0 I 0









⊤

, (42)
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and

WZ =
















0 0 0 P̃ 0 0 0

0 −R−1 0 0 0 0 0

0 0 −I 0 0 0 0

P̃ 0 0 0 0 0 −Y ⊤

0 0 0 0 −P̃ 0 0

0 0 0 0 0 −P̃ 0

0 0 0 −Y 0 0 0
















. (43)

Then, to apply the full block S-procedure, an upper LFT representation of Z(ps) is given as

Z(ps) = ∆Z ⋆

[

Z11 Z12

Z21 Z22

]

, (44)

where

∆Z = diag{p1IrZ1 , p2IrZ2 , . . . , pnpIrZnp
} ∈∆Z, (45)

and

∆Z = {∆Z ∈ R
n∆Z

×n∆Z | psi,min ≤ psi ≤ psi,max, i = 1, 2, . . . , np} (46)

with n∆Z =
∑np

i=1 rZi
. Note that, it is always possible to rewrite Z(ps) in LFT form as in (44)

provided that it is a multivariate matrix polynomial or rational matrix function with a finite value

at the origin; however, it is usually hard to find a minimal realization in terms of the minimum

dimension of the block ∆Z, see [30] for more details. Now, if the LFT (44) is well-posed, i.e.,

(I − Z11∆Z)
−1 is well-defined for all ps ∈ P, then we can apply the results of Lemma 1 to the

condition (41) and we obtain the following result that can be used to design the offline controller

κ(·).

Theorem 6

The closed-loop system with the system matrix A(ps)−B(ps)K is asymptotically internally stable

if there exist K and P = P⊤ ≻ 0 satisfying the following conditions

[∗∗
]⊤

[

ΞZ 0
0 WZ

][
Z11 Z12

I 0
Z21 Z22

]

�0,
[∗ ]⊤ΞZ

[
I

∆Zi

]

≻0,

ΞZ22 ≺ 0,

(47)

for i=1, 2, . . . , 2np , where ΞZ ∈ R
2n∆Z

×2n∆Z ,

ΞZ =

[
ΞZ11 ΞZ12

Ξ⊤
Z12 ΞZ22

]

.
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The proof of Theorem 6 is the direct application of Lemma 1 on the condition (41). With the

block ∆Z being affine in p and P being convex, verifying that (47) holds for all p ∈ P is equivalent to

verifying it for all pvi , i = 1, . . . , nv. Therefore, the problem of computing the controller κ(·), which

is solved offline, is an optimization problem subject to a set of LMIs. This is one of the crucial

differences between the method presented here and [21], where in the latter one computing the

controller κ(·) is based on solving an optimization problem subject to bilinear matrix inequalities,

which is an NP hard problem.

Remark 7

Internal stability of a closed-loop system represented in state-space, denotes that all trajectories of

the latent signals (the states) of the system are implied to be bounded and convergent provided that

all external signals injected to the system (at any location) are bounded [30]. Basically, it means

that in the closed-loop there are no unobservable unstable modes from the reference performing

like unstable pole-zero cancellation between the plant and the controller. The control approach here

relies on the nonminimal state-space realization (10) with (12), which contains as states all the

signals that flow in between the plant and the controller. Therefore, stability of the closed-loop

system corresponds to internal stability as all trajectories of the latent signals of the loop, i.e., (y, u),

are implied to be bounded and convergent [30]. Therefore, we emphasize on the concept of internal

stability in the context of Theorem 6.

Note that the proposed MPC scheme requires to obtain the matrix P , which can be substituted

into (35) to obtain the online terminal cost function, and the controller, which in turn can be used to

compute the terminal set as shown in the next section.

3.4. Computating the Terminal Set

The terminal constraint x̃(k +N) ∈ X̃f is included in (31) to ensure that all constraints are satisfied

at the end of the N sample long prediction horizon, i.e., v(k +N) = −Kx̃(k +N) ∈ V and

x̃(k +N) ∈ X̃; the latter concludes that u ∈ U and y ∈ Y are satisfied. If the input constraints,
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i.e., −Kx̃ ∈ V, are instantaneously satisfied for all points in X̃f which is positive invariant with

κf(·), then the MPC optimization problem (31) is guaranteed to have a feasible solution for k > 0

provided that it is feasible at k = 0 [27]. Therefore, the terminal constraint should be constructed

to ensure the feasibility of the MPC optimization problem recursively. Moreover, for any given N

it is desirable to make the set of feasible initial states X̃N , i.e., the domain of attraction, as large as

possible in order to maximize the allowable operating region of the MPC law. The latter implies that

X̃f should be as large as possible. In the following, a procedure is given to show how the terminal

set X̃f can be computed offline such that the input constraints are satisfied. Particularly, given the

matrix P , it is required to maximize α in (36) such that for the implied ellipsoidal terminal set X̃f ,

the input constraints are satisfied by the offline controller κf(·).

