
1

On The Discretization of

LPV State-Space Representations

R. Tóth, P. S. C. Heuberger, P. M. J. Van den Hof

Abstract

Discretization of Linear Parameter-Varying (LPV) systems is a relevant, but insufficiently inves-

tigated problem of both LPV control design and system identification. In this contribution, existing

results on the discretization of LPV state-space models with static dependence (without memory) on the

scheduling signal are surveyed and new methods are introduced. These approaches are analyzed in terms

of approximation error, considering ideal zero-order hold actuation and sampling of the input-output

signals and scheduling variables of the system. Criteria to choose appropriate sampling periods with

respect to the investigated methods are also presented. The application of the considered approaches on

state-space representations with dynamic dependence (with memory) on the scheduling is investigated

in a higher-order hold sense.

Index Terms

Linear parameter-varying systems; discretization; digital implementation.

I. INTRODUCTION

In the last 15 years, the field of Linear Parameter-Varying (LPV) systems has become a promis-

ing framework for modern industrial control with a growing number of successful applications

(see [1] for a recent overview). Despite the theoretical advances of the field, implementation of

LPV control designs in physical hardware often meets significant difficulties, as continuous-time

(CT) LPV controllers [2], [3] are often preferred in practice over discrete-time (DT) solutions [4],

[5]. The main reason is that stability and performance requirements can be more conveniently
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expressed in CT, like in a mixed sensitivity setting [6]. Therefore, the current design tools

focus on continuous-time LPV State-Space (LPV-SS) controller synthesis, requiring efficient

discretization of such system representations for implementation purposes. Besides this, LPV

identification methods are exclusively developed for DT. For efficient use of these approaches,

structural information about the plant is required, which is often only provided by first principle

CT models. These issues imply that discretization of LPV representations is a crucial issue for

both identification and controller implementation.

In the early work of Apkarian [7] three different approaches for the discretization of LPV-

SS representations, the complete, Euler and Tustin methods, were introduced (see Section III)

in a Zero-Order Hold (ZOH) setting by extending the concepts of the Linear Time-Invariant

(LTI) framework. However, the discussion on the discretization error and applicability of these

methods for specific LPV systems was very limited. Only in [8] an attempt was made to

characterize the discretization error of the Euler method in a matrix-approximation setting.

Many applications of the methods introduced in [7] have been investigated with respect to

Linear Fractional Representation (LFR) of LPV systems, [9], [10], [11], [12], even making

preliminary steps towards a mixed First-Order Hold (1OH) discretization setting [13], [14].

However, the validity of the used discretization settings or the introduced approximation error

has not been analyzed so far. As almost all of these methods suffer from various disadvantages

like significant approximation errors, loss of stability, or high complexity, it is necessary to

investigate the underlying approximation questions of the dynamics both in terms of numerical

analysis and system stability concepts. Additionally, the complexity of the underlying problems

raises the need for a useful guide to support engineers in the decision which method to use in

specific situations.

In this paper, we aim to take up this challenge and complete the extension of the discretization

approaches of the LTI framework to LPV state-space representations. As a main contribution,

we compare the properties of the available methods with questions of sampling-period choice,

preservation of stability, and discretization errors. We investigate the validity of the ZOH setting

and consider when the application of a higher-order hold setting is unavoidable.

The current paper further extends the results reported in [15] and is organized as follows:

first, in Section II, definitions of LPV-SS system representations are introduced. In Section

III, the concept of the used ZOH setting is discussed and the discretization theory of LPV-SS
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representations is reviewed, considering complete and approximative methods. In Section IV,

the introduced methods are investigated in terms of discretization error and effects of sampling

period choice and in Section V further properties of the approaches are presented. In Section VI

it is investigated when the application of a higher-order hold discretization setting is necessary,

while in Section VII a numerical example is given for the comparison of the discretization

methods and the derived criteria. Finally, in Section VIII, the main conclusions of the paper are

drawn.

II. LPV STATE-SPACE MODELS IN CT AND DT

In this section LPV-SS system representations are defined in CT as models of an underlying

physical system S. This concept is extended to arrive at the definition of a DT equivalent LPV-SS

representation through the idea of signal sampling. In the development of the upcoming theory,

we restrict the focus to LPV-SS representations with static dependence (without memory) on

the scheduling signal, which is important since LPV-SS and LPV Input-Output (LPV-IO) system

representations are not equivalent if static dependence on the scheduling vector is assumed, like

affine dependence (see [1], [16]). Transformation between these domains depends on derivatives

(CT) or time shifts (DT) of the scheduling signal (dynamic dependence), therefore it deforms the

static dependence of the original model. Later in Section VI, the case of LPV-SS representations

with dynamic dependence is revisited to investigate how the introduced theory can be applied

to them.

Definition 1 (CT-LPV-SS model): Let pc : R→ P be the scheduling signal of the continuous-

time LPV system S with P ⊂ RnP a compact set called the scheduling space. The continuous-time

state-space model of S, denoted by Rc
SS(S), with static scheduling dependence, is defined as

ẋc = Ac(pc)xc + Bc(pc)uc, (1a)

yc = Cc(pc)xc + Dc(pc)uc, (1b)

where xc : R → X = RnX , uc : R → U = RnU and yc : R → Y = RnY are the state, input and

output variables respectively and



Ac Bc

Cc Dc


 : P→



RnX×nX RnX×nU

RnY×nX RnY×nU


 ,

are analytic matrix functions on P.
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By defining yd, ud, pd as the sampled signals of yc, uc, pc with sampling period Td > 0, e.g.,

ud(k) := uc(kTd), the definition of a LPV-SS representation can be established in DT as the

representation of an underlying sampled continuous-time LPV system S.

Definition 2 (DT-LPV-SS model): The pd-dependent DT state-space model Rd
SS (S, Td) of S

with discretization time Td > 0 is defined as:

qxd = Ad(pd)xd + Bd(pd)ud, (2a)

yd = Cd(pd)xd + Dd(pd)ud, (2b)

where q is the forward time-shift operator qxd(k) = xd(k + 1), xd is the state variable of

Rd
SS (S, Td) with dimension nX, and Ad, . . . , Dd are bounded matrix functions on P with appro-

priate dimensions.

Note that it is not necessary that xd is also a sampled version of xc. Now we can define the

problem we intend to focus on in the rest of the paper:

Problem 1 (Discretization problem): For a given Rc
SS(S) representation of a CT-LPV system

S, investigate the possible ways of approximating with a Rd
SS (S, Td) the sampled behavior of

the output signal yc of S for all possible trajectories of the input uc and the scheduling variable

pc. Explore the conditions on the sampling period Td > 0 with respect to approximation error

and preservation of stability characteristics of S .

III. DISCRETIZATION OF LPV STATE-SPACE MODELS

In order to solve Problem 1, we first discuss and analyze the ZOH setting that is commonly

used both in the LPV and LTI literature. Then we give a brief overview of the available extensions

of LTI approaches in this setting with respect to the LPV case, also introducing two additional

methods in terms of the polynomial and multi-step approaches. This overview is essential to the

understanding of the upcoming numerical analysis of discretization errors and other properties

in Sections IV and V.

