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Abstract— This paper investigates data-driven, Linear-
Parameter-Varying (LPV) modeling of a high-purity distillation
column. Two LPV modeling approaches are studied: a local
approach, corresponding to the interpolation of Linear Time-
Invariant (LTI) models identified at steady-state purity levels,
and a global Least-Square Support Vector Machine (LS-
SVM) approach which offers non-parametric estimation of the
system w.r.t. data with varying operating conditions. In an
extensive simulation study, it is observed that the global LS-
SVM approach outperforms the local methodology in capturing
the dynamics of the high-purity distillation column under
study. The simulation results suggest that the global LS-SVM
approach provides a reliable modeling tool under realistic noise
conditions.

Index Terms— system identification; linear parameter-
varying systems; high-purity distillation column.

I. INTRODUCTION

Chemical processes typically exhibit significant nonlinear
behavior when operated over a wide range of operating
conditions. Despite the advances of linear modeling and
control technologies, it yet remains a challenge to provide
high-performance operation of chemical processes, in terms
of product quality and process productivity, using a single
linear time-invariant (LTI) model based controller. In par-
ticular, when a chemical process is operated under transient
conditions (e.g., set-point changes and start-up procedures)
the nonlinear behavior of the process may become dominant,
necessitating the use of dedicated nonlinear control solutions.
Distillation columns are representative examples of process
systems with a severe nonlinear behavior when operated
in the high-purity region. These processes, which facilitate
component separation of a mixture based on differences in
their volatility (i.e., boiling points), are the most widely used
separation technique in the chemical industry [1]. The phase
change of components in a distillation column drives the
most volatile components and the heavy components towards
the top and the bottom of the column, respectively, creating
a spatial distribution of the components.

To meet with the increasing performance demands of the
chemical industry, often modern control design methods,
such as model-based control and optimization strategies, e.g.,
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model predictive control (MPC), are applied to regulate the
column behavior. However, these approaches require accu-
rate dynamic models to obtain satisfactory performance and
robustness. Modeling of the column behavior based on first-
principles commonly leads to a large scale and rather com-
plex nonlinear model involving partial differential equations.
Therefore, it appears to be attractive to apply a data-driven
modeling procedure (system identification) to arrive at a
relatively simple description of the column dynamics. In this
problem, the principle question is which (nonlinear) model
structures are to be used for such a modeling approach.
Furthermore, it is well-known that high-purity distillation
columns are particularly challenging systems due to their
nonlinear behavior and gain directionality in the high-purity
operating region [1]–[3].

In order to extend the validity of LTI models over a wide
range of operating conditions of distillation columns and
to cope with the nonlinear behavior in the high-purity re-
gion, the concept of linear parameter-varying (LPV) models
appears attractive [4]. As a generalization of the classical
concept of gain scheduling, this framework is able to model
nonlinear process dynamics in a dedicated modeling frame-
work, where a scheduling variable represents the varying
operating conditions of the process. In this way, LPV models
preserve the advantageous properties of LTI models, while
being able to represent a large class of nonlinear systems [5].
Furthermore, the resulting models can be utilized to develop
extensions of LTI control strategies, like PID [6], MPC
[7], optimal [8] and robust control [9]. A few examples of
existing approaches of LPV identification to provide models
for these approaches are [10]–[14].

In this paper, we study the applicability of the LPV
identification methodology to the data-driven modeling of
a high-purity distillation column. We aim to follow two
different philosophies to capture the plant dynamics. The
first approach, called the local approach, is based on the
identification of LTI models at several operating points of the
process followed by the interpolation of the resulting models.
To study the performance of this methodology, we aim
to compare several interpolation structures and approaches.
The other methodology, called global approach, is based
on a single data set, exploring a large variety of operating
conditions, which is then used to identify the functional
dependencies of a linear model structure on the scheduling
variable. To study performance of this concept, an LPV
least-square support vector machine (LS-SVM) approach,
the current state-of-the-art methodology to capture large-
scale dynamics with unknown nonlinearities, is applied. The
main motivation for such a comparative study on distillation
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Fig. 1. Schematics of a typical PP-splitter (binary distillation column).

columns is based on [15], [16], where significant difficulties
have been reported with the “local” LPV identification of
this process operation. We will show why phenomena like
changing local model order and directionality together lead
to degradation of the estimates obtained in the local sense,
while the global SVM approach captures the plant behavior
in a highly accurate and efficient manner.

