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Abstract: In the framework of Linear Parameter-Varying (LPV) systems, controllers are
commonly designed in continuous-time, but implemented on digital hardware. Additionally, LPV
system identification is formulated exclusively in discrete-time, needing structural information
about the plant, which is often provided by first principle continuous-time models. These
imply that LPV system discretization is an important issue for both system identification and
controller implementation. Discretization approaches of LPV state-space systems are introduced
and analyzed in terms of approximation error, considering ideal zero-order hold actuation and
sampling of the input-output signals and the scheduling parameter of the system. Criteria to
choose appropriate sampling times with the investigated methods are also presented.
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1. INTRODUCTION

The field of Linear Parameter-Varying (LPV) systems
evolved rapidly in the last 15 years and became a promis-
ing framework for modern industrial control with a grow-
ing number of applications. Starting with gain-scheduling
based nonlinear controller synthesis (Rugh and Shamma
[2000]), now the LPV approach offers the ability of opti-
mal control design through µ-synthesis (Zhou and Doyle
[1998]) and Linear Matrix Inequalities (LMI’s) based so-
lutions (Scherer [1996]), with guaranteed stability mar-
gins and performance bounds over the entire operation
envelope of the plant. Due to the success of LPV control
design, LPV modeling and identification also gained much
attention in the past years, resulting in many promising
solutions and a growing number of theories. Despite the
large community developing the LPV field, some basic
issues of the LPV system theory still remain undisclosed or
barely investigated (Tóth et al. [2007]). One of these issues
concerns implementation of LPV control designs in physi-
cal hardware, which often meets significant difficulties, as
mostly continuous-time (CT) LPV controllers (Packard
and Becker [1992], Scherer [1996]) are preferred in the
literature over discrete-time (DT) solutions (Apkarian and
Gahinet [1995], Packard [1994]). The main reason is that
stability and performance requirements are more easily
expressed in CT, like in a mixed sensitivity setting (Zhou
and Doyle [1998]). Therefore, the current design tools focus
on CT-LPV-SS controller synthesis, requiring efficient dis-
cretization of such systems. Beside this, first principle LPV
models of nonlinear systems are also derived in a CT from.
However, current LPV system identification methods are
developed for DT, needing structural information about
the plant, often exclusively provided by first principle CT

⋆ This work was supported by the Dutch National Science Founda-
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models. These issues imply that general discretization of
LPV representations is a crucial subject.

To satisfy these needs, in the early work of Apkarian [1997],
three different approaches for the discretization of LPV-
SS systems were introduced by extending the concepts of
the Linear Time Invariant (LTI) framework, with only a
limited discussion on the discretization error and applica-
bility for specific LPV systems. In Hallouzi et al. [2006],
an attempt was made to characterize the discretization
error of one of these methods. In this paper, we aim to
compare the properties of these and also other methods
resulting from the extension of the LTI framework, with
questions of sampling time choice, preservation of stability,
and discretization errors.

The paper is organized as follows: first, in Section 2, def-
initions of LPV-SS system representations are introduced
with concepts of discretization and sampling; in Section
3, the discretization theory of LPV-SS systems is devel-
oped introducing complete and approximative methods;
in Section 4, the introduced methods are investigated in
terms of discretization error and effects of sampling time
choice and in Section 5 further properties of the approaches
are presented; in Section 6, an example is given for the
comparison of the discretization methods and the derived
criteria; finally in Section 7, the main conclusions of the
paper are drawn.

2. LPV SYSTEM REPRESENTATIONS

First, the definition of LPV-SS systems is established in
CT as representation of an underlying physical system S.
This concept will be extended to arrive at the definition of
a DT equivalent representation through the idea of signal
sampling and hold operations.

Definition 1. (CT-LPV-SS model) Let pc (t) ∈ P be the
scheduling signal of the continuous-time LPV system S
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with P ⊂ R
np a compact set called the scheduling domain.

The continuous-time state-space model of S, denoted by
R

c
SS (S, pc), is defined as a parameter-varying first-order

differential equation system:
ẋc (t) = Ac (pc (t)) xc (t) + Bc (pc (t))uc (t) , (1)

yc (t) = Cc (pc (t)) xc (t) + Dc (pc (t))uc (t) , (2)

where xc (t) ∈ X ⊆ R
nx is the state vector of R

c
SS (S, pc),

uc (t) ∈ U ⊆ R
nu is the input vector, yc (t) ∈ Y ⊆ R

ny is
the output vector, and

[

Ac (pc) Bc (pc)
Cc (pc) Dc (pc)

]

: P →

[

R
nx×nx R

nx×nu

R
ny×nx R

ny×nu

]

,

represents the parameter-varying SS matrices of R
c
SS (S, pc).