A. Basic concepts of the discretization

In the LTI framework a great deal of research has been dedicated to discretization methods both

in terms of isolated (stand-alone) and closed-loop settings [17]. Unfortunately, these approaches

are not directly applicable for LPV systems due to the parameter-varying nature of the plant
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(p-dependence of the system matrices). As we will see, by building on the basic concepts of

LTI discretization methods, reliable LPV-SS discretization methods can still be developed.

In the available LPV discretization literature, almost exclusively an isolated approach in an

ideal Zero-Order Hold (ZOH) setting, as presented in Figure 1, is followed where the following

assumption holds:

Assumption 1 (ZOH setting): We are given a CT-LPV system S, with CT input signal uc,

scheduling signal pc, and output signal yc, where uc and pc are generated by an ideal ZOH1

device and yc is sampled in a perfectly synchronized manner with Td > 0 as the sampling

period or discretization time-step. The ZOH and the instrument providing the output sampling

have infinite resolution (no quantization error [18]) and their processing time is zero.

In terms of Assumption 1, the following relations hold for the signals of Figure 1:

uc(t) := ud(k), ∀t ∈ [kTd, (k + 1)Td), (3a)

pc(t) := pd(k), ∀t ∈ [kTd, (k + 1)Td), (3b)

yd(k) := yc(kTd), (3c)

for each k ∈ Z, meaning that uc and pc can only change at the end of each sampling interval.

However in the LPV framework, this setting, i.e. Assumption 1, is criticized as, in terms of

the use of LPV models, pc is often considered to be a measurable external/environmental effect

(general-LPV) or some function of the states, inputs, or outputs of the system S (quasi-LPV).

Therefore, in reality it is possibly not fully influenced by the digitally controlled actuators of the

plant which contain the ZOH. On the other hand, similar to the LTI case, a meaningful problem

setting of discretization necessitates the restriction of the free variables of the system, i.e., uc

and pc, to vary in a predefined manner during the sampling period. This is required in order

to describe the evolution of all non-free variables inside the sampling interval, which makes it

possible to derive a DT description of the system where signals are only observed at the sampling

period. The simplest case is when a ZOH is applied on uc and pc (Assumption 1), restricting

their variation to be piecewise-constant. However, this restriction can be relaxed to include a

larger set of possible signal trajectories like piece-wise linear (called first-order-hold), or 2nd-

order polynomial (called second-order-hold), etc. Using such a setting in general can provide

1The ZOH device is a signal hold instrument providing a CT signal which is constant till the device is commanded to change

it to a new value in a piecewise constant manner.
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more accurate DT projection of the original behavior as motivated in [13], [14], however the

resulting highly complicated discretization rules are likely to end up with non-causal scheduling

dependence (see [19]).

By aiming at the investigation of discretization error, stability characteristics and other proper-

ties of the available LPV approaches, we also adopt the use of the LPV-ZOH setting as our basic

discretization setting. We will show that this setting is only reasonable for the discretization of

LPV-SS representation with static dependence as dynamic dependence requires a higher-order

hold approach. The presented ZOH setting is also applicable for closed-loop controllers in the

structure given in Figure 2, which has been used in [7]. Note, the assumption that the scheduling

vector of the continuous LPV controller is affected by a ZOH also holds in this case.

A basic property of the LPV-ZOH setting is that, due to the assumed ideal hold devices, at

the beginning of each sample interval a switching effect occurs. For the signals uc, pc defined

through (3a-b) it holds that

uc(t) =
∑∞

k=−∞ 1(t− kTd)
(
ud(k)− ud(k − 1)

)
, (4a)

pc(t) =
∑∞

k=−∞ 1(t− kTd)
(
pd(k)− pd(k − 1)

)
, (4b)

where 1(t) is the unit-step function:

1(t) =





0, if t < 0,

1, if t ≥ 0.
(5)

The result of 1(t− kTd) on Rc
SS(S) in every sampling period is called the switching effect of

the ZOH actuation. Contrary to the LTI case, the switching effect on pc introduces additional

dynamics into the system which hardly occurs in reality. Thus, to avoid the overcomplicated

analysis of such effects, the following assumption is made:

Assumption 2 (Switching effects): The switching behavior of the ZOH actuation has no effect

on the CT plant, i.e. the switching of the signals is assumed to take place smoothly.

Note, this assumption is automatically satisfied in most numerical simulations of LPV systems,

like in the implemented numerical approaches of SIMULINK in MATLAB. The analysis of the

results of this assumption is postponed till Section IV to avoid confusion. Next we summarize

the approaches available in the literature and also introduce additional methods:
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B. Complete method

First the LPV extension of the complete signal evolution approach [20] of the LTI framework

is considered [7]. Let a CT Rc
SS (S) be given in the ZOH setting. Based on Assumption 1, i.e.

pc (t) and uc (t) are constant signals inside each sampling interval, the state-equations (1a-b) of

Rc
SS (S) can be written as

ẋc (t) = Ac (pc (kTd)) xc (t) + Bc (pc (kTd)) uc (kTd) , (6a)

yc(t) = Cc (pc (kTd)) xc (t) + Dc (pc (kTd)) uc (kTd) , (6b)

for t ∈ [kTd, (k + 1) Td) with initial condition xc (kTd). The state equation (6a), associated with

the kth sampling interval, is an Ordinary Differential Equation (ODE). To derive a solution of

this ODE, introduce f(xc, uc, pc) as the right hand side of (1a). Under Assumptions 1 and 2 it

holds that
∫ (k+1)Td

kTd

f(xc, uc, pc)(τ) dτ =
∫ (k+1)Td

kTd

Ac(pd(k))xc (τ) + Bc(pd(k))uc (kTd) dτ, (7)

which defines the solution of (6a) at t = (k + 1)Td as

xc((k + 1)Td) = xc(kTd) +
∫ (k+1)Td

kTd

f(xc, uc, pc)(τ) dτ. (8)

Assume that Ac (p) is invertible2. By substituting xd (k) = xc (kTd) and ud (k) = uc (kTd), (8)

gives

qxd = eAc(pd)Tdxd + A−1
c (pd)

(
eAc(pd)Td − I

)
Bc (pd) ud, (9a)

yd = Cc (pd) xd + Dc (pd) ud, (9b)

where yd (k) = yc (kTd) due to the ZOH setting. We call this discretization method the complete

method, giving the following conversion rules:

Complete LPV-SS discretization

Ad (pd (k)) = eAc(pc(kTd))Td

Bd (pd (k)) = A−1
c (pc (kTd))

(
eAc(pc(kTd))Td − I

)
Bc (pc (kTd))

Cd (pd (k)) = Cc (pc (kTd))

Dd (pd (k)) = Dc (pc (kTd))

2To compute the resulting matrix functions of this discretization approach, Ac(p) is not required to be invertible, but if it is,

we can write the resulting DT description of the sate-evolution conveniently as (9a).
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C. Approximative approaches

The complete method is commonly not favored in the LPV literature as it introduces heavy

nonlinear dependence on pd. Identification and control-synthesis procedures are often based on

the assumption of linear, polynomial, or rational (static) dependence on pc, and hence it is

required to develop approximative discretization methods that try to achieve good representation

of the original behavior, but with a low complexity of the coefficient dependence. To do so, the

approximative discretization methods of the LTI case can be systematically extended by using

different approximations of the integral that describes the state-evolution inside the sample-

interval.