II. DISTILLATION COLUMN DYNAMICS

The high-purity distillation column studied in this pa-
per is a propane-propene splitter (PP-splitter). Based on
the principle of boiling point differences of propane and
propene, the PP-splitter is designed to separate the mixture
of these substances into its components with a desired purity
level. The high-purity products (distillates) are valuable for
gasoline production or as raw material for further chemical
synthesis. The anatomy of a PP-splitter is depicted in Fig. 1.

A. First-principles based modeling

To investigate data-driven LPV modeling of the PP-splitter
under study, a first-principles based model of the system
is developed. This model, which is based on the modeling
framework presented in [1] with 110 trays, is used in the
sequel as the data-generating system. The primary modeling
assumptions are as follows:

1) Phase equilibrium on each tray;
2) A binary mixture feed;
3) Constant relative volatility along the column;
4) Constant molar flows;
5) Top and bottom flows are ideally controlled (i.e.,

changes of the vapor and liquid flows have instanta-
neous effect on the top and bottom flows).

The operation of the distillation column is described in terms
of constant liquid molar flows L(t) propagating from tray
to tray towards the bottom re-boiler and constant vapor
molar flows V (t) starting from the re-boiler and propagating
through the trays towards the top condenser. The system

dynamics can be represented by a set of differential alge-
braic equations (DAEs) which describe the dynamics of
component concentrations as well as the vapor and liquid
flows along the 110 trays of the distillation column. A
detailed description of the first-principles model and the
system parameters can be found in [17], [18].

In the system at hand, the liquid and vapor flow rates in
the column (manipulated via the re-boiler duty and reflux
rate) are utilized as the manipulated variables to steer the
operation of the PP-splitter (i.e., u(1) = V , u(2) = L).
The control objective is to regulate the bottom (xb) and
top composition (xd) in terms of mole fraction of propane
(the most volatile component) (i.e., y(1) = xb, y(2) = xd).
Therefore, the splitter is a large-scale (110th order) nonlinear
2× 2 multi-input multi-output (MIMO) system.

B. Motivation for LPV modeling

High-purity distillation columns are well-known for their
nonlinear characteristics and directionality problem which
become more significant as the operating conditions ap-
proach the high-purity region (xd ≥ 95% and xb ≤ 5%)
[1], [19]. Due to directionality, the system response is
dominated by the high-gain direction (only one product
composition can be made purer), which significantly limits
the performance of linear SISO controllers when trying to
control both top and bottom compositions. To address this
problem, a MIMO controller, such as MPC, is often used.
Such a controller requires an accurate model in order to
compute the correct control actions. However, because high-
purity distillation columns exhibit strong nonlinear behavior,
small deviation from the operating point typically results in
different dynamics. This indicates that a linear model may be
insufficient to describe the system dynamics over changing
operating conditions. Hence, an alternative modeling solution
is required which can preserve the simplicity of LTI control
synthesis and, at the same time, it can accurately capture
the system dynamics over the whole operating regime. As
the LPV framework offers such a modeling paradigm, we
investigate LPV identification of the PP-splitter and compare
alternative LPV schemes for this application.

C. Measurements

To generate realistic measurement records of the sys-
tem, the first-principles model is simulated in continuous-
time and discrete-time input/output data is collected with
a sampling time Ts = 2.5 min (chosen 10 times faster
than the time-constant of the fastest step response w.r.t. the
possible operating conditions). The inputs of the system are
manipulated through zero-order-hold actuation synchronized
with the sampling. Furthermore, the measurement data is
assumed to be corrupted by an output additive zero mean
white noise process v with a signal-to-noise ratio of 25dB.

III. LPV MODELS

The LPV system class can be seen as an extension of LTI
systems as the signal relations are considered to be linear, but
the model parameters are assumed to be functions of a time-
varying signal, the so-called scheduling variable p : Z→ P
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with a scheduling “space” P ⊆ Rn. This variable is used to
indicate the changes in the dynamical signal relations of the
plant at different operating conditions. In discrete time, the
dynamic description of an LPV system S can be formulated
in terms of an input-output form (difference equation):

y(k) = −
na∑
i=1

ai(pk)y(k − i) +

nb∑
j=0

bj(pk)u(k − j), (1)

where pk := p(k) and, in the 2 × 2 MIMO case, ai, bj :
P→ R2×2 are matrix coefficient functions, dependent on pk,
y(k) = [y(1)(k) y(2)(k)]> and u(k) = [u(1)(k) u(2)(k)]>.
Note that for the sake of simplicity, all coefficient functions
are assumed to have static dependency, i.e., being only
dependent on the instantaneous value of p at a given time
moment k. For more details on LPV representations and
types of dependencies see [5].