It is assumed that all functions of pc are continuous.

In the LTI framework, a great deal of research has been
dedicated to discretization methods. The developed tech-
niques can be separated mainly into two distinct classes
(Hanselmann [1987]): isolated and non-isolated methods.
Non-isolated techniques, like in Kuo and Peterson [1973]
and Singh et al. [1974], consider the discretization of a
CT controller acting on a plant in a closed-loop setting
and they aim at the preservation of the CT closed-loop
performance. Isolated techniques, like in Middleton and
Goodwin [1990], consider the stand-alone discretization
of a CT system aiming at only the preservation of the
CT input-output behavior. While isolated approaches are
applicable to any LTI system, the non-isolated techniques
are only utilizable for controller discretization, however
they generally result in a better closed-loop performance
(Hanselmann [1987]). Unfortunately, both of these ap-
proaches are not directly utilizable for LPV systems due to
the parameter-varying nature of the plant (p-dependency
of the system matrices). However, by building on the basic
concepts of LTI discretization methods, reliable LPV-SS
discretization methods can also be developed.

First, the exact setting of the discretization problem has to
be established. We consider an isolated approach in a ideal
Zero-Order Hold (ZOH) setting presented in Figure 1. In
this formulation, we are given a CT-LPV system S, with
CT input signal uc, scheduling signal pc, and output signal
yc, that we would like to steer/describe in a digital way.
Thus, we choose that uc and pc are generated by a ideal
ZOH device and yc is sampled in a perfectly synchronized
manner with Td ∈ R

+ = {z ∈ R | z > 0} as the sampling
time. Then, for the signals of Figure 1, it holds that

pd (k) = pc (kTd) = pc (t) , (3)

ud (k) = uc (kTd) = uc (t) , (4)

yd (k) = yc (kTd) , (5)

if kTd ≤ t < (k + 1)Td, k ∈ Z, meaning that uc and pc

can only change at every sampling time instant. However,
in the LPV framework pc is considered to be a measur-
able external/environmental effect (general-LPV) or some
function of the states, inputs, or outputs of the system
S (quasi-LPV) and therefore in reality it is possibly not
fully influenced by the digitally controlled actuators of
the plant which contain the ZOH. But to describe its
effect on the plant inside a sample interval, its variation
must be restricted to a certain class of functions which
is chosen here to be the piecewise constant (zero-order)
class. By choosing this class wider, including linear, 2nd-
order polynomial, etc., higher-order hold discretization

ZOH

SamplingZOH

S
yc(t)uc(t)ud(k) yd(k)

Continuous

LPV system

pd(k)

pc(t)

Discrete LPV system

Fig. 1. Ideal ZOH discretization setting of LPV systems.

settings of LPV systems can be derived. Similar arguments
hold for the ZOH actuation of input signals in the LTI
case (see Middleton and Goodwin [1990]). In conclusion,
the introduced discretization setting coincides with the
conventional setting of the LTI framework and it is quite
realistic in the sense how computer controlled physical
systems behave (Hanselmann [1987]). Note, that the pre-
sented ZOH setting is exactly the same as the structure
for closed-loop controllers used by Apkarian [1997].

Based on these concepts, the definition of LPV-SS systems
can be established in DT as representations of an under-
lying sampled physical system S.

Definition 2. (DT-LPV-SS model) The pd-dependent dis-
crete time SS model R

d
SS (S, pd) of S with discretization

time Td ∈ R
+ is defined as:

xd (k + 1) = Ad (pd (k)) xd (k) + Bd (pd (k)) ud (k) , (6)

yd (k) = Cd (pd (k))xd (k) + Dd (pd (k)) ud (k) , (7)

where xd (k) ∈ X ⊆ R
nx is the state of R

d
SS (S, pd), and

[

Ad (pd) Bd (pd)
Cd (pd) Dd (pd)

]

: P →

[

R
nx×nx R

nx×nu

R
ny×nx R

ny×nu

]

,

represents the parameter-varying matrices of R
d
SS (S, pd).