1) Rectangular (Euler’s forward) method: The simplest way to avoid the appearance of eTdAc

is to apply a first-order approximation:

eTdAc(pc(kTd)) ≈ I + TdAc(pc(kTd)). (10)

Consider f(xc, uc, pc) as defined in the previous section. Then an approximation of the solution

(8) can be considered by the left-hand rectangular evaluation of (7), which gives

xc ((k + 1) Td) ≈ xc (kTd) + TdAc (pc (kTd)) xc (kTd) + TdBc (pc (kTd)) uc (kTd) , (11)

coinciding with the suggested matrix exponential approximation of (10). Based on this rectan-

gular approach, the DT approximation of Rc
SS (S) is given by the following conversion rules:

Rectangular LPV-SS discretization

Ad (pd (k)) = I + TdAc (pc (kTd))

Bd (pd (k)) = TdBc (pc (kTd))

Cd (pd (k)) = Cc (pc (kTd))

Dd (pd (k)) = Dc (pc (kTd))

Another interpretation of this method, used in [7], can be derived from Euler’s forward

discretization [21].

2) Polynomial (Hanselmann) method: It is possible to develop other methods that achieve

better approximation of the complete case but with increasing complexity. As suggested in the

LTI case by Hanselmann [17], one way leads trough the higher order Taylor expansion of the

matrix exponential term:
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eAc(pc(kTd))Td ≈ I +
n∑

l=1

Tl
d

l!
Al

c (pc (kTd)) . (12)

This results in the extension of the so called polynomial discretization methods. Substituting (12)

into (6a) gives:

Polynomial LPV-SS discretization

Ad (pd (k)) = I +
∑n

l=1
Tl
d
l! Al

c (pc (kTd))

Bd (pd (k)) = Td

(
I +

∑n−1
l=1

Tl
d

l+1!A
l
c (pc (kTd))

)
Bc (pc (kTd))

Cd (pd (k)) = Cc (pc (kTd))

Dd (pd (k)) = Dc (pc (kTd))

3) Trapezoidal (Tustin) method: An alternative way of providing a better approximation than

the rectangular method is to use a different approximative evaluation of integral (8). By using a

trapezoidal evaluation, we obtain

xc ((k + 1) Td) ≈ xc (kTd) +
Td

2

(
f |kTd

+ f |(k+1)Td

)
, (13)

where f |τ = f(xc, uc, pc)(τ). The trapezoidal approach is a commonly used technique in the

LTI framework resulting in the so called Tustin type of discretization [22]. Furthermore, it also

coincides with the Extended Euler method and the 1-step Adams-Moulton method of numerical

approximation of ODEs [21]. Using approximation (13), the derivation of the LPV Tustin method

can be given similarly as in [7]. The key concept is to apply a change of variables:

x̆d (k) =
1√
Td

(
I − Td

2
Ac (pc (kTd))

)
xc (kTd)−

√
Td

2
Bc (pc (kTd)) ud (k) . (14)

If [I − Td

2
Ac (p)] is invertible for ∀p ∈ P, then substitution of (14) into (13) gives a DT

state-equation after some algebraic manipulations. Based on this state-equation, the resulting

SS representation is given by the following conversion rules:

Trapezoidal LPV-SS discretization

Ad (pd (k)) =
(
I + Td

2 Ac (pc (kTd))
) (

I − Td
2 Ac (pc (kTd))

)−1

Bd (pd (k)) =
√
Td

(
I − Td

2 Ac (pc (kTd))
)−1

Bc (pc (kTd))

Cd (pd (k)) =
√
TdCc (pc (kTd))

(
I − Td

2 Ac (pc (kTd))
)−1

Dd (pd (k)) = Td
2 Cc (pc (kTd))

(
I − Td

2 Ac (pc (kTd))
)−1

Bc (pc (kTd)) + Dc (pc (kTd))

It is important to note that, like in the LTI case, the trapezoidal method approximates only the

input-output behavior of Rd
SS(S, Td), as it gives an approximative DT-SS representation in terms

August 16, 2010 DRAFT



10

of a new state-variable x̆d. Moreover, it is easy to show that the state transformation described by

(14) is a Lyapunov transformation if det(I − Td

2
Ac (p)) 6= 0 for any p ∈ P where P is compact.

Hence it guarantees preservation of stability of the approximated system [23].

4) Multi-step methods: As an other alternative, consider the state evolution as the solution

of the differential equation defined by (1a). This solution can be numerically approximated

via multi-step formulas like the Runge-Kutta, Adams-Moulton, or the Adams-Bashforth type

of approaches [21]. In commercial engineering software packages, like MATLAB SIMULINK,

commonly variable step-size implementation of these algorithms assures accurate simulation

of CT systems. However in the considered ZOH discretization setting, the step size, i.e. the

sampling rate, is fixed and sampled data is only available at past and present sampling instances.

This immediately excludes multi-step implicit methods like the Adams-Moulton approaches.

Moreover f(xc, uc, pc) can only be evaluated for integer multiples of the sampling period, as the

input only changes at these time instances and the resulting model must be realized as a single

rate (not multi-rate) system. Therefore it is complicated to apply methods like the Runge-Kutta

approach. The family of Adams-Bashforth methods does fulfill these requirements (see [21]).

The 3-step version of this numerical approach uses the following approximation:

xc ((k + 1) Td) ≈ xd (k + 1) = xc (kTd) +
Td

12

(
5 f |(k−2)Td

− 16 f |(k−1)Td
+ 23 f |kTd

)
. (15)

Formulating this state-space equation in an augmented SS form with a new state-variable

x̆d =
[

xT
d f |>(k−1)Td

f |>(k−2)Td

]>
, (16)

leads to the following conversion rules:

Adams-Bashforth LPV-SS discretization

Ad (pd (k)) =




I + 23Td
12 Ac (pc (kTd)) − 16Td

12 I 5Td
12 I

Ac (pc (kTd)) 0 0

0 I 0




Bd (pd (k)) =
[

23Td
12 BT

c (pc (kTd)) BT
c (pc (kTd)) 0

]>

Cd (pd (k)) =
[

Cc (pc (kTd)) 0 0
]

Dd (pd (k)) = Dc (pc (kTd))
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IV. CRITERIA AND ERRORS

As the main contribution, the previously introduced methods are investigated in terms of

the generated discretization error, convergence and numerical stability, by using the tools of

numerical analysis. The results of this investigation will give the basis to derive upperbounds on

the sampling period Td, that guarantee a user-defined bounded discretization error and stability

preservation with respect to the original CT system. Moreover, the influence of the assumption

that no switching effects result from to the ZOH actuation is investigated as well.

A. Local discretization errors

The complete method theoretically provides errorless discretization in terms of the ZOH

setting. For methods that utilize an approximation, the concept of Local Unit Truncation (LUT)

error, denoted by εk ∈ R, is introduced. Let Rx(q, pd) and Ru(q, pd) be polynomials in q with

pd-dependent coefficient matrices. Choose these polynomials such that they formulate the state

update of the DT approximations on the same state-basis as in Rc
SS(S). In the rectangular and the

polynomial case, Rx(q, pd) = Ad(pd) and Ru(q, pd) = Bd(pd), but in the other cases, they also

include the appropriate state-transformation. For example in the trapezoidal case, (13) describes

the DT state update with respect to the original state basis of Rc
SS(S). By using the change of

variables (14), we transformed (13) to correspond to an LPV state-space equation. However in

terms of analysis we need to use (13) to characterize the LUT with respect to xd. From (13) it

follows that in the trapezoidal case:

Rx(q, pd)(k) =
(
I + Td

2
Ac(pd(k))

) (
I − Td

2
Ac(pd(k + 1))

)−1

Ru(q, pd)(k) = Td

2

(
I − Td

2
Ac(pd(k + 1))

)−1 (
Bc(pd(k)) + Bc(pd(k + 1))q

)
.