In the proposed MPC scheme, we consider an ellipsoidal terminal set‡ X̃f that is a sub-level set

of Vf(·), see (36), to achieve the positive invariance property for X̃f , and hence, Condition C.2 can

be satisfied. The constant α in (36) is maximized such that Kx̃ ∈ V, for all x̃ ∈ X̃f , to provide the

positive invariance property for X̃f with the controller κf(·), and hence, Condition C.3 is satisfied.

Moreover, we need Condition C.4 to be satisfied as well. All these conditions can be attained by

solving the following optimization problem

max
α,x̃

α (48a)

subject to x̃⊤P x̃ ≤ α, (48b)

|Kx̃| ≤ vmax, (48c)

|x̃| ≤ xmax − xs. (48d)

Problem (48) is a convex optimization problem [31] that can be equivalently represented by

max
α̃

α̃ (49a)

subject to α̃2[Af ]iP
−1[Af ]

⊤
i ≤ [bf ]

2
i , i = 1, · · · , 2(nx + nu). (49b)

‡Ellipsoidal terminal set is considered here to ensuring developing a semi-definite programming for the proposed MPC

scheme.
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where α̃ =
√
α and Af ∈ R

2(nx+nu)×nx and bf ∈ R
2(nx+nu) are given as

Af =














−Inx

K

Inx

−K














, bf =














xmax − xs

vmax

xmax − xs

vmax














. (50)

Let αm be the solution of (49); hence, X̃f in (36) can be redefined as

X̃f := {x̃ ∈ R
nx | x̃⊤P x̃ ≤ αm}. (51)

Note that αm should be computed for every steady-state as bf is function of xs. This can be

performed offline as the reference trajectory is assumed to be given, which provides the steady-

state values. Computing the terminal set here is less conservative than in [21], which considers that

all steady-state points belong to the terminal set; this also increases the computational complexity.

Finally, we summarize the previous results in the following theorem.

Theorem 8 (MPC for LPV-IO representation with guaranteed asymptotic internal stability)

Suppose that Assumptions A.1, A.2, A.3, A.4 and A.5 are satisfied, and there exists a terminal cost

given by (35) such that (47) is satisfied and a terminal set given by (51) such that (49) is satisfied.

Then, Conditions C.1, C.2, C.3 and C.4 are satisfied. Consequently, the MPC controller derived by

solving Problem (31) asymptotically internally stabilizes the system (9) for all x̃0 ∈ X̃N .

The proof of Theorem 8 follows the same lines as in the standard MPC based on SS models, see

[13] for more details.

Remark 9

Let assumptions A.2 and A.5 hold true. Then for LPV systems, the steady-state value (xs, us) is

determined according to the value of the target steady-state rs or/and the constant value ps (see

Remark 5). The shifted state constraint set X̃ (29) is defined according to the value of xs, which

could be time-varying due to the variation of rs or/and ps. The recursive feasibility is associated

with the satisfaction of conditions C.2-C.4, which is related to the choice of the terminal set X̃f

and the offline controller κf(x̃). Regarding X̃, it is important for X̃f satisfying condition C.2 to
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fulfill condition C.4, i.e., X̃f ⊂ X̃. The recursive feasibility related to the proposed MPC problem is

guaranteed in the sense that if after a change in xs the problem is feasible, then it remains feasible

until the next change in xs occurs. However, there is no guarantee of a feasible transition from a

steady-state value to another one. To preserve recursive feasibility in that sense, every time the set

X̃ is changed (due to a change in xs), a new terminal set X̃f should be computed such that X̃f ⊂ X̃

(condition C.4), and this can be satisfied by solving the optimization problem (49).