It is assumed, that each varying parameter in (6) and (7)
is a continuous function of pd.

This concept invokes the following problem statement:

Problem 3. Given a CT-LPV system S in an ideal ZOH
setting with sampling rate Td. Derive a DT-LPV realiza-
tion of S, such that the output yd (k) of the DT system
will have minimal error (in terms of a chosen measure)
with respect to the sampled output yc (kTd) of the CT
system for any input and scheduling sequence.

3. DISCRETIZATION OF LPV-SS MODELS

In order to solve Problem 3, the isolated approaches of the
LTI framework will be extended to the LPV case. Investi-
gation of the discretization errors and other properties is
postponed till Section 4 and 5. Furthermore, an important
assumption is made, namely that the switching behavior
of the ZOH actuation has no effect on the CT plant.

3.1 Complete method

First the extension of the complete signal evolution ap-
proach (Middleton and Goodwin [1990]) is applied to
the LPV case. Based on the assumptions of the ZOH
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setting, pc (t) and uc (t) are constant signals inside each
sampling interval. Thus, the state evolution of R

c
SS (S, pc)

in t ∈ [kTd, (k + 1)Td) is described as

ẋc (t) = Ac (pc (kTd)) xc (t) + Bc (pc (kTd)) uc (kTd) , (8)

with initial condition xc (kTd). As in the LTI case, this
yields

Complete LPV-SS discretization

Ad(pd(k))=eAc(pc(kTd))Td

Bd(pd(k))=A
−1
c (pc(kTd))

[

eAc(pc(kTd))Td−I
]

Bc(pc(kTd))

Cd(pd(k))=Cc(pc(kTd))

Dd(pd(k))=Dc(pc(kTd))

where xd (k) = xc (kTd) and yd (k) = yc (kTd) due to
the ZOH setting, under the assumption that Ac (p) is
invertible for ∀p ∈ P.

3.2 Rectangular (Euler’s forward) method

To avoid the computation of eAc(pd(k))Td and the introduc-
tion of nonlinear dependency over pd, which are the main
drawbacks of the complete method, similarly to the LTI
case, a first-order approximation is utilized:

eAc(pd(k))Td ≈ I + Ac (pc (kTd))Td. (9)

Now introduce the state evolution in [kTd, (k + 1)Td) as
an integral of the right hand side of (8). By the left-hand
rectangular evaluation of this Riemann integral:

xc ((k + 1) Td)≈ xc (kTd) + TdAc (pd (k)) xc (kTd) +

+TdBc (pd (k)) ud (k) , (10)

coinciding with the suggested matrix exponential approx-
imation of (9). Based on this rectangular approach, the
conversion rules are modified as

Rectangular LPV-SS discretization

Ad(pd(k))=I+Ac(pc(kTd))Td

Bd(pd(k))=TdBc(pc(kTd))

Cd(pd(k))=Cc(pc(kTd))

Dd(pd(k))=Dc(pc(kTd))

Another interpretation of this method, utilized also by
Apkarian [1997], can be derived from Euler’s forward
discretization (Atkinson [1989]).

3.3 Other approximative methods

Continuing the line of reasoning of the rectangular ap-
proach, it is possible to develop other methods that achieve
better approximation of the complete case but with in-
creasing complexity. Higher order Taylor expansion of
eAc(pd(k))Td results in the so called polynomial discretiza-
tion methods while evaluation of the integral of the right
hand side of (8) by the trapezoidal rule gives the trape-
zoidal method (Apkarian [1997]). Multi-step numerical
formulas, like the Adams-Bashforth methods (Atkinson
[1989]) also provide competitive candidates as they achieve
better approximation than the rectangular method, but
with the same complexity. One disadvantage of the multi-
step formulas is that they increase the state dimensions
drastically (Tóth et al. [2008]).

4. CRITERIA AND ERRORS

In the following, the introduced methods will be investi-
gated in terms of the generated discretization error, con-

vergence, and numerical stability. This will be used to de-
rive upperbounds on the sampling time Td, that guarantee
a user defined bounded discretization error and stability
preservation with respect to the original CT system.