For the PP-splitter, the bottom and top-product com-
positions are chosen as scheduling variables, i.e., pk =
[xb(k) xd(k)]>. This choice is based on the capability of
these variables to uniquely characterize the operating point
of the system. Next, we identify the PP-splitter by either
operating the column at different top and bottom purity levels
resulting in data sets with constant p (local approach) or to
vary the purity levels, i.e., p, during operation and explore
the changing dynamics of the system (global approach).

IV. LPV IDENTIFICATION VIA THE LOCAL APPROACH

The local approach refers to the methodology to construct
the LPV model as the interpolation of LTI models identified
around given operating points. Model interpolation is deter-
mined by the applied interpolation scheme in terms of the
resulting model structure and the used interpolation method.
Selection of these two items associated methodologies as
well as the number and location of the used operating points
are application specific (see [5]). The available choices in
this respect are explained in the sequel:

A. Choice of operating points

The operating envelop of the system under study is de-
scribed by the purity levels of the top and bottom distillates
in terms of P = [0.85, 0.99] × [0.15, 0.01]. Every p̄ ∈ P
is associated with (ȳ, ū) corresponding to the steady-state
solutions of the first-principle model at that purity level.
For the considered parameters of the PP-splitter, it has been
found via analysis of the change of the local dynamical
properties that 10 × 10 equidistant gridding of P, in terms
of grid points P = {p̄i}Nloc=100

i=1 , is required to represent
the global behavior adequately [17]. Note that optimized
allocation of {p̄i}Nloc

i=1 can seriously lower the number of
required LTI experiments [20]. However, we will see that
certain properties of the column behavior jeopardize the use
of the local approach even in this data-rich setting.

B. System identification at the operating points

The strength of the local LPV identification approach is
based on the fact that the LTI models can be identified
using prediction error minimization (PEM) based system

identification which is a well-established theory in the field
of process modeling and control [21]. To gather data for
identification, at each operating point p̄i ∈ P, the system is
excited by a white noise input with variance 1 around the
corresponding (ūi, ȳi) steady-state values, and, according to
the experimental conditions detailed in Section II-C, the re-
sponse is captured in terms of data sets Di = {(u(k), y(k)+
v(k))}Nk=1 with length N = 500. This corresponds to 86
days of total experimentation time due to the slow sampling
time and equidistant gridding of P. Respecting the noise
conditions (see Section II-C), the PEM is applied on each
Di utilizing an output error (OE) model structure. The order
of the OE model structure has been chosen to be (2, 2)
based on correlation analysis conducted on validation data
sets gathered with the same experimental conditions.

C. Interpolation methods

Interpolation of given discrete data points {δi}Nloc
i=1 in

terms of functions has a long history in numerical analysis
with a huge variety of available approaches like linear,
polynomial, spline, trigonometric and radial basis function
(RBF) methods, see, e.g., [22]. In the LPV modeling frame-
work, where the interpolated points can correspond to model
outputs or locally identified samples of the coefficient func-
tions ai and bj (see Section IV-D), the following “standard”
approaches are commonly used [5], [14], [16], [23]:

1) RBF interpolation: Radial basis function, like Gaus-
sian functions, centered at the operating points p̄i can be used
as a simple methodology to interpolate {δi}Nloc

i=1 . The spread
of the RBFs is optimized to arrive to a smooth interpolation
of the given data points.

2) Polynomial interpolation: In polynomial interpolation,
nth-order monomials (on two indeterminants in this case) are
employed as basis functions to obtain an interpolated form of
the data points {δi}Nloc

i=1 in terms of their linear combination.
The weights of the basis in the linear combination are
optimized in an `2-sense.

3) Bilinear interpolation: This approach corresponds to
piece-wise linear interpolation of two variables on a 2D grid.
(see [16], [24] for implementation details on these interpo-
lation methods). Note that these approches can be trivially
extended for any scheduling and parameter dimensions.