For each sampling interval, εk is defined by

Tdεk+n :=
(
qnxd −Rx(q, pd)xd −Ru(q, pd)ud

)
(k), (17)

where n = 1 for all single step methods (all considered approaches except the Adams-Bashforth

case) while n equals to the number of steps in case of a multi-step methods (like n = 3 for the

3-step Adams-Bashforth method). Note that LUT represents the relative approximation error of

the system dynamics at each sampling period, when the correct sampled continuous states xc

and inputs uc are used for the state update of the DT system. Hence the name ”local”. In the
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theory of numerical approximation of differential equations, εk is considered as the measure of

accuracy [21]. The following definition is important:

Definition 3 (N-consistency, based on [21]): The discrete-time approximation of the state-

equation (1a) is called numerically consistent if for any solution (xc, pc, uc) of (1a) it holds

that

lim
Td→0

sup
k∈Z

‖εk‖ = 0. (18)

This means that - in case of N-consistency - the local approximation error reduces with decreasing

Td. However this does not imply that the supremum of the global approximation error,

ηk+n :=
(
qnxd −Rx(q, pd)x̂d −Ru(q, pd)ud

)
(k). (19)

where n is the number of steps in the approximation method and x̂d is the DT approximation

of the state, decreases/converges to zero too. As a next step, the LUT error of each method is

investigated together with the N-consistency.

1) Rectangular method: In this case, (17) gives

xc ((k + 1) Td) =
(
I + Ac (pc (kTd)) Td

)
xc (kTd) + TdBc (pc (kTd)) uc (kTd) + Tdεk+1. (20)

Define the first-order Taylor approximation of xc around the time-instant kTd as

xc(t) = xc(kTd) + (t− kTd)ẋc(kTd) +
1

2
(t− kTd)

2ẍc(τ), (21)

for t > kTd and τ ∈ (kTd, t). Substraction of (21) for t = (k +1)Td from (20) yields that Tdεk+1

is equal to the residual term, giving

εk+1 =
Td

2
ẍc (τ) . (22)

with τ ∈ (kTd, (k + 1) Td). This shows that in the ZOH setting, the rectangular-method-based

conversion is consistent in first order (in Td) if ‖ẍc (τ)‖ < ∞ for all τ ∈ R.

If f is partially differentiable3 in each variable, then

ẍc(τ) =
∂f

∂xc

ẋc (τ)︸ ︷︷ ︸
f |τ

+
∂f

∂uc

u̇c (τ) +
∂f

∂pc

ṗc (τ) . (23)

Due to Assumptions 1-2, u̇c (t) = ṗc (t) = 0 in each sampling interval. Thus, (23) gives that

‖ẍc (τ)‖ = ‖Ac (pd (k)) f |τ‖ ≤ max
p∈P,x∈X,u∈U

∥∥∥A2
c (p) x + Ac (p) Bc (p) u

∥∥∥ , (24)

3In the general LPV setting, the system matrices of (1a) are not necessary partially differentiable in pc.
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Rectangular nth-polynomial Trapezoidal Adams-Bashforth (3-step)

εk
Td
2

x
(2)
c (τ)

Tn
d

(n+1)!
x

(n+1)
c (τ) 1

12
T2
dx

(3)
c (τ) 3

8
T3
dx

(4)
c (τ)

T̆d min
p∈P

min
λ∈σ(Ac(p))

− 2Re(λ)

|λ|2 arg min
Td∈R+0

∣∣∣∣max
p∈P

σ̄

(
n∑

l=0

Tl
d
l!

Al
c (p)

)
− 1

∣∣∣∣ max
p∈P

max
λ∈σ(Ac(p))
Im(λ)=0

2
Re(λ)

arg min
Td∈R+0

∣∣∣∣max
p̄∈Pn

λ̄ (Rp̄ (z, Td))− 1

∣∣∣∣

T̂d

√
2

εmaxMmax
x

100M(1)
n+1

√
εmaxMmax

x (n+1)!

100M(n)
3

√
12εmaxMmax

x

100M(2)
4

√
8εmaxMmax

x

300M(3)

TABLE I

LOCAL TRUNCATION ERROR εk WITH τ ∈ (kTd, (k + 1)Td) AND WITH τ ∈ ((k − 2)Td, (k + 1)Td) IN THE

ADAMS-BASHFORTH CASE, SAMPLING BOUNDARY OF STABILITY T̆d , AND SAMPLING UPPERBOUND OF PERFORMANCE T̂d

OF LPV-SS ZOH DISCRETIZATION METHODS.

where ‖ ¦ ‖ is an arbitrary norm. Note in (24), that X and U must be bounded sets to be able to

compute this upperbound. If this is not the case, then commonly X and U can be restricted to

a bounded subset corresponding to the image of the typical trajectories of the system variables.

Then the previous bound can be formulated for this region of interest. In the sequel we denote this

upperbound by M (1) and call it the first-order numerical sensitivity (N-sensitivity) constant. Note

that M (1) can be approximated through gridding to derive an estimate. Using similar arguments,

the LUT error of other discretization methods can be formulated. The results are given in the first

row of Table I, showing that each method is consistent with varying orders. Here x(n)
c denotes

the nth−order derivative of the continuous state signal. Moreover, using (23) and the chain rule

of differentiation, higher order sensitivity constants can be derived:

M (n) = max
p∈P,x∈X,u∈U

∥∥∥An+1
c (p) x + An

c (p) Bc (p) u
∥∥∥ .

The derived results can also be compared with the existing error characterization of the

rectangular method given in [8]. In this work an upperbound on the matrix approximation error

of (10) has been introduced using basic algebra. This bound describes the discretization error

also in the local sense, however it can not directly describe the approximation error of the state

evolution. The latter is necessary to derive useful criteria for choosing adequate sampling periods

(see Section IV-C). Therefore, the error concept of [8] is not considered here.

B. Global convergence and preservation of stability

So far only the LUT error of the introduced methods has been investigated, giving basic proofs

of consistency. As a next step we investigate global convergence of approximative methods
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together with their numerical stability (N-stability). The latter concept means that small errors

in the initial condition of the discrete-time approximation do not cause the solution to diverge.

As an important result we show that for the single-step approximative discretization methods,

N-stability is identical with the preservation of the uniform frozen stability of the original

representation. In this context, uniform frozen stability means the stability of the LPV system (in

terms of bounded solutions) for each constant trajectory of p. The relation we show between the

stability concepts means that, in case of numerical stability, the discretization method does not

changes the frozen stability of the discretized model, which is a prime requirement of a successful

DT approximation of a CT system. To derive adequate criteria for the largest sampling period for

which this property holds (N-stability radius), each method is analyzed and computable formulas

are derived.