4.1 Local discretization errors

The complete method theoretically provides errorless dis-
cretization in terms of the ZOH setting. For methods
that utilize an approximation, the concept of Local Unit
Truncation (LUT) error, denoted by εk ∈ R, is introduced:

Tdεk+1 = xc ((k + 1)Td) − Ad (pd (k))xc (kTd) −

−Bd (pd (k))uc (kTd) . (11)

In the theory of numerical approximation of differential
equations, εk is considered as the measure of accuracy
(Atkinson [1989]). The following definition is important:

Definition 4. (Consistency, Atkinson [1989]) A discrete
time approximation of a differential equation is called
consistent, if for any xc(t) solution

lim
Td→0

sup
k∈Z

‖εk‖ = 0. (12)

This means that - in case of consistency - the local
approximation error of the CT dynamics will reduce with
decreasing Td. However this does not imply that the global
approximation error, ηk = xc(kTd) − xd(k), will decrease
too. For the rectangular method, (11) gives

xc ((k + 1) Td) = [I + Ac (pc (kTd)) Td] xc (kTd)+

+TdBc (pd (k)) uc (kTd) + Tdεk+1. (13)

Substraction of the first order Taylor series of xc (t) around
t = kTd from (13) yields that Tdεk+1 is equal to the
residual term, providing

εk+1 =
Td

2
ẍc (τ) . (14)

with τ ∈ (kTd, (k + 1) Td). This shows, that the rectangu-
lar method based conversion is consistent in first order (in
Td) if ‖ẍc (τ)‖ < ∞ for ∀τ .

If the right hand side of (1) is differentiable 1 in each
variable, then it can be proved that

‖ẍc (τ)‖ ≤ max
p∈P,x∈X,u∈U

∥

∥A2
c (p)x + Ac (p)Bc (p)u

∥

∥ . (15)

For the sequel, we denote the right hand side as M (1).
Note, that M (1) can be computed through gridding to
derive an estimate. Using similar arguments, the LUT
error of other discretization methods can be formulated
(Atkinson [1989]). The results are given in the first row
of Table 1, providing that each method is consistent with
varying orders. Moreover, using (15) and the chain rule of
differentiation, higher order M -constants can be derived:

M (n) = max
p∈P,x∈X,u∈U

∥

∥An+1
c (p) x + An

c (p)Bc (p)u
∥

∥ .

4.2 Global convergence and preservation of stability

So far only the LUT error of the introduced methods
was investigated, providing basic proofs of the consistency.
However, in order to achieve global convergence to the
original solution, the following concepts are important:

1 In the general LPV setting, the right hand side of (1) is not always
partially differentiable, as the requirement of continuous dependence
of the system matrices on pc does not imply differentiability in pc.
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Rectangular nth-polynomial Trapezoidal Adams-Bashforth (3-step)

εk
Td
2

x
(2)
c (τ)

T n
d

(n+1)!
x
(n+1)
c (τ) 5

12
T 2

d
x
(3)
c (τ) 3

8
T 3

d
x
(4)
c (τ)

T̆d min
p∈P

min
λ∈σ(Ac(p))

−
2Re(λ)

|λ|2
arg min

Td∈R
+
0

∣

∣

∣

∣

max
p∈P

σ̄

(

∑n

l=0

T l
d

l!
Al

c (p)

)

− 1

∣

∣

∣

∣

max
p∈P

max
λ∈σ(Ac(p)), Im(λ)=0

2
Re(λ)

arg min
Td∈R

+
0

∣

∣

∣

∣

max
p̄∈P3

σ̄ (Ad (p̄)) − 1

∣

∣

∣

∣

T̂d

√

2
εmaxMmax

x

M(1)
n+1

√

εmaxMmax
x (n+1)!

M(n)
3

√

12εmaxMmax
x

5M(2)
4

√

8εmaxMmax
x

3M(3)

Table 1. Local truncation error εk with τ ∈ ((k− 1)Td, kTd), sampling boundary of stability T̆d,

and sampling upperbound of performance T̂d of LPV-SS ZOH discretization methods.

Definition 5. (N-convergence, Atkinson [1989]) A dis-
cretization method is called numerically convergent, if

lim
Td→0

sup
k∈Z

−

0

‖xd (k) − xc (kTd)‖ = 0, (16)

with Z
−

0 = Z \ Z
+ implies that

lim
Td→0

sup
k∈Z+

‖xd (k) − xc (kTd)‖ = 0. (17)

This means that the discretized solution can get arbitrary
close to the original CT behavior by decreasing Td.