D. Interpolation schemes

Three interpolation schemes are regularly applied to de-
velop LPV models: (i) coefficient, (ii) output and (iii) input
interpolation. Due to the space restrictions, here we only
investigate scheme (i) and (ii) as scheme (iii) is outperformed
by these approaches (see [17] for performance analysis of
scheme (iii)). Since these schemes accommodate interpo-
lation of LTI models which operate in deviation variables,
the steady-state values (ȳi, ūi) needs to be incorporated as
trimming values in these schemes.

(i) Coefficient interpolation: By this scheme, the local
models are interpolated based on their model coefficients
and their input and output trimming values. This corresponds
to the interpolation of {ūi}Nloc

i=1 , {ȳi}Nloc
i=1 and of the locally

identified values of ai and bj in terms of {âi,l}na,Nloc

i=1,l=1 and
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{b̂j,l}nb,Nloc

j=0,l=1 using the previously introduced interpolation
approaches. This is possible by introducing a new input
signal ũ = [ u> 1 ]>. Then each identified local model
is written as a 2× 3 MIMO model:

ŷl(k) = −
na∑
i=1

âi,lŷl(k−i)+
nb∑
j=1

[
b̂j,l −b̂j,lūl

]︸ ︷︷ ︸
b̃j,l

ũ(k−j)

+
[
b̂
(τ)
0 (I +

∑na

i=1 âi,l) ȳl − b̂0,lūl
]

︸ ︷︷ ︸
b̃0,l

ũ(k) (2)

where ŷl is the model provided approximation of the true
output y. and â(τ)

i and b̂(τ)
j are the estimated model param-

eters. Based on these, the resulting LPV model is given by

ŷ(k)=−
na∑
i=1

ai(pk)ŷ(k−i)+

nb∑
j=0

bj(pk)ũ(k−j), (3)

with ai(�) and bj(�) being the element-wise interpolation of
the matrix sequences {âi,l}na,Nloc

i=1,l=1 and {b̃j,l}nb,Nloc

j=0,l=1.
(ii) Output Interpolation: By this scheme, the LPV model

is obtained as an interpolated (weighted) function of the
output of the local LTI models:

ŷ(k) = c(p(k), ŷ1(k), . . . , ŷNloc
(k)), (4)

with ŷi being the output of the ith local LTI model (with
incorporated trimming). Note that in this case, the interpo-
lation points {δi}Nloc

i=1 are described by the sequences ŷi and
for the RBF and the bilinear case the interpolation of each
elements of c is carried out as discussed previously. In the
polynomial case, the interpolation decomposes as

ŷ(k) = c(k) =

Nloc∑
i=1

nw∑
j=1

θi,jψj(pk)
(
ŷi(k) + ȳi

)
, (5)

where each ψj : P→ R is a monomial basis in p and θi,j are
the weighting parameters. Note that a particular difference
w.r.t. scheme (i) is that here the objective is not to interpolate
a given set of discrete data, but to provide a smooth transition
from one model output to the other as the operating point
changes. Therefore, to optimize such transitions in terms of c,
additional information (data set) about the transient (“inter-
sample”) behavior of the system is required. Thus, a data
set Dglobal = {(u(k), y(k) + v(k), pk)}Nk=1 is assumed to
be available with a varying scheduling trajectory. If such a
data-set is not available, then c can be synthesized in terms
of bilinear interpolation or with RBF’s with equal spread.
On the other hand, using Dglobal requires to minimize an
output error criterion V(Dglobal, θ) = ‖y(k) − c(k)‖22 and
optimize the parameters of the interpolation function (e.g.,
θi,j in (5)) accordingly. Such an interpolation approach, can
be considered as a ”glocal” approach [25], which borders the
set of global LPV identification approaches.

E. Identification results by the local approach

The discussed 2×3 local modeling approaches have been
used to arrive to an LPV model of the distillation column
based on locally identified LTI models at the operating points
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Fig. 2. Applied excitation signals and measured response in Dglobal.
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Fig. 3. The noise-free validation data Dval based comparison of the true
system output and the simulated output of the LPV models estimated via
the local approaches (the three best results: output scheme with polynomial
interpolation (1st model), coefficient scheme with polynomial interpolation
(2nd model), coefficient scheme with RBF interpolation (3rd model)).