Let Z+ = {x ∈ Z | x > 0} and Z−0 = Z \ Z+. According to the previously explained line of

discussion, we introduce the following concepts:

Definition 4 (N-convergence, based on [21]): Let Rc
SS(S) be the CT representation of the

LPV system S with state-signal xc and let x̂d denote the DT approximation of xc with a dis-

cretization method using Td > 0. Then a discretization method is called numerically convergent,

if for any state trajectory xc of Rc
SS(S), the approximation x̂d satisfies that

lim
Td→0

sup
k∈Z−0

‖x̂d (k)− xc (kTd)‖ = 0 ⇒ lim
Td→0

sup
k∈Z+

‖x̂d (k)− xc (kTd)‖ = 0. (25)

Note that in the trapezoidal and multi-step cases, x̂d is the appropriate transform of x̆d with

respect to xc. In terms of Definition 4, N-convergence means that the discretized solution of the

state-equation can get arbitrary close to the original CT behavior by decreasing Td (see Figure

3).

Definition 5 (N-stability, based on [21]): A discretization method is called numerically stable

if, for sufficiently small values of Td and ε, any two state-trajectories x̂d, x̂′d of the discretized

representation associated with the same input-output and scheduling trajectory on the half-line

Z+, satisfy that ‖x̂d(0)−x̂′d(0)‖ < ε implies the existence of a γ ≥ 0 such that ‖x̂d(k)−x̂′d(k)‖ <

γε, ∀k ∈ Z+.

The notion of N-stability means that small errors in the initial condition will not cause divergence

as the solution is iterated (see Figure 4). For the approximative methods, N-convergence and

N-stability are questions of main importance. To be able to analyze these nummerical notions
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for the introduced discretization approaches, first consider the single-step methods. Introduce the

characteristic polynomial Rp(q, Td) of the frozen aspects of the discretized SS representation as

Rp(q, Td) = det(qI − Ad(p)), (26)

where p ∈ P and q is the forward time-shift operator. Due to the multi-step nature of the Adams-

Bashforth method - to avoid conservatism of the upcoming analysis - Rp is defined to reflect the

multi-step nature of the state evolution. In the n-step Adams-Bashforth case, the state evolution

with respect to discretized original state xd is characterized by

qnI − Td

n−1∑

l=0

γlq
lAc, (27)

with {γl}n−1
l=0 ⊂ R the Adams-Bashforth approximation coefficients (values of these coefficients

for n > 0 are given in [21]). The form of (27) results due to the augmented state vector

x̆d (see (16)). Note that multiplication of Ac by the time operator ql is non-commutative, i.e.

qlAc(pd(k)) = Ac(pd(k + l))ql 6= Ac(pd(k))ql. Thus, even if Rc
SS(S) has static dependence,

the resulting polynomial in (27) becomes dynamically dependent on pd. To express this, the

following local characteristic polynomial is introduced in the “frozen” sense for a scheduling

sequence p̄ = [ p0 . . . pn−1 ] ∈ Pn:

Rp̄ (q, Td) = det

(
qnI − Td

n−1∑

l=0

γlAc(pl)q
l

)
, (28)

Now it is possible to substitute q with the Z-transform z ∈ C to formulate the characteristic

polynomial in the frequency domain. This provides the following theorem to characterize N-

stability of the introduced discretization methods:

Theorem 1 (Strong root-condition): Discretization methods are N-convergent and N-stable if,

for all λ ∈ C with
∃p0, . . . pn−1 ∈ P such that Rp̄ (λ, 0) = 0, (29)

it holds that |λ| ≤ 1 and if |λ| = 1, then ∂
∂λ

Rp̄ (λ, 0) 6= 0.

The proof of this theorem follows similarly as in [21] and it can be shown that all of the

introduced LPV-SS discretization methods satisfy it. Based on the strong-root condition it is

possible to compute an exact upperbound T̆d of the “sufficiently small” Td that provides N-

stability:

Definition 6 (N-stability-radius): The N-stability radius T̆d is defined as the largest Td ∈ R+
0

such that for any p0, . . . , pn−1 ∈ P, all roots λ ∈ C of Rp̄(λ, Td) satisfy that |λ| ≤ 1.
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Definition 6 has an interesting consequence for the discretization of LPV-SS representations.

Namely that, through the characteristic polynomial Rp̄, it implies that, if Td < T̆d, then in the

single-step cases the resulting DT representation defines a uniformly frozen stable system, as

for this Td it is satisfied that

max
p∈P

σ̄ (Ad (p)) ≤ 1, (30)

where σ̄ (¦) = max |σ (¦)| is the spectral radius and σ (¦) is the eigenvalue operator. If the original

CT system S is globally stable (quadratic, BIBO, etc.), then it is commonly desirable that its

DT approximation is also globally stable. For such a property it is needed that uniform frozen

stability of Rc
SS (S):

max
p∈P

max
λ∈σ(Ac(p))

Re{λ} ≤ 0, (31)

is preserved, resulting in the uniform frozen stability of the DT representation. It follows that for

the introduced single-step discretization methods preservation of local stability of the original

system and N-stability of the discretization method both require local stability of the resulting

DT representation. For N-stability it is a sufficient, for preservation of global stability of S it is

a necessary condition.

In case of the rectangular method, (30) is equivalent with

max
p∈P

σ̄ (I + TdAc (p)) ≤ 1. (32)

Due to the basic properties of eigenvalues, it can be shown that (32) holds iff

max
p∈P

max
λ∈σ(Ac(p))

∣∣∣ 1
Td

+ λ
∣∣∣ ≤ 1

Td
. (33)

From (33), the stability radius is

T̆d = max

(
0, min

p∈P
min

λ∈σ(Ac(p))
−2Re (λ)

|λ|2
)

. (34)

Note that T̆d = 0 in case of non-uniformly frozen stable Rc
SS (S), meaning that the rectangular

DT approximation of a non-uniformly frozen stable system is not N-stable. Computation of the

bound (34) is a nonlinear optimization problem for which an approximative solution may follow

by the gridding of P.

In case of the polynomial method, (30) translates to

max
p∈P

σ̄

(
I +

n∑

l=1

Tl
d

l!
Al

c (p)

)
< 1. (35)
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From (35), the stability radius reads as

T̆d = arg min
Td∈R+

0

∣∣∣∣∣max
p∈P

σ̄

(
n∑

l=0

Tl
d

l!
Al

c (p)

)
− 1

∣∣∣∣∣ . (36)

Again, an approximation of T̆d can be given by applying bisection-based search in Td on (36)

over a grid of P. In case of non-uniform frozen stability, T̆d = 0 with this method as well.

For the trapezoidal method, condition (30) becomes quite complicated due to the inverse term
[
I − Td

2
Ac (pd)

]−1
in Ad (pd). First it must be guaranteed that this inverse exists for all scheduling

signals, meaning that

det
(
I − Td

2
Ac (p)

)
6= 0, ∀p ∈ P, (37)

or equivalently
min
p∈P

σ
(
I − Td

2
Ac (p)

)
> 0, (38)

where σ (¦) = min |σ (¦)|. Again, the eigenvalue properties yield that (38) equals to

min
p∈P

min
λ∈σ(Ac(p))

∣∣∣ 2
Td
− λ

∣∣∣ > 0,

which is guaranteed, for every 0 ≤ Td < T̆d, where

T̆d = max
p∈P

max
λ∈σ(Ac(p))
Im(λ)=0

2

Re (λ)
. (39)

Instead of convergence, here T̆d ensures the existence of the DT projection (existence of Ad).