Definition 6. (N-stability, Atkinson [1989]) A discretiza-
tion method is called numerically stable, if for sufficiently
small values of Td and ǫ, the initial conditions xd(0) =
xc(0) and ‖x̃d(0) − xc(0)‖ < ǫ imply that for

x̃d(k + 1) = Ad(pd(k))x̃d(k) + Bd(pd(k))ud(k), (18)

∃δ ∈ R
+ such that ‖xd(k) − x̃d(k)‖ < δǫ for ∀k ∈ Z

+.

The notion of N-stability means that small errors in the
initial condition will not cause divergence as the solution
is iterated. For the approximative methods, N-convergence
and N-stability are questions of main importance.

To analyze these notions, introduce the characteristic
polynomial of the DT-LPV-SS representation as

ρ (z, pd(k), Td) = det (zI − Ad (pd (k))) , (19)

for each sample interval.

Theorem 7. (Strong root-condition, Atkinson [1989]) The
single-step 2 discretization methods of Section 3 are N-
convergent and N-stable, if for all λ ∈ C with

∃p ∈ P such that ρ (λ, p, 0) = 0, (20)

it holds that |λ| = 1.

It can be shown that all of the introduced single-step LPV-
discretization methods satisfy Theorem 7. In the Adams-
Bashforth case, it can also be proved that the general,
multi-step formulation of the strong root-condition is sat-
isfied. Now we can extend the root-condition to compute
an exact T̆d upperbound of the ’sufficiently small’ Td that
provide N-stability (see Definition 6):

Definition 8. (N-Stability-radius, Atkinson [1989]) The N-

stability radius T̆d is defined as the largest Td ∈ R
+
0 for

which all λ ∈ C with ∃p ∈ P such that
ρ(λ, p, T̆d) = 0, (21)

satisfy that |λ| ≤ 1.

This implies, that if Td < T̆d, then the resulting DT system
is locally stable (in system theoretic sense), meaning

max
p∈P

σ̄ (Ad (p)) < 1, (22)

2 Single-step methods apply approximation based on a single sample
interval, like the rectangular, polynomial, and trapezoidal method.

where σ̄ (·) = max |σ (·)| is the spectral radius and σ (·) is
the eigenvalue operator.

If the original CT system S is globally stable (quadratic,
BIBO, etc.), then commonly it is desirable that its DT
approximation is also globally stable. For such a property,
it is needed that local stability of R

c
SS (S, pc):

max
p∈P

max
λ∈σ(Ac(p))

Re{λ} < 0, (23)

is preserved, resulting in a locally stable DT represen-
tation. This gives that for the introduced discretization
methods, preservation of local stability of the original
system and N-stability of the discretization method both
require local stability of the resulting DT representation.
For N-stability it is a sufficient, for preservation of global
stability of S it is a necessary condition.

In case of the rectangular method, (22) is equivalent with

max
p∈P

max
λ∈σ(Ac(p))

∣

∣

∣

1
Td

+ λ
∣

∣

∣
< 1

Td
. (24)

From (24), the stability radius is

T̆d = min
p∈P

min
λ∈σ(Ac(p))

−
2Re (λ)

|λ|
2 . (25)

Note that T̆d = 0 in case of locally unstable R
c
SS (S, pc).

For the other methods, T̆d can also be derived to ensure
convergence and N-stability. The bounds are given in the
second row of Table 1. An interesting case is the trape-
zoidal method which - for stable LPV-SS systems - always
guarantees these properties with arbitrary sampling rate
(T̆d = ∞). Instead of convergence, here T̆d ensures the ex-
istence of the DT projection (existence of Ad). In Apkarian
[1997], the condition of

T̆d = max
p∈P

2

σ̄ (Ac (p))
, (26)

was proposed to guarantee existence, which is a rather
conservative upperbound.