P . The LTI models have been identified as discussed in Sec-
tion IV-B. For the ”glocal” approaches (output interpolation
with polynomial or RBF interpolation), a data set Dglobal
with N = 15000 is collected from the PP-splitter model.
This corresponds to 26 days of experimentation time. Dglobal
is generated using an input signal, see Fig. 2, which is able
to excite the transient and dynamical behavior of the system
over its operating regime. This input signal is a combination
of a deterministic component added to a uniform noise
with distribution U(−1, 1). The same characteristics for
the measurement noise considered in Section II-C are used
to collect the local and global data sets. After solving the
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TABLE I
Dval BASED COMPARISON OF THE SIMULATED OUTPUT ERROR OF THE

LPV MODELS ESTIMATED VIA THE LOCAL APPROACHES.

output interpolation coefficient interpolation
MSE BFR MSE BFR

Polynomial y1 3.11 · 10−6 96.24% 3.70 · 10−6 95.89%
interpolation y2 6.23 · 10−7 98.28% 1.58 · 10−5 91.33%

RBF y1 4.50 · 10−5 85.68% 1.10 · 10−5 92.91%
interpolation y2 8.07 · 10−5 80.42% 8.32 · 10−6 93.72%

Bilinear y1 4.49 · 10−5 85.69% 1.43 · 10−5 91.92%
interpolation y2 7.96 · 10−5 80.55% 1.09 · 10−5 92.81%

interpolation problems via direct computation (scheme (i)
with the RBF and scheme (i), (ii) with the bilinear approach)
quadratic (polynomial approach for scheme (i) and (ii)) and
nonlinear optimization (scheme (ii) with the RBF method)
the accuracy of the resulting LPV models have been com-
pared in a simulation study using an independent noise-free
data set Dval = {(u(k), y(k), p(k))}Nk=1 with N = 20000,
generated by the PP-splitter model with a different varying
p and different realization of u than in the estimation data
set(s). The achieved simulation results are presented in Fig.
4 and in Table I in terms of the mean squared error (MSE)

MSE = ‖y(k)− ŷ(k)‖22. (6)

and the best fit rate (BFR) :

BFR = 100% ·max

(
1− ‖y(k)− ŷ(k)‖2

‖y(k)− ȳ‖2
, 0

)
, (7)

where ȳ is the mean of the noise-free output y of the original
system and ŷ is the simulated output of the LPV model calcu-
lated on Dval. The mean BFR of the identified local models
w.r.t. step-response data generated by the linearization of the
PP-splitter model at the operating points P has been 90.42%
and 91.44% for y1 and y2 respectively.

Based on these results, the output scheme with polynomial
interpolation, has produced the highest BFR on Dval. This
can be explained by the ”glocal” nature of the modeling
approach as the interpolation parameters has been optimized
w.r.t. both the local and the transient behavior (using Dglobal
data set). On the other hand, the output scheme with RBF
interpolation, which uses a similar ”glocal” method, has
produce a lower BFR, which has turned out to be a result of
finding the local optimum of the interpolation problem. Sig-
nificant performance increase has not been obtained by using
different initializations in solving the optimization which
clearly indicates the complexity of this scheme compared to
the quadratic problem of polynomial interpolation. Regarding
the coefficient scheme based approaches, the obtained perfor-
mance has been relatively the same as the local accuracy of
the obtained LTI models. Among the interpolation methods,
the RBF approach achieved a slightly better result which is
due to the fact that this interpolation is capable to ensure
that the LPV model behavior is only determined by a single
local LTI model if p is close to the operating point where
this model was identified. On the contrary, the polynomial
interpolation composes the behavior from all identified local
model parameters over the operating regime, resulting in

TABLE II
THE LOCAL H∞ ERROR OF THE ESTIMATED LPV MODELS W.R.T. THE

TRANSFER FUNCTIONS OF THE LINEARIZED AND DISCRETIZED SYSTEM

(COMPUTED ON A 19× 19 GRIDDING OF P).

output interpolation coefficient interpolation
Mean Max Mean Max

Poly. int. 7.62 · 10−3 1.25 · 10−2 6.21 · 10−4 2.29 · 10−2

RBF int. 4.79 · 10−4 9.79 · 10−4 4.71 · 10−4 8.74 · 10−4

Bilin. int. 3.37 · 10−3 1.11 · 10−2 4.91 · 10−4 1.55 · 10−3

a smooth, but almost arbitrary transitions of the model
parameters from one local operating point to the other. This
can even result in an unstable LPV behavior. While bilinear
interpolation does not suffer from this problem (like the RBF
approach), it introduces no-smooth transitions which produce
a worse interpolated behavior than by the RBF method.