Remark 10

One of the features of the proposed MPC scheme is the direct utilization of plant input and output

signals in the closed-loop feedback control. The implementation of such MPC based on the non-

minimal state-space representation (10) with (12) avoids using observers, where utilizing the plant

input and output variables as the state variables renders them measurable. However, it is necessary

to check the reachability of the unstable modes of that state-space representation by its full state-

feedback. For LPV systems, quadratic stabilizability [32], [27] can indicate the existence of a

stabilizing static state feedback controller. Thus, it is a sufficient condition for the state feedback

offline control law being able to stabilize the system and it shall be tested when the proposed

MPC controller is to be designed for the system. Such condition can be formulated as a linear

matrix inequality (LMI) condition and hence tested using LMIs solvers, see [32]. On the other

hand, detectability issue, which is related to testing if the unstable modes can be observed by full

state-feedback, is not required for the proposed MPC scheme as no state estimation is employed.

4. ROBUST LPV-MPC SCHEME

In the above MPC scheme, the future trajectory p[k,k+N−1] should be available or estimateable at

the time instant k in order to compute the matrices H(k) and Θ(k), which are used in the prediction

equation. We propose in this section an MPC scheme based on the above formulation to design a

robust MPC controller for LPV-IO models in which at every sampling instant k the current value of

p is known exactly whereas its required future values are considered uncertain and varying inside

the convex polytope P. Therefore, the worst-case cost over all possible future scheduling values
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is considered. Closed-loop stability is guaranteed by the feasibility of the optimization problem at

initial time k.

4.1. LMI Formulation of the MPC Optimization Problem

In this section, the MPC optimization problem (31) is represented as an optimization problem

with LMI constraints, for which LMI solvers can be utilized. Moreover, this is the key step to

formulate the robust LPV-MPC scheme in the next section. Now, given p[k,k+N−1] and r[k,k+N−1],

the optimization problem (31) can be expressed as

min
γ,v[k,k+N−1]

γ (52a)

subject to VN ≤ γ, (52b)

v(k + i) ∈ V, i = 0, 1, . . . , N − 1, (52c)

u(k + i) ∈ U, i = 0, 1, . . . , N − 1, (52d)

y(k + i) ∈ Y, i = 0, 1, . . . , N − 1, (52e)

x̃(k +N) ∈ X̃f . (52f)

To formulate the optimization problem (52) in terms of LMIs, we perform the following

substitutions. We rewrite the cost function VN in (30) as follows:

VN = V0 +

N−2∑

i=0

‖y(k + i)− r(k + i)‖2M +

N−1∑

j=0

‖v(k + j)‖2R + ‖x̃T(k +N)‖2
P̃
, (53)

where V0 = ‖e(k − 1)‖2M is a constant term,

x̃T(k +N) = T−1
x x̃(k +N)

=






y[k+N−na,k+N−1]

u[k+N−nb,k+N−1]




− xs, (54)

where Tx = diag(Txy, Txu) ∈ Rnx×nx is a state transformation such that Txy ∈ Rnyna×nyna and

Txu ∈ Rnunb×nunb are anti-diagonal matrices with all nonzero entries equal to one and P̃ =

T⊤
x PTx. Introducing x̃T(k +N) yields direct substitution from (21) into (54) as shown below.

Moreover, let u[k+N−nb,k+N−1] in (54) be presented in terms of v[k,k+N−1] as follows:

u[k+N−nb,k+N−1] = Tuv[k,k+N−1] + (1nb
⊗ Inu)u(k − 1), (55)
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where Tu ∈ R
nunb×Nnu is given by

Tu =






Tu,1 Tu,2

(1N−nb+1 ⊗ Inu)
⊤ (1nb−1 ⊗ Inu)

⊤






with Tu,1 ∈ R(nb−1)nu×(N−nb+1)nu being a matrix whose entries are all one and Tu,2 ∈

R(nb−1)nu×(nb−1)nu is a lower triangular matrix whose non-zero entries are one. Now, substituting

(21) and (55) into (52b) where VN is given by (53), and hence applying the Schur complement

provides an LMI equivalent of (52b) as






M−1 0 0 S
(
H(k)v[k,k+N−1] + Γ(k)

)
− r[k,k+N−2]

0 R−1 0 v[k,k+N−1]

0 0 P̃−1 x̃T(k +N)
∗⊤ ∗⊤ ∗⊤ γ − V0




�0, (56)

where S =

[

I(N−1)ny
0

]