4.3 Adequate discretization step size

Beside convergence and N-stability, the appropriate choice
of Td to arrive at a specific performance is also impor-
tant. By utilizing the LUT error expressions developed in
Section 4.1, such upperbounds of Td will be derived that
guarantee a certain bound on the approximation error in
terms of a chosen measure ‖·‖. Define

Mmax
x = max

t∈R
‖xc (t)‖ = max

x∈X
‖x‖ , (27)

as the maximum ’amplitude’ of the state signals for any
uc : Z → U and pc : Z → P. Also define εmax as the
expected maximum relative local error of the discretization
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Property Complete Rectangular nth-Polynomial Trapezoidal Adams-Bashforth

consistency / convergence always 1st-order nth-order 2nd-order 3rd-order

preservation of stability / N-stab. always global local with T̆d local with T̆d always local local with T̆d

preservation of instability + - - + -
existence always always always conditional always
complexity exponential linear polynomial rational linear
preservation of affine dependence - + - - +
computational load high low moderate high low
system order preserved preserved preserved preserved increased

Table 2. Properties of the derived discretization methods

in terms of percentage. Then in the rectangular case, based
on (14), such a Td ∈ R

+ is sought, that satisfies

Td

2
‖ẍc (τ)‖ = ‖εk‖ ≤

εmaxM
max
x

100 · Td

, (28)

for ∀k ∈ Z and τ ∈ (kTd, (k + 1)Td). Here 1/Td is
introduced on the right side of (28) as εk is scaled by Td

(see (13)). By using M (1) ≥ sup ‖ẍc (τ)‖, inequality (28)

holds for any 0 ≤ Td ≤ T̂d where

T̂d =

√

2
εmaxMmax

x

100 · M (1)
. (29)

The criterion (29) provides an upperbound estimate of
the required Td, that achieves εmax percentage local dis-
cretization error of the system states in terms of a chosen
measure. Similar criteria can be developed for the other
methods by using the LUT error expressions of Table 1
and the higher-order sensitivity constants M (n). These
upperbounds are presented in the third row of Table 1.

In practical situations, one may be concerned about the
maximum relative global error ηmax, defined as

‖ηk‖ ≤
ηmaxM

max
x

100
. (30)

for ∀k ∈ Z. However in case of Td ≤ T̆d, εmax can be used as
a good approximation of ηmax, therefore the performance
bound T̂d can be used to bound the global error as well
(for an example see Section 6).

5. PROPERTIES

Beside stability and discretization error characteristics
there are other properties of discretization methods which
could assist or hinder further utilization of the derived
DT model. With the previously derived results, these vital
properties are summarized in Table 2. From this table it
is apparent that the complete method provides errorless
conversion at the price of heavy nonlinear dependence
of the DT model on pd. As in LPV control synthesis
mostly affine dependence (see Scherer [1996]) is assumed,
therefore both for modeling and controller discretization
purposes - beside the preservation of stability - the preser-
vation of this linear dependency over the scheduling is
also highly preferred. This led to the introduction of the
approximative methods to provide acceptable performance
but with less complexity of the new dependence on the
scheduling. Complicated dependence on pd, like inversion
or matrix exponential, also results in a serious increase of
the computation time, which gives a preference towards
the linear methods like the rectangular or the Adams-
Bashforth approach. However, in the latter case, the order
increase of the DT system requires extra memory storage.
If the quality of the DT model has priority, then the

trapezoidal and the polynomial methods are suggested due
their fast convergence and large stability radius.

6. EXAMPLE

In the following, an example will be presented to visualize
the properties of the analyzed discretization methods and
the performance of the sample bound criteria.

Consider R
c
SS (S1, pc), defined as





19.98pc − 20 202 − 182pc

45pc − 50 0
1 + pc

1 + pc

1 + pc 1 + pc
1+pc

10





with P = [−1, 1] . It can be shown, that the above
system is affine and locally stable. Now assume that
S1 is in a ZOH setting, described by Figure 1, with
sampling rate Td = 0.02. To show the performance of
the investigated discretization methods, the output of the
original and its discrete approximations were simulated on
the [0, 1] time interval for zero initial conditions and for 100
different realizations of ud (k) , pd (k) ∈ U (−1, 1) where U
represents uniform distribution. The achieved worst-case
MSE 3 and ηmax of the resulting outputs yd and states xd

with respect to yc and xc are presented in Table 3. From
these error measures it is immediate that, except for the
complete and the trapezoidal method, all approximations
diverge. As expected, the error of the complete method
is extremely small and the trapezoidal method provides a
moderate, but acceptable performance.