However, comparison of the simulated output response
w.r.t. a particular trajectory of p might not fully reveal the
quality of the model. To test, how the models can generalize
the local dynamics of the system w.r.t. other operating points,
the H∞ error:

εp̄ , ‖Go,p̄(z)− Ĝp̄(z)‖∞, (8)

i.e., the H∞ norm of the difference of the transfer function
Go,p̄(z) of the linearized and discretized PP-splitter model at
operating condition p̄ ∈ P and the (frozen) transfer function
of Ĝp̄(z) of the LPV model for a constant scheduling
trajectory p(k) ≡ p̄, is computed on a dense 19×19 gridding
of P. The mean and maximum of εp̄ on this grid is displayed
in Table II.

This reveals that the coefficient interpolation based ap-
proaches result in a significantly smaller local H∞ error
if compared to the output interpolation based approach.
This means that the local properties of the model including
stability are better preserved by these approaches. The lower
BFR results of the coefficient schemes in Table I, can now
be interpreted as the result of the lower nominal performance
of the identified local models and not the result of the
interpolation algorithm. Hence it is reasonable that the glocal
approaches have better BFR, since they can sacrifice the
overall “dynamical” quality of the identified model to achieve
a higher fit. However, this results in a certain kind of
structural over-fitting which distorts the local accuracy of
the model and can cause significant problems if a controller
is designed on it. Additionally, the glocal method using RBF
approach, is also able to preserve the local properties of the
model reasonably well, as the basis functions have a region
where only a single model is active, and the influence of
the other local models is limited unlike in the polynomial
approach. This explains the contradictory results reported in
[15], [16] with the polynomial interpolation method.

The quality of the resulting LPV models heavily depends
on the quality of the local LTI estimates. One way to
achieve better results is by increasing the model order in
the OE identification. However, it turns out that this results
in a significant increase of the parameter variance of the
model estimates in the low separation region as higher order
(local) modes vanish (become unidentifiable) in this region.
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This is undesirable as the interpolation methods will be
significantly influenced by the noise and result in random
interpolated behavior of the estimated LTI models. This
property, called changing local model order, jeopardizes any
local identification approach which is based on interpolation
of IO or state-space models. This also explains why the
approach reported in [15], [16] has been applied successfully
on other applications without this property. To overcome
this problem, the use of a flexible model structure, which
is resilient to changing local model order, the so-called LPV
orthonormal basis functions approach [12] is suggested as a
future research direction.

V. LPV IDENTIFICATION VIA THE GLOBAL APPROACH

By the global identification concept, an LPV model of the
system is estimated in one step based only on a single data
set Dglobal with a varying scheduling trajectory. A commonly
applied approach to implement this scheme is to use the
LPV extension of the PEM framework for LPV-IO models
in the form of (1), see [5], [10]. Almost all approaches
in that context, including subspace schemes, require linear
parameterization of each model coefficient function ai and bj
in terms of an a priori chosen set of basis functions {ψj}nw

j=1,
ψj : P→ R:

φi = θi,0 +

nw∑
j=1

θi,jψj , (9)

with φi = ai for 1 ≤ i ≤ na, φna+1+i = bi for 0 ≤ i ≤ nb

and θi,j being the unknown parameters to be estimated.
This method however, requires an efficient selection of
{ψj}nw

j=1 such that (9) is able to capture the underlaying
nonlinearities of the system adequately. For process systems,
to accomplish such a basis function selection procedure, a
complicated analysis of the first-principle model is required
where the economical benefits of data-driven modeling can
be easily lost. Besides, it is not guaranteed that no unexpected
nonlinearities show up in the system behavior due to non-
ideal operation of actuators or actual morphology of the
installation. This has led to an increasing interest for methods
capable to provide direct, so-called non-parametric, estima-
tion of the coefficient functions [26], [27]. Due to the fact
that the original PP-splitter model is described by a large-
scale first principle model which, in the “local sense”, can be
reduced to the a 2nd-order model without a significant loss of
accuracy (see Section IV-E), it is expected that the original
nonlinearities of the model translate to heavy nonlinear p-
dependencies in a low order LPV model. Furthermore, the
property of changing local model order also indicates that
an a priori choice of basis functions in (9) can seriously
influence the model accuracy. Therefore, we apply a recently
introduced non-parametric LPV identification method, called
the LPV least-square support vector machine (LPV LS-
SVM) method [26], which can approximate the nonlinear
functional dependencies of the model directly from data.