It is shown later that, if the DT projection exists, then N-convergence holds. Note that, in case

Im (λ) 6= 0 for all λ ∈ σ (Ac (p)) and p ∈ P, meaning that every frozen representation of

the original CT system has only complex poles, condition (38) is guaranteed for arbitrary Td,

resulting in T̆d = ∞. Similarly, uniform frozen stability of Rc
SS (S), meaning that every frozen

representation has poles with only negative or zero real part, gives T̆d = ∞. In [7], the condition

Td ≤ max
p∈P

2

σ̄ (Ac (p))
, (40)

was proposed to guarantee invertibility, which is a rather conservative upperbound of (39). If

0 ≤ Td < T̆d holds and Rc
SS (S) has uniform frozen stability, then (31) is satisfied, as

max
p∈P

σ̄

([
I +

Td

2
Ac (p)

] [
I − Td

2
Ac (p)

]−1
)
≤ 1. (41)

Thus, for stable LPV-SS systems, the trapezoidal method always guarantees N-stability and

N-convergence if Td satisfies condition (39).
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In case of the Adams-Bashforth method, the concept of N-stability means that

max
p̄∈Pn

λ̄ (Rp̄ (z, Td)) ≤ 1, (42)

where λ̄ (R(z)) = maxλ∈C,R(λ)=0 |λ|. A necessary condition for (42) is that the resulting DT

representation has uniform frozen stability:

max
p̄∈Pn

σ̄ (Ad (p)) ≤ 1. (43)

This means that in the multi-step case, preservation of frozen stability is not sufficient to imply

N-stability. From (42) it follows that the N-stability radius reads as

T̆d = arg min
Td∈R+

0

∣∣∣∣max
p̄∈Pn

λ̄ (Rp̄(z, Td))− 1
∣∣∣∣ , (44)

which is a too complicated expression to be further analyzed. However, in practice it can be

solved based on gridding and bisection based search.

C. Adequate discretization step size

In the previous part we have investigated the numerical properties of the introduced discretiza-

tion methods. However, the appropriate choice of Td to arrive at a specific performance in terms

of discretization error is also important from a practical point of view. By using the LUT error

expressions developed in Section IV-A, upperbounds of Td are derived that guarantee a certain

bound on the approximation error in terms of a chosen measure ‖¦‖. Define ε∗ as the supremum

of ‖εk‖ over all possible state trajectories of Rc
SS(S) and k ∈ Z. Also introduce

Mmax
x = sup

xc

max
t∈R

‖xc (t)‖ = max
x∈X

‖x‖ , (45)

as the maximum “amplitude” of the state signal for any uc and pc. Also define εmax as the

required maximum relative local error of the discretization in terms of percentage. Then a Td > 0

is searched for that satisfies

ε∗ ≤ εmaxM
max
x

100 · Td

. (46)

Next we formulate an upperbound of Td with respect to each method, such that (46) is satisfied

for the desired εmax percentage. Note that, to derive these criteria, (45) must be bounded, i.e.

X must be confined in a ball (bounded region) of RnX , which is not a unrealistic assumption in

case of global asymptotic stability of S and bounded P and U.

Based on (22), it holds in the rectangular case that

ε∗ = sup
xc

sup
τ∈R

Td

2
‖ẍc (τ)‖ . (47)
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By using the sensitivity constant M (1) ≥ sup ‖ẍc (τ)‖, inequality (47) holds for any 0 ≤ Td ≤ T̂d

where

T̂d =

√
2
εmaxMmax

x

100 ·M (1)
. (48)

Criterion (48) provides an upperbound estimate of the required Td, that achieves εmax percentage

local discretization error of the state variable in terms of a chosen measure. Similar criteria can

be developed for the other methods by using the LUT error expressions of Table I and the

higher-order sensitivity constants M (n). These upperbounds are presented in the third row of

Table I.

In practical situations one may be concerned about the maximum of the global error ηk (see

(19)) as a performance measure. Define η∗ as the supremum of ‖ηk‖ over all possible state

trajectories of Rc
SS(S) and k ∈ Z. Also define ηmax as the maximal acceptable relative global

error of the discretization in terms of percentage. Then one would like to choose Td such that

η∗ ≤ ηmaxM
max
x

100
. (49)

Unfortunately, characterization of η∗ for the introduced discretization methods requires serious

restrictions on the considered CT behaviors. However, in case of Td ≤ T̆d, εmax can be used as

a good approximation of ηmax, and therefore the performance bound T̂d can be used to bound

the global error as well (see Section VII).

D. Switching effects

In the previous part the effect of neglecting the switching phenomena of the ZOH actuation

has not been considered. Here we investigate the case when the signals uc and pc described

by (3a-b) are applied to Rc
SS (S). Consider the ODE corresponding to (1a) in the kth sample

interval. By using the bilateral Laplace transform of (1a) with reference time t0 = kTd and

assuming that the dependence on pc is commutative under addition4, it follows that

sX (s) = xc (kTd) +
(

Ac(pc(kTd))+(s−1)Ac(pc((k−1)Td))
s

)
X (s)

+ Bc(pc(kTd))
s

uc (kTd) +
(

(s−1)Bc(pc((k−1)Td))
s

)
uc ((k − 1) Td) , (50)

4Without this assumption the formulation of the Laplace transform becomes complicated, but the core problem that results in

the general case is illustrated by (50).
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for a fixed k, where X (s) is the Laplace transform of the solution of the ODE (the behavior of

the state in the kth sample interval). On the contrary of the effect of the switching phenomena in

the LTI case, the underlying system of (50) does not correspond to (2a) nor it is realizable as a

LPV-SS system with static dependence without the introduction of virtual input and scheduling

terms corresponding to ud (k − 1) and pd (k − 1). This way it becomes clear that neglecting

the switching effects introduces discretization errors in the LPV case which can be even more

significant if Td is decreased (more discontinuous switches in the dynamics). On the other hand it

is true that the discontinuous phenomena which are described by (50) never happen in reality. One

reason is that usually pc is not actuated by ZOH and it changes smoothly and relatively slowly

with respect to the actual dynamics of the plant. Additionally, the ZOH actuation has a transient

as the underlying physical device needs to build up the new signal value, preventing sudden

changes of the signals. In conclusion, for LPV systems, the introduced discretization methods of

this paper provide no step-invariant discretization in the ZOH setting (meaning equivalence even

in case of switching effects), however they provide well-applicable methods for practical use. It

is important to note that derivation of LPV discretization methods with step-invariant property

is also possible, however the resulting discretization approaches are complicated and their actual

performance gain compared to the previously developed approaches is insignificant in practice.

V. PROPERTIES OF THE APPROACHES

Beside stability and discretization-error characteristics there are other properties of the derived

discretization methods which could assist or hinder further use of the derived DT model. With

the previously derived results, these vital properties are summarized in Table II. From this

table it is apparent that the complete method provides errorless conversion at the price of

heavy nonlinear dependence of the DT model on pd. As in LPV control synthesis mostly low

complexity dependence (like linear, polynomial, or rational functions) is assumed (see [3]),

therefore both for modeling and controller-discretization purposes – beside the preservation of

stability – the preservation of linear dependence over the scheduling is also highly preferred.