∈ R(N−1)ny×Nny is a selector matrix and

x̃T(k +N) =






S̄
(
H(k)v[k,k+N−1] + Γ(k)

)

Tuv[k,k+N−1] + (1nb
⊗ Inu)u(k − 1)




− xs (57)

with S̄ =

[

0 Inyna

]

∈ R(N−1)ny×Nny . Next, the constraints (52c-d) are formulated as an LMI

constraint:

Ev[k,k+N−1] − c � 0, (58)

where

E =














INnu

−INnu

T

−T














, c =














1N ⊗ vmax

1N ⊗ vmax

1N ⊗ (umax − u(k − 1))

1N ⊗ (umax + u(k − 1))














with T ∈ RNnu×Nnu being a lower triangular matrix whose non-zero entries are one. The output

constraint (52e) can also be written in an LMI form as






I(N−1)ny

−I(N−1)ny




S

(
H(k)v[k,k+N−1] + Γ(k)

)
−






1(N−1) ⊗ ymax

1(N−1) ⊗ ymax




 � 0. (59)
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Finally, the terminal set constraint (52f) using (51), (54) and the Schur complement can be written

as an LMI constraint as





P̃−1 x̃T(k +N)

∗⊤ αm




 � 0, (60)

where x̃T(k +N) is given by (57).

Therefore, the problem (31) for designing a stable MPC controller for an LPV-IO model can be

presented as an optimization problem with LMI constraints as follows: At any time instant k, given

x0, p[k,k+N−1], r[k,k+N−1], P̃ , αm and appropriate values for N , and the matrices M , R, solve

min
γ,v[k,k+N−1]

γ (61a)

subject to (56), (58), (59), (60). (61b)

This problem is solved online at each time instant k, where N,M,R are tuning parameters chosen

by the user. Also, P̃ and αm should be obtained offline by solving the feasibility problem (47) and

the optimization problem (49), respectively.

4.2. Robust Formulation

Next, at the sampling instant k, we consider that the instantaneous value of p, i.e., p(k), is

given and its required future values, i.e., p(k + 1), p(k + 2), . . . , p(k +N − 1), needed to compute

H(k) and Θ(k) are uncertain. In other words, we consider p being uncertain in the prediction

horizon. This implies that H(k) and Θ(k) are uncertain matrices in the optimization problem (61),

with p(k + 1), p(k + 2), . . . , p(k +N − 1) varying inside the convex polytope P. Fortunately, this

problem can be formulated as an LMI optimization problem, which allows a robust MPC design.

However, the nonlinear dependence of H and Θ on p leads to an optimization problem with an

infinite number of LMI constraints as the LMIs (56), (58), (59) and (60) should be verified at all

values of p ∈ P. To cope with this difficulty, we represent the LMI constraints (56) and (60) in an

upper LFT form [33]. We then employ the full-block multipliers introduced in [22], that results in

an optimization problem with a finite number of LMI constraints, which are required to be verified
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only at the vertices of P. Moreover, the bounds on the rate of variation of p can be exploited to verify

these LMIs at the vertices of a subset of P, which can reduce the conservatism of the design.

In order to be able to use Lemma 1, the first step is to formulate each of the constraints (56) and

(60), respectively, as

F⊤(p)WF(k)F (p) � 0, (62a)

G⊤(p)WG(k)G(p) � 0, (62b)

where

F (p) =








SH(k) 0 0 0 SΘ(k) I(N−1)ny
0 0

0 I(N−1)nu
0 0 0 0 0 0

[
S̄H(k)
Tu

]

0 Inx 0
[
S̄Θ(k)

0

]

0 Inx 0

0 0 0 1 0 0 0 1








⊤

, (63)

WF(k) =















0 0 0 v[k,K+N−1] 0 0 0 0

0 R−1 0 v[k,K+N−1] 0 0 0 0

0 0 P̃−1 0 0 0 0 0
∗⊤ ∗⊤ 0 γ − V0 0 0 0 0
0 0 0 0 0 0 0 x(k)

0 0 0 0 0 M−1 0 −r[k,K+N−2]

0 0 0 0 0 0 0 Πu(k − 1)− xs

0 0 0 0 ∗⊤ ∗⊤ ∗⊤ 0















, (64)

G(p) =

[[
S̄H(k)
Tu

]

Inx 0
[
S̄Θ(k)

0

]

Inx 0

0 0 1 0 0 1

]⊤

, (65)

WG(k) =










0 0 v[k,K+N−1] 0 0 0

0 P̃−1 0 0 0 0
∗⊤ 0 αm 0 0 0
0 0 0 0 0 x(k)
0 0 0 0 0 Πu(k − 1)− xs

0 0 0 ∗⊤ ∗⊤ 0










, (66)

with

Π =
[

0
(1nb

⊗ Inu)

]

∈ R
nx×nu .