A. The LPV LS-SVM approach

To avoid the use of complicated notation, the LPV LS-
SVM method is introduced in the sequel using a multiple-

input single-output (MISO) setting. This form of the estima-
tor accommodates identification of the original system for
each output channels y(1) and y(2) separately. The utilized
model structure is

y(j)(k) =

ng∑
i=1

(θ
(j)
i )>ψ

(j)
i (pk) x

(j)
i (k) + e

(j)
k , (10)

where j ∈ I21, with Is2s1 := {i ∈ Z | s1 ≤ i ≤ s2} being an
index set, ψ(j)

i : R→ Rnw denotes an undefined, potentially
infinite dimensional vector of basis functions, θ(j)

i ∈ Rnw

is the ith parameter vector, e(j)
k is the prediction error, and

x
(j)
i (k) is defined as:

x
(j)
i (k) = yj(k − i), for i ∈ Ina

1 , (11a)

x
(j)
na+1+i(k) = u1(k − i), for i ∈ Inb

0 , (11b)

x
(j)
na+nb+2+i(k) = u2(k − i), for i ∈ Inb

0 . (11c)

The estimates of the coefficient functions in the form of
(θ

(j)
i )>ψ

(j)
i (pk) are obtained via the solution of the following

optimization problem(s)

min
θ(j),e(j)

J (θ(j), e(j)) =
1

2

ng∑
i=1

‖θ(j)
i ‖

2
2+

γ(j)

2

N∑
k=1

(e
(j)
k )2

s.t. e
(j)
k = y(j)(k)−

ng∑
i=1

(θ
(j)
i )>ψ

(j)
i (pk)x

(j)
i (k)

with γ(j) ∈ R+
0 as the regularization parameter, influencing

the complexity of the model in terms of the `2-norm of
θ(j). An interesting feature of this optimization problem
that it can be solved without specifying the functions ψ(j)

i

or estimating the parameter vectors θ(j)
i . What makes this

possible is deriving the solution in the dual space of this
optimization problem and instead of specifying ψ(j)

i , its inner
product (ψ

(j)
i )>ψ

(j)
i is defined by an a priori chosen kernel

function K(j)
i . This is called the kernel trick, see [26]. Hence,

the underlying choice of nonlinear basis functions ψ(j)
i is

avoided by specifying a series expansion structure of the
unknown coefficient function φ

(j)
i described by the kernel

K
(j)
i . There are many possible kernel functions that can

be used in LPV identification, such as linear, polynomial,
RBF, etc. For the sake of simplicity, we apply a gaussian
RBF kernel which is commonly used in nonlinear function
estimation. Hence, the kernel is formulated as:

K
(j)
i (pk, pl) = exp

(
− ‖ pk − pl ‖

2
2

(σ
(j)
i )2

)
(12)

with σ
(j)
i > 0 specifying the width of the RBF. Together

with the regularization parameter γ(j), the kernel widths
σ

(j)
i are the tuning parameters of the estimator determining

the complexity of the estimated model. Hence, they can
be seen as trade-off parameters between bias and variance
of the estimate. Based on K

(j)
i , the following matrices are

constructed

[Ω(j)]s,k =

na+2nb+2∑
i=1

[Ω
(j)
i ]s,k

[Ω
(j)
i ]s,k = x

(j)
i (s)

(
K

(j)
i (p(s), p(k))

)
x

(j)
i (k),
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TABLE III
Dval BASED COMPARISON OF THE SIMULATED OUTPUT ERROR OF THE

LPV MODEL ESTIMATED VIA THE LS-SVM APPROACH.