This favors approximative methods that give acceptable performance, but with less complexity of

the new coefficient dependence on the scheduling. Complicated dependence on pd, like inversion

or matrix exponential, also results in a serious increase of the computation time, which gives a

preference towards the linear methods like the rectangular or the Adams-Bashforth approach. In
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Property Complete Rectangular nth-polynomial Trapezoidal n-step Adams-Bashforth

consistency / convergence always 1st-order nth-order 2nd-order nth-order

preservation of stability / N-stab. always global frozen with T̆d frozen with T̆d always frozen frozen with T̆d

preservation of instability + - - + -

existence always always always conditional always

complexity exponential linear polynomial rational linear

preservation of affine dependence - + - - +

computational load high low moderate high low

system order preserved preserved preserved preserved increased

TABLE II

PROPERTIES OF THE DERIVED DISCRETIZATION METHODS

the latter case, discretization also results in the order increase of the DT system which requires

extra memory storage or more complicated controller design depending on the intended use. If

the quality of the DT model has priority, then the trapezoidal and the polynomial methods are

suggested due to their fast convergence and large stability radius. In terms of identification, linear

dependence of the suggested model structure is also important as it simplifies parametrization.

VI. HIGHER-ORDER-HOLDS AND DISCRETIZATION WITH DYNAMIC DEPENDENCE

In the previous sections, the discretization problem of LPV-SS representations with static

dependence has been investigated in a ZOH setting. We could see that this setting allows the use

of simple discretization rules and also to design the introduced discretization error. However, the

natural question that rises is how can we do better by considering a higher order-hold setting,

what price we must pay for the increased accuracy and when the use of such a setting is

unavoidable. This is what we intend to investigate next.

In LPV system theory equivalence transformation between representation domains results

in dynamic dependence [16], [1], [24]. A CT-LPV representation with dynamic dependence

has coefficients that are functions of pc and its derivatives ṗc, p̈c, . . ., while in DT, dynamic

dependence means that the coefficients are functions of . . . , pd(k − 1), pd(k), pd(k + 1), . . .. In

[16], [24] it has been shown that LPV-IO representations with static dependence have LPV-SS

realizations with dynamic dependence. Additionally, often first-principle nonlinear models offer

a structure to rewrite them as an LPV system with dependence on a signal and its derivatives
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[1]. Neglecting this dynamic dependence by the introduction of virtual scheduling signals for the

derivative terms can introduce serious conservatism into the model. Thus, dynamic dependence

is a real phenomenon and should be treated accordingly in LPV discretization as well.

Using the previously investigated discretization approaches on systems with dynamic depen-

dence and assuming that the scheduling varies in a piecewise-constant manner can introduce

serious conservatism. Consider the case when Ac(pc, ṗc) = αpcṗc with α ∈ R. Then in the ZOH

setting (Assumption 1), the following holds in each sample interval:

Ac(pc(t), ṗc(t)) =





0, if t 6= kTd, k ∈ Z;

±∞, if t = kTd, k ∈ Z.
(51)

If the switching effect is neglected (Assumption 2), then Ac is approximated in DT as a identity

matrix by all of the introduced discretization methods. However in practice, one would try to

use the approximation

ṗc(t) ≈ pc((k + 1)Td)− pc(kTd)

Td

(52)

for each t ∈ [kTd, (k + 1)Td). In fact, (51) means that pc is assumed to be a linear function

in the sample interval. By using this assumption a better DT approximation of the original

CT representation can be achieved. This shows that, in case of dynamic dependence, the ZOH

assumption on pc is not appropriate and, instead of that, a first or higher order hold discretization

is necessary for the scheduling variable.

Based on the previous example, consider the case when (uc, yc) are assumed to satisfy the

ZOH setting, but pc varies linearly in each sampling interval t ∈ [kTd, (k + 1)Td)):

pc(t) = pd(k+1)−pd(k)
Td︸ ︷︷ ︸
p1k

(t− kTd) + pd(k). (53)

This assumption on the scheduling is called the first-order hold setting. Additionally, define

p0k = (k + 1)pd(k) − kpd(k + 1). Note that, pc(t) = p1kt + p0k for t ∈ [kTd, (k + 1)Td)). Let

Rc
SS(S) be a continuous-time SS representation and consider it in the above defined setting. In

case the system matrices of Rc
SS(S) are dependent on pc and ṗc (dynamic dependence), then the

state-evolution in the kth sampling interval satisfies:

ẋc(t) = Ac(p1kt + p0k, p1k)xc(t) + Bc(p1kt + p0k, p1k)uk,

where uk = u(kTd). The solution of this ODE can be obtained for a particular function of Ac and

Bc. Similar to the complete method of the ZOH setting in Section III-B, this analytical solution
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results in a complete type of discretization of the continuous-time LPV-SS representation and

can be also used for higher-accuracy discretization of representations with static dependence.

However, the resulting DT counterpart via this projection has dynamic dependence on pd(k) =

pc(kTd) and its time-shifted versions disregarding that the original description had static or

dynamic dependence. On the other hand, such a projection trivially yields a better approximation

of the CT representation than what would result in a pure ZOH setting. This suggests the

following conclusions:

1) For the discretization of LPV representations with dynamic dependence, the order of the

hold setting with respect to pc should be greater or equal than the maximal order of

derivatives in the coefficient dependencies.

2) Applying a higher-order setting results in dynamic dependence of the resulting DT de-

scription which may even be non-causal. This is in accordance with the observations of

[13].

With some trivial modifications, the approximative methods treated in this paper, except the

trapezoidal method, can be extended to this hybrid higher-order hold case, but the exact formu-

lation of these extensions is not considered here. Unfortunately, for the extended approaches, the

deduced formulas for the approximation error and the step-size bounds do not apply. Solving

discretization of LPV representations with dynamic dependence in a general sense and giving

compact formulas of discretization for higher-order settings remains the objective of further

research.

VII. NUMERICAL EXAMPLE

In this section, a simple example is presented to visualize/compare the properties of the

analyzed discretization methods and the performance of the sample-bound criteria. Consider the

following state-space representation of a continuous-time SISO LPV system S:

Rc
SS(S) =




19.98pc − 20 202− 182pc 1 + pc

45pc − 50 0 1 + pc

1 + pc 1 + pc
1+pc

10




where P = [−1, 1]. The above representation has static linear dependence on pc. Furthermore, for

a constant scheduling pc(t) = p for all t ∈ R, Rc
SS(S) is equivalent with an LTI representation

August 16, 2010 DRAFT



24

that has poles

9.99p− 10± i
√

104 − 17990.2p + 8090.2p2,

which implies that S is uniformly frozen stable on P.

Assume that S is in a ZOH setting with sampling rate Td = 0.02. By applying the discretization

methods of Section III, approximative discrete-time representations of S have been calculated. To

show the performance of the investigated discretization methods, the output of the original and

its DT approximations have been simulated on the [0, 1] time interval for zero initial conditions

and for 100 different realizations of white ud and pd with uniform distribution U(−1, 1). For fair

comparison, the achieved average MSE5 of the resulting output signals ŷd has been calculated6

with respect to the output yc of Rc
SS(S) and presented in Table III. The relative worst-case

maximum global error η̂max = 100 · η∗/Mmax
x of the DT state-signals x̂d associated with the DT

representations has been also computed with respect to xc of Rc
SS(S) and presented in Table

III. From these error measures it is immediate that, except for the complete and the trapezoidal

method, all approximations diverge. As expected, the error of the complete method is extremely

small and the trapezoidal method gives a moderate, but acceptable performance.