As a consequence, (62a) and (62b) can replace (56) and (60), respectively, in the optimization

problem (61). Next, we transform both F (p) and G(p) into an upper LFT form as

F (p) = ∆F ⋆

[

F11F12

F21F22

]

, G(p) = ∆G ⋆

[

G11G12

G21G22

]

, (67)
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such that

∆F = diag{p1IrF1 , p2IrF2 , . . . , pnpIrFnp
}, ∆F ∈∆F (68a)

∆G = diag{p1IrG1 , p2IrG2 , . . . , pnpIrGnp
}, ∆G ∈∆G (68b)

where

∆F(k)={∆F(k) ∈ R
n∆F

×n∆F |p
i
(k) ≤ pi ≤ pi(k), i ∈ I

np

1 } (69a)

∆G(k)={∆G(k) ∈ R
n∆G

×n∆G |p
i
(k) ≤ pi ≤ pi(k), i ∈ I

np

1 }, (69b)

with n∆F =
∑np

i=1 rFi
, n∆G =

∑np

i=1 rGi
, and

pi(k) = max
(
(N − 1) · dpmax i + pi(k), pmin i

)
,

p
i
(k) = min

(
(N − 1) · dpmin i + pi(k), pmax i

)
.

Note that the blocks ∆F and ∆G are linear in the elements of p.

Now, if the LFTs (67) are well-posed, i.e., (I − F11∆F)
−1 and (I −G11∆G)

−1 are well-defined

for all p ∈ P, then we can apply the results of Lemma 1 to the conditions (62a-b). Therefore, at the

sampling instant k, given x0, r[k,k+N−1], the parameters P̃ and αm, which can be computed offline,

and the design parameters N , M and R, the optimization problem (61) associated with the robust

MPC design considered here can be given as follows:

min
γ,v[k,k+N−1],ΞF,ΞG

γ (70a)

subject to Ev[k,k+N−1] � c, (70b)






I(N−1)ny

−I(N−1)ny




S

(
H(k)v[k,k+N−1] + Γ(k)

)
−






1(N−1) ⊗ ymax

1(N−1) ⊗ ymax




 � 0, (70c)

[
∗∗
]⊤

[

ΞF 0
0 WF

][
F11 F12

I 0
F21 F22

]

≻0,
[∗ ]⊤ΞF

[
I

∆Fi

]

≺0,

ΞF22 ≻ 0,

(70d)

[∗∗
]⊤

[

ΞG 0
0 WG

][
G11 G12

I 0
G21 G22

]

≻0,
[∗ ]⊤ΞG

[
I

∆Gi

]

≺0,

ΞG22 ≻ 0,

(70e)
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for i=1, 2, . . . , 2np , where ΞF∈R2n∆F
×2n∆F , ΞG∈R2n∆G

×2n∆G ,

ΞF =

[
ΞF11 ΞF12

Ξ⊤
F12 ΞF22

]

, ΞG =

[
ΞG11 ΞG12

Ξ⊤
G12 ΞG22

]

.

Partitioning the multipliers ΞF and ΞG and considering the additional LMI constraints ΞF22 ≻ 0 and

ΞG22 ≻ 0 as shown above yield the optimization problem (70) subjected to a finite number of LMI

constraints. Next, as P is a convex polytope and the blocks ∆F and ∆G have linear dependence on

p, the LMIs (70d) and (70e) are only required to be solved at the vertices of P, see [23].

Finally, we summarize the proposed robust MPC design as follows.

Theorem 11 (Robust MPC control for LPV-IO models)

Suppose that Assumptions A.1, A.2, A.3, A.4 and A.5 are satisfied, and that there exists a matrix

P = P⊤ ≻ 0 that satisfies conditions (47) for all p ∈ P, and a scalar αm that solves the problem

(49). Then, conditions C.1, C.2, C.3 and C.4 are satisfied. Consequently, the robust MPC controller

obtained by solving the problem (70) stabilizes asymptotically the system (9) for all x̃0 ∈ X̃N for

all time greater than a time instant k.