Output BFR STD w.r.t BFR MSE STD w.r.t MSE
y1 99.82% 0.02% 7.67 · 10−9 1.47 · 10−9

y2 98.23% 0.19% 7.50 · 10−7 1.72 · 10−7

with s, k ∈ IN1 . Using these kernel matrices, the dual solution
of the SVM estimation problem is computed in terms of the
dual parameters β(j) ∈ RN :

β̂(j) = (Ω(j) + γ−1IN )−1Y (j). (13)

with Y (j) = [y(j)(1) . . . y(j)(N)]>. Based on β̂(j), the
estimates of the coefficient functions are given as

φ̂
(j)
i (�) = (θ

(j)
i )>ψ

(j)
i (�) =

N∑
s=1

β̂(j)
s xi(s)K

(j)
i (p(s), �). (14)

Note that this approach can also be applied to the general
MIMO case and any finite scheduling dimensions.

B. Results of the LPV LS-SVM approach

Compared to the local approaches, the LS-SVM approach
provides a direct estimation of LPV model from data, hence
it makes sense to assess its stochastic performance. For
this reason, the LPV LS-SVM estimator has been tested in
a Monte-Carlo study using 100 global data sets generated
with the same input and noise conditions as Dglobal (same
deterministic input trajectory, but new realizations of the
random input component and the noise). In this study, the LS-
SVM has been applied on each of these data sets separately
to identify 2nd-order LPV models for each output channel. To
tune the hyper parameters {γ(j)}2j=1 and {σ(j)

i }
na+2nb+2,2
i=1,j=1 ,

an other data set Dtune = {(u(k), y(k) + v(k), pk)}Nk=1,
with N = 15000, independently generated from Dglobal and
Dval, has been recorded from the PP-splitter model using
the same input and noise settings. Based on Dtune, auto-
tuning of the hyper parameters via non-linear optimization
has been conducted using the predictor form of the LS-SVM
estimator. The resulting optimized values are γ(1) = 303.91,
γ(2) = 5.74 · 104 and σ(1)

i = 9.53, σ(2)
i = 15.84 using equal

width for all kernels. The simulation error of one of the
identified LPV models w.r.t. Dval in the considered Monte-
Carlo study is depicted in Fig. 4. The mean and standard
deviation (STD) of the BFR and the MSE of this simulation
error over the Monte-Carlo study are presented in Table III.

Based on the results, it can be concluded that LS-SVM
has obtained models with high average BFR and a low
MSE. Furthermore, the STD of these error measures have
been also reasonably low over the 100 Monte-Carlo runs,
indicating low variance of the model estimates. However, it is
important to note that under the OE noise setting, estimation
by the basic LPV LS-SVM (which is based on LPV-ARX
model structure) will always result in biased estimates even
if in this case optimal tuning of the hyper parameters can
partly compensate for the bias. The resulting models can be
further refined, e.g., by using the instrumental-variable SVM
approach introduced in [28] or possible extension of results
reported in [29], [30]. However, due the already adequate
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Fig. 4. Dval based comparison of the true system output and the simulated
output of the LPV model estimated via the global LS-SVM approach.

fit of the model on independently generated validation data,
further refinement w.r.t. possible noise bias is not necessary.

VI. CONCLUSION

Local and global approaches of linear parameter-varying
(LPV) identification have been compared in the data-driven
modeling of a high-purity distillation column. It has been
shown that the local, especially output interpolation schemes
utilizing data describing transient dynamics of the system,
can achieve adequate approximation of the underlaying
input-output behavior. However, regarding the generalization
capability of the resulting models, the coefficient interpola-
tion schemes have shown better performance than the output
schemes. It has been also revealed that due to changing local
model order of the system, the local approaches encounter
with significant difficulties if an LPV input-output or state-
space representation based model structure is used. On the
other hand, the investigated non-parametric global approach,
the least-squares support vector machine, has shown high
performance in capturing the input-output behavior. More-
over, it has also shown adequate generalization capabilities
in terms of the local dynamical properties of the true system
despite the inaccurate noise model introduced bias. With
respect to both the local and global approaches, several points
of improvement have been pointed out, serving as objectives
for further research in studying LPV modeling of process
systems.
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[26] V. Laurain, R. Tóth, W. Zheng, and M. Gilson, “Nonparametric
identification of LPV models under general noise conditions. an LS-
SVM based approach,” in Proc. of the the 16th IFAC Symposium on
System Identification, Brussels, Belgium, July 2012, pp. 1761–1766.

[27] K. Hsu, T. L. Vincent, and K. Poolla, “Nonparametric methods for the
identification of linear parameter varying systems,” in Proc. of the Int.
Symposium on Computer-Aided Control System Design, San Antonio,
Texas, USA, Sept. 2008, pp. 846–851.
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