As a second step, we calculate sampling bounds T̆d and
T̂d by choosing the Euclidian norm as an error measure
(both in (27) and (28)) and εmax = 1%, with the intention
to achieve ηmax = 1%. The calculated sampling bounds
are presented in Table 4. During the calculation of T̂d it
was assumed that X = [−0.1, 0.1]2, which was verified by
several simulations of R

c
SS (S1, pc). By these results, the

rectangular method needs high sampling rate to achieve
stable projection and even smaller Td to provide the
required performance. The 2nd-order polynomial projec-
tion, has significantly better bounds due to the 2nd-order
accuracy of this method. For the trapezoidal case, the
existence of the transformation is always provided because
R

c
SS (S1, pc) has only stable local poles. For comparison,

the bound of Apkarian [1997] given by (26), would have

resulted in T̆d = 0.2.

Now use the derived bounds to choose a new Td for the
calculation of the discrete projections. As the T̆d bounds

3 Mean Square Error, the expected value of the squared estima-

tion error, commonly approximated in a sampled form: M̂SE =
1
N

∑N−1

k=0
(yc (kTd) − yd (k))2.
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MSE

Td Complete Rectangular 2nd-polynomial Trapezoidal Adams-Bashforth

2 · 10−2, (50Hz) 1.68 · 10−10 3.98 · 1027 (∗) 1.96 · 1030 (∗) 1.97 · 10−3 2.26 · 1047 (∗)

5 · 10−3, (0.2kHz) 1.69 · 10−10 2.20 · 1012 (∗) 4.70 · 10−4 3.81 · 10−5 2.14 · 10−1

10−4, (10kHz) 1.68 · 10−10 2.27 · 10−6 1.05 · 10−10 1.53 · 10−8 1.6 · 10−8

ηmax

Td Complete Rectangular 2nd-polynomial Trapezoidal Adams-Bashforth

2 · 10−2, (50Hz) 0.053% (∗) (∗) 106.12% (∗)

5 · 10−3, (0.2kHz) 0.060% (∗) 40.31% 8.02% 665.94%
10−4, (10kHz) 0.063% 2.62% 0.06% 0.19% 0.76%

Table 3. Worst-case discretization error of S1, given in terms of the achieved MSE and ηmax for
100 simulations. (∗) indicates unstable projection to the discrete domain.

Criteria

Method Rectangular 2nd-polynomial Trapezoidal Adams-Bashforth

T̆d 2 · 10−4 sec, (5kHz) 5.60 · 10−3 sec, (0.2kHz) ∞ 1.77 · 10−3 sec, (0.6kHz)

T̂d 6.87 · 10−5 sec, (15kHz) 1.73 · 10−3 sec, (0.6kHz) 1.28 · 10−3 sec, (0.8kHz) 1.21 · 10−3 sec, (0.8kHz)

Table 4. Stability (T̆d) and performance (T̂d) bounds provided by the criterion functions of Table
1. The results here are presented in terms of the Euclidian measure and εmax = 1%.

of Table 4 represent the boundary of stability, therefore
Td < T̆d will be used as new discretization step size in
each case. Based on this, by discretizing R

c
SS (S1, pc) with

Td = 0.005, almost the stability bound of the polynomial
method, the simulation results are given in the second
rows of Table 3. The rectangular method again provides an
unstable projection, while the Adams-Bashforth method is
on the brink of instability due to local instability of Ad for
some p. The polynomial method gives a stable, convergent
approximation, in accordance with its T̆d bound. The
achieved ηmax of each approximative method is above the
aimed 1 % which is in accordance with their T̂d.

As a next step, discretizations of R
c
SS (S1, pc) with Td =

10−4, the half of the T̆d bound of the rectangular method,
were calculated. The results are given in the third rows
of Table 3. Finally, the rectangular method converges and
also the approximation capabilities of the other methods
improve. By looking at the achieved εmax, the polynomial
and the trapezoidal method provide the aimed 1 % error
performance which is in accordance with their T̂d bound,
while in the rectangular case the achieved ηmax is larger
than 1 % as 10−4 is larger than its T̂d bound.

7. CONCLUSION

In this paper, the extension of ZOH based isolated dis-
cretization approaches to the LPV case was investigated.
The concepts of local truncation error with the numer-
ical convergence and stability of the approximations of
the original CT behavior were analyzed, as well as the
issue of local stability preservation. Using the results of
these investigations, practically applicable conditions for
the choice of sampling time were derived.
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