Remark 12

Note that the number of LMIs in (70c) and (70e) increases exponentially with np which might

increase design complexity for large values of np. The so-called D-G scaling technique [34] can be

used to reduce such complexity at the expense of increasing conservatism of the design. The idea

can be simply applied by normalizing the sets ∆̃G and ∆̃G and further restricting the multipliers

ΞF and ΞG. In this case, the number of LMIs in the optimization problem (70) can be significantly

reduced specially for large np.

Finally, an algorithm is presented next to show how the proposed robust LPV-MPC scheme can

be implemented.

5. NUMERICAL EXAMPLE

In order to demonstrate the performance of the proposed MPC scheme for LPV-IO models we

consider a simulation example of an ideal continuous stirred tank reactor (CSTR) given in Fig. 3
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Algorithm 1 Robust LPV-MPC scheme algorithm (online algorithm)

Require: A desired set point rs, plant model (A,B), a matrix P satisfying (47), a scalar αm solving

(49), constants M , R, N , Nc and bounds on p, i.e, dp.

1: k ← 0.

2: repeat

3: Define x0, r[k,k+N−1].

4: Solve (70) to obtain v[k,k+N−1].

5: Apply u(k) to the system.

6: k ← k + 1.

7: until k = execution time.

[35]. This example describes the chemical conversion, under ideal conditions, of an inflow of

substance A to a product B where the corresponding first-order reaction is non-isothermal. For

controlling the heat inside the reactor, a heat exchanger with a coolant flow is used. Based on first-

principle laws, the following nonlinear differential equations describe the dynamics of the system

[35], [36]:

d

dt
C2 =

Q1

V
(C1 − C2)− k0e

−
EA
RT2 C2, (71a)

d

dt
T2 =

Q1

V
(T1 − T2)−

UHEAHE

ρV Cρ

(T2 − Tc) +
∆Hk0

ρcρ
e
−

EA
RT2 C2, (71b)

where C1, C2 are the concentration of the inflow and in the reactor, respectively, in kg/m3. Tc, T1,

T2, are the temperature of the coolant and of the inflow and the material in the reactor, respectively,

in K. Q1, Q2 are the input and output flows, respectively, in m3/s. Other parameters are constants

and their values can be found in [36]. In this example, Q1 and Tc are used as manipulated signals;

the control goal is to regulate T2 and C2. The nominal values of these variables are Q1 = 0.01m3/s,

Tc = 300K, C2 = 213.69kg/m3, T2 = 428.5K and C1 = 800kg/m3

Based on the dynamical behavior of T2 and C2 when a step change is applied on Q1 under

different levels of C1 from 50% to 150% of its nominal value, it has been observed in [36] that both

the time constant and relative gain change in the responses for the different C1 levels, especially
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Figure 3. Continuous stirred tank reactor.

T2 where the relative gain also changes its sign resulting in a non-minimal phase behavior. It has

been concluded that a PID controller designed on the nominal behavior can destabilize the system

if C1 grows too high. An LPV model for the plant is instead capable of explaining these different

scenarios. Consequently, provided such LPV model, LPV control can be utilized to stabilize the

system for different levels of C1. Accordingly, to apply the proposed MPC scheme, a discrete

time LPV-IO representation for the nonlinear description (71), in the operating region defined by

the different levels of C1, is required. Such LPV-IO representation can be synthesized by either

nonlinear to LPV conversion [20] or system identification. An important disadvantage of the former

way is that it delivers models suffering from a high level of model complexity in terms of nonlinear

relationships, whereas the latter one appears to be attractive, in order to arrive at relatively simple

descriptions of the plant. In [36], an orthonormal basis functions (OBF) base LPV model structure

was employed to identify the dynamical relationship between Q1, Tc and T2, C2 with C1 used as the

scheduling variable p. Instead, we identify here an LPV-IO model of the form (2) for the nonlinear

model of the CSTR system using the identification method of [36]. We adopt the so-called local

approach based LPV identification. The idea is to identify LTI models in several operating points

of the process and to interpolate the resulting models to obtain a global LPV model, which gives a

linear description of the dynamics over the entire operating regime of the plant.
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5.1. LPV-IO Modeling