As a second step, we calculate sampling bounds T̆d and T̂d by choosing the Euclidian norm

as an error measure and εmax = 1%, with the intention to achieve ηmax = 1%. The calculated

sampling bounds are presented in Table IV. During the calculation of T̂d it has been assumed

that X = [−0.1, 0.1]2, which has been verified by several simulations of Rc
SS(S) based on

ud, pd ∈ U(−1, 1). By these results, the rectangular method needs a fast sampling rate to achieve

a stable projection and even a faster sampling to obtain the required performance. The 2nd-

order polynomial projection has significantly better bounds due to the 2nd-order accuracy of

this method. For the trapezoidal case, the existence of the transformation is always guaranteed

because Rc
SS(S) is uniformly frozen stable. For comparison, the bound of [7] given by (40),

gives T̆d = 0.2.

Now the derived bounds are used to choose a Td for the calculation of the discrete projections.

As the T̆d bounds of Table IV represent the boundary of stability, therefore Td < T̆d is used as

5Mean Squared Error: expected value of the squared estimation error: Ē
{
(yc − ŷd)2

}
= lim

N→∞
1
N

∑N−1

k=0
(yc (kTd)− ŷd (k))2,

where Ē is the generalized expectation operator.
6The response of Rc

SS(S) has been calculated via a 5th-order Runge-Kutta numerical approximation (see [21]) with step size

10−8. Thus, the switching effect of the ZOH actuation does not show up in the calculated response.
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MSE of yd

Td Complete Rectangular 2nd-polynom. Trapezoidal 3-step Adams-Bash.

2 · 10−2, (50Hz) 1.68 · 10−10 (∗) (∗) 1.97 · 10−3 (∗)

5 · 10−3, (0.2kHz) 1.69 · 10−10 (∗) 4.70 · 10−4 3.81 · 10−5 2.14 · 10−1

10−4, (10kHz) 1.68 · 10−10 2.27 · 10−6 1.05 · 10−10 1.53 · 10−8 1.6 · 10−8

η̂max of x̂d

Td Complete Rectangular 2nd-polynom. Trapezoidal 3-step Adams-Bash.

2 · 10−2 , (50Hz) 0.053% (∗) (∗) 106.12% (∗)

5 · 10−3 , (0.2kHz) 0.060% (∗) 40.31% 8.02% 665.94%

10−4 , (10kHz) 0.063% 2.62% 0.06% 0.19% 0.76%

TABLE III

DISCRETIZATION ERROR OF S , GIVEN IN TERMS OF THE ACHIEVED AVERAGE MSE AND η̂max FOR 100 SIMULATIONS. (∗)

INDICATES UNSTABLE PROJECTION TO THE DISCRETE DOMAIN.

Criteria

Rectangular 2nd-polynomial Trapezoidal 3-step Adams-Bash.

T̆d 2 · 10−4, (5kHz) 5.60 · 10−3, (0.2kHz) ∞ 1.77 · 10−3, (0.6kHz)

T̂d 6.87 · 10−5, (15kHz) 1.73 · 10−3, (0.6kHz) 1.28 · 10−3, (0.8kHz) 1.21 · 10−3, (0.8kHz)

TABLE IV

STABILITY (T̆d) AND PERFORMANCE (T̂d) BOUNDS PROVIDED BY THE CRITERION FUNCTIONS OF TABLE I USING THE

EUCLIDIAN NORM AND εmax = 1%.

a new sampling period in each case. Discretization of Rc
SS(S) with Td = 0.005, almost the

stability bound of the polynomial method, provides the simulation results given in the second

row of Table III. The rectangular method again results in an unstable projection, while the

Adams-Bashforth method is on the brink of instability due to frozen instability of Ad for some

p ∈ P. The polynomial method gives a stable, convergent approximation, in accordance with

its T̆d bound. The trapezoidal method also improves significantly in performance. The achieved

η̂max of each approximative method is above the aimed 1% which is in accordance with their

T̂d.

As a next step, discretizations of Rc
SS(S) with Td = 10−4, the half of the T̆d bound of

the rectangular method, are calculated. The results are given in the third row of Table III.
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Finally, the rectangular method converges and also the approximation capabilities of the other

methods improve. By looking at the achieved η̂max, all the methods, except the rectangular,

obtain the aimed 1% error performance which is in accordance with their T̂d bound, while in

the rectangular case the achieved η̂max is larger than 1% as 10−4 is larger than its T̂d bound. An

interesting phenomenon is that the approximation error of the complete method is non-zero and

it is slightly increasing by lowering the sampling period. This increasing approximation error is

due to numerical errors of the digital computation. However, the resulting approximation error

is significantly less than the step size of the numerical approximation used for the simulation of

Rc
SS(S), thus it can be considered zero.

VIII. CONCLUSION

In this paper the properties of the extension of ZOH-based isolated discretization approaches

to the LPV state-space case have been investigated, under the assumption that the state-space

matrices have static dependence on the scheduling signal. The concepts of local unit truncation

error, numerical convergence and stability of the approximations of the original CT behavior have

been analyzed, together with the preservation of uniform frozen stability. Using the results of

these investigations, practically applicable conditions for the choice of the sampling period have

been derived and a comparison of the methods in terms of various properties has been given.

An illustrative example has also been provided to give insight into the derived methods and

their conditions. It has been shown that for the discretization of LPV state-space systems with

dynamic dependence a higher-order hold setting is required for the scheduling signal. Using such

a setting for improving the accuracy of the discretization of models with static dependence results

in dynamic dependence of the discrete-time counterparts. Extending the derived approaches to

such a higher-order hold discretization setting and understanding the numerical properties of

such methods will be the objective of future research.
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ZOH

SamplingZOH

S
yc(t)uc(t)ud(k) yd(k)

Continuous
LPV system

pd(k)
pc(t)

Discrete LPV system

Fig. 1. Ideal zero-order hold discretization setting of general LPV systems.
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Sampling

SamplingZOH

K
yd(k)ud(k)

uc(t) yc(t)

Discrete
LPV controller

pd(k)
pc(t)

Continuous LPV controller

N

Continuous Plant

Fig. 2. Ideal ZOH discretization setting of closed-loop LPV controllers.
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0

converges
xcxd

t
Td

converges

Fig. 3. N-convergence of the DT approximation. The DT state-signal x̂d converges to the CT state-signal xc of the approximated

representation, if the error on the initial conditions (past) of the approximation converges to zero.
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0

bounded

xd
xd

t
Td

bounded

Fig. 4. N-stability of the DT approximation. Let x̂d and x̂′d be two state trajectories provided by the approximation method

for the same input and scheduling on the half line Z+. If the difference between the initial conditions of x̂d and x̂′d is bounded,

then the difference of the two trajectories on Z+ is also bounded.
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(b) Td = 0.005, complete (blue), trapezoidal (red)
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(c) Td = 0.005, 2nd order polynomial (blue), Adams-Bashforth
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(d) Td = 10−4, complete (blue), trapezoidal (red)
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(e) Td = 10−4, 2nd order polynomial (blue), Adams-Bashforth

(red), rectangular (dash-dotted yellow)

Fig. 5. Output signal yc of Rc
SS(S) (green) in a ZOH setting with Td = 0.02 and its discrete-time approximations with

different sampling periods.
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