The first step to identify the required model is to generate realistic measurement records of the

system. For the local identification approach used here, a sampling period of 60s is considered

[36]. As an excitation, pseudo random binary signals (PRBS) are injected into Q1 and Tc at their

nominal values with 10% relative amplitude. We consider here noiseless data records as the purpose

is to test the proposed control approach rather than to assess the identification approach against

noisy data. Thirteen local data records with length Nd = 1000 are gathered for each level of C1,

corresponding to a gridding of the 50% to 150% range. Then, local discrete-time LTI models are

estimated based on each data record. For the estimation, a 2nd order fully parameterized MIMO

model with common denominator and a feedthrough term is used and the estimates are calculated

with the Matlab Identification Toolbox [37]. The LTI models have been validated in terms of cross

validation with BFRs§ of (94.80-98.09)% of the simulated response.

Next, a polynomial interpolation method has been applied on the estimated local model

coefficients to construct a global LPV-IO model. Note that the LTI models can only explain the

change of T2 and C2 w.r.t. the steady state values of these variables at each C1 due to the fact that

they correspond to the linearization of (71). Thus, these steady state values of T2 and C2 have been

modeled as a constant, i.e., trim value. For the interpolation of the local samples of the coefficients

of the MIMO LTI models as well as the trim values, a polynomial approach with orders (2nd-4th)

has been able to provide good fits.

Finally, cross validation using a varying trajectory of C1 has been performed to assess the quality

of the identified LPV-IO model in comparison with the global behavior of the nonlinear plant. The

results are shown in Fig. 4. The LPV-IO model is able to describe the global nonlinear dynamics

with a BFR of 96.84%.

§BFR stands for best fit rate:= 100% ·max
(

1−
‖y−ŷ‖
‖y−ȳ‖

, 0
)

, where ŷ is the simulated output (in this case) of the

estimated model and ȳ is the mean of output y; BFR is commonly used to validate identified models [37].
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Figure 4. Validation results of the identified LPV-IO model for varying C1. The response of the nonlinear

model is shown in blue, while the response of the LPV-IO model is shown in red.

Now, we have obtained a MIMO LPV-IO model of the form (2) with (3) for the nonlinear

model (71), where ny = 2, nu = 2, na = 2, nb = 2 with b0(p(k)) 6= 0 and ai(p(k)) and bj(p(k))

are polynomial matrices with orders 2 and 3.

5.2. MPC Design

In the following, the proposed MPC design is applied on the identified LPV-IO model to demonstrate

its performance. At each sampling instant, the MPC algorithm will compute the optimized inputs Q1

and Tc, which are applied to the plant. The scheduling variable p = C1 is assumed to take values in

the range P = [600, 1000] with Pd = [−4, 4]; both P and Pd are normalized to suit the LFT based

design. In order to assess the quality of the proposed MPC technique without possible modeling

errors (inline with Assumption A.1), the MPC algorithm is simulated with the LPV-IO model as the

plant. Moreover, to simplify such implementation, Q1, Tc, C2 and T2 are considered without the

trim values; in this case, we denote them by Q1n, Tcn, C2n and T2n, respectively, and therefore, the
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input constraints are defined as |Q1n| ≤ 0.004, |δQ1n| ≤ 0.003, |Tcn| ≤ 30 and |δTcn| ≤ 20, where

δ is used to indicate the incremental input, e.g., δQ1n(k) = Q1n(k)−Q1n(k − 1). The reference

commands for C2n and T2n to be tracked are given in advance as shown in Fig. 5 (in gray), and

therefore, the output constraints are defined as |C2n| ≤ 17.6 and |T2n| ≤ 2.80, which restrict the

MPC to allow not more than 5% deviation from the bounds of the reference command.

Next, the terminal cost, the offline controller and the terminal set are computed. In order to find

the terminal cost Vf(·), the LMI feasibility problem defined by (40) and (47) has been solved offline

to obtain the matrix P ∈ R8×8 and the terminal robust state-feedback controller κf(·). Then, the

ellipsoidal terminal set X̃f in (51) is constructed at all set points by computing the value of the

parameter αm by solving the optimization problem (49). In the simulation, the parameter αm is

computed online when a set point change is initiated by the change xs. In practice, to reduce

the online computation cost, it is possible to perform this step offline and to store the resulting

values of αm in a look-up table. Given P and αm, which parameterize Vf(·) and X̃f , respectively,

the proposed MPC scheme, which guarantees asymptotic stability, can be applied. The tuning

parameters have been chosen as M = I2, R = diag(5 × 106, 1× 10−3), N = 5 and Nc = 3, which

defines the control horizon, to achieve some desired control objectives including fast rise time and

settling time and small overshoot without violating the IO constraints. Then, the robust LPV-MPC

scheme has been implemented by solving its associated optimization problem at each sampling

instant k to obtain the online optimal control law. To reduce the conservatism, we consider bounds

on the rate of change of p according to Pd defined above. Based on such bounds and the value of

N , a reduced scheduling set P̂(k) < 0.02 · P can be considered. The resulting control structure has

been validated via a simulation study with an implementation on the LPV-IO model. Stability of

the closed-loop system over the entire operating region and feasibility of the optimization problem

at all sampling instants have been achieved by the MPC design. The evolution of the output and

the control input of the closed-loop system with the MPC controller are shown in Figures 5 and 6,

respectively, and the incremental change of the inputs is shown in Fig. 7.
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The closed-loop performance of the system based on the proposed LPV-MPC scheme shows a

good tracking capability at different operating conditions. The ratio of overshoot/undershoot is less

than 5% at all operating levels and the maximum settling time is less than 6 samples, thanks to

the integral action that guarantees zero steady-state tracking error asymptotically. Furthermore, the

control inputs and their incremental changes remain within the corresponding given bounds, which

are depicted with red lines in Figures 6 and 7. The figures demonstrate that the process is operated

close to the constraints without any violation of them or effect on performance or stability.
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Figure 5. Reference tracking of the LPV-IO CSTR model with the proposed MPC scheme. The reference

signal is displayed with grey.

6. CONCLUSION

In this paper we have proposed a robust model predicative control approach for constrained linear

parameter-varying systems represented in input-output form. Stability and recursive feasibility is

guaranteed by adding an appropriate terminal cost to the finite horizon cost function of the online
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Figure 6. Control inputs provided by the proposed MPC scheme.
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Figure 7. Incremental control inputs provided by the proposed MPC scheme.
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optimization problem and including an ellipsoidal terminal set constraint. The terminal cost has

been chosen to be an upper bound on the value function of the unconstrained infinite horizon cost

and it should be a Lyapunov function for the closed-loop system; moreover, it should satisfy a

certain descent property that has been used to design an offline controller based on LMIs. The full-

block S-procedure with an LFT formulation of the parameter dependent inequality constraints as

well as information about the rate of change of the scheduling variable have been used to reduce

the conservatism of the design. The online optimization problem involved is convex and can be

solved by semi-definite programming tools to compute the optimal control action at each sampling

instant. Overall, the proposed approach has overcome most of the critical issues of [20], [21],

especially the computational complexity associated with the terminal cost and the offline controller.

The performance of the proposed MPC scheme has been demonstrated on a simulation example of a

MIMO CSTR system, showing its capability for reference tracking problems under operating points

variation.

As a future work, for practical consideration, the proposed LPV-MPC scheme will be further

developed to take in account additive uncertainty. Moreover, to further reduce the conservatism of

the method, parameter-dependent terminal cost/offline controller will be investigated. Furthermore,

extending the approach to non-parametric LPV-IO model structures will be considered. Finally, the

problem of simplifying the online computations will be studied.
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36. Tóth R, Van den Hof P, Ludlage J, Heuberger P. Identitifcation od nonlinear process models in an LPV framework.

Proceedings of the 9th International Symposium on Dynmaics and Control of Process Systems, 2010; 869–874.

37. Ljung L. System Identification Toolbox. The Mathworks, 2001.

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2017)

Prepared using rncauth.cls DOI: 10.1002/rnc


	1 Introduction
	2 Preliminaries
	3 LPV-MPC Scheme
	3.1 The Prediction Equation
	3.2 MPC for LPV-IO Representation with Stability Guarantees
	3.3 Synthesizing the Offline Controller
	3.4 Computating the Terminal Set

	4 Robust LPV-MPC Scheme
	4.1 LMI Formulation of the MPC Optimization Problem 
	4.2 Robust Formulation

	5 Numerical Example
	5.1 LPV-IO Modeling
	5.2 MPC Design

	6 Conclusion

