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Abstract— In this work, a new synthesis approach is proposed
to design fixed-order H∞ controllers for linear parameter-
varying (LPV) systems described by input-output (I/O) mod-
els with polynomial dependence on the scheduling variables.
First, by exploiting a suitable technique for polytopic outer
approximation of semi-algebraic sets, the closed loop system is
equivalently rewritten as an LPV I/O model depending affinely
on an augmented scheduling parameter vector constrained
inside a polytope. Then, the problem is reformulated in terms
of bilinear matrix inequalities (BMI) and solved by means of
a suitable semidefinite relaxation technique.

I. INTRODUCTION

The linear parameter-varying (LPV) modeling paradigm
is nowadays considered as a powerful alternative to derive
mathematical descriptions of nonlinear/time-varying phe-
nomena. In the last decades, significant research efforts were
devoted to modeling, identification and control of this class
of models (see, e.g., the books [1], [2] and the survey paper
[3] for a thorough review of the literature on the subject).

Although most of the approaches available in the literature
for LPV control design require models in state-space (SS)
form, where the matrices describing the state-space equa-
tions depend statically and often linearly on the scheduling
signals, a large part of the literature on identification of
LPV systems refers to input-output (I/O) model structures
(see, e.g., [1] for an up-to-date overview). This is due to
the fact that the I/O framework allows to extend the widely
studied LTI prediction-error approaches to the case of LPV
systems avoiding the curse of dimensionality present in
the identification of state-space forms. Unfortunately, exact
minimal SS realizations of identified I/O LPV models require
system matrices which depend not only on the current value
of the scheduling signal, but also on a number of its past
samples (dynamic dependence), as pointed out in [4]. The
problem of dynamic dependence is usually bypassed by
applying the linear time invariant (LTI) realization theory
to the identified I/O LPV model (see, e.g., [5]), which
unfortunately leads to SS realizations which are not exact,
and the introduced realization error might be the source
of significant performance degradation of the closed-loop
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system. In order to overcome this problem, a couple of
contribution have recently appeared addressing the problem
of controller design for LPV systems described in input-
output form ([6], [7]). Such approaches allow the designer to
overcome some other limitations of state-space approaches
like: (i) the difficulty in the a-priori imposition of a fixed
structure to the controller, (ii) the explosion of the matrix
dimension involved in the synthesis in case of large scale
systems. In [6], the authors derive sufficient conditions
for guaranteeing quadratic stability and a prescribed level
of H∞ performance of the closed-loop system, under the
quite general assumption that the designed feedback control
system depends polynomially on the scheduling variable. The
derived conditions are written in terms of a stable polyno-
mial, called the central polynomial, which must be selected
a-priori by the user. Once the central polynomial is chosen,
the controller is designed by solving a sum-of-squares matrix
polynomial optimization. Unfortunately, as clearly stated in
[6], the a priori selection of the central polynomial can
significantly affect the performance of the obtained closed-
loop system. Besides, the computational complexity of the
sum-of-squares matrix polynomial optimization could be
prohibitive for problems with medium/large size. In order
to overcome these limitations, a new approach is proposed
in [7] where the selection of the central polynomial is
optimized with respect to the achieved closed-loop perfor-
mance. The problem is then formulated in terms of BMI and
solved by exploiting a gradient-based algorithm which is not
guaranteed, in general, to converge to the global optimum
of the nonconvex BMI problem. Furthermore, although the
approach proposed in [7] is less computational demanding
than the one considered in [6], its applicability is restricted to
the case where (i) the closed loop system depends affinely on
the scheduling parameter and (ii) the scheduling parameter
ranges within a given polytope.

In this work, we propose an alternative approach to
solve the same problem considered in [6] which, unlike the
procedure presented in that paper, does not require a-priori
selection of the central polynomial. Besides, the proposed
approach overcomes the limitations of [7] mentioned above.
First, by relying on a recent result by some of the authors
in [8] about polytopic outer approximation of semialgebraic
sets, the closed loop system with polynomial dependence
on the scheduling signal is rewritten as a new input-output
model depending affinely on an augmented scheduling pa-
rameter vector ranging inside a polytope. Then, thanks to
a suitable vertex result, the problem is reformulated in
terms of a finite dimensional bilinear matrix inequalities
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(BMI) optimization problem and solved by means of a
semidefinite relaxation approach. The main novelties of the
proposed approach with respect to the results of paper [7]
are: (i) we consider a general polynomial dependence on
the scheduling signal and (ii) the semidefinite relaxation
approach is guaranteed to converge to the global optima
of the formulated nonconvex BMI problem. Furthermore,
stability of the central polynomial is guaranteed by adding
suitable polynomial constraints to the BMI problem.

The paper is organized as follows. Section II is devoted
to the problem formulation. Previous results on quadratic
stability and H∞ control of LPV input-output models are
briefly reviewed in Section III. A new procedure for the
solution to the considered problem is then proposed in
Section IV. Effectiveness of the proposed approach is shown
by means of a simulation example in Section V. Concluding
remarks are presented at the end of the paper.

II. PROBLEM FORMULATION

Consider the feedback control configuration depicted in
Fig. 1. The plant to be controlled is assumed to be described
by a SISO discrete-time, LPV input-output model G(q−1, λ)
defined by the following linear difference equation:

A(q−1, λ(t))y(t) = B(q−1, λ(t))u(t), (1)

where q−1 is the backward time-shift operator, i.e.,
q−1y(t) = y(t − 1), u(t) : Z → R is the command input
signal, y(t) : Z → R is the output signal, and λ(t) : Z → R

μ

is the scheduling variable which, according to the LPV
modeling and control literature (see, e.g., [3]) is assumed
to be measurable. The scheduling variable λ(t) is assumed
to belong to a generic semialgebraic set Λ ⊂ R

μ described
by polynomial inequalities. In order to simplify notation, in
the rest of the paper the following shorthand notation will be
adopted for a generic signal: πt � π(t). Furthermore, A(·)
and B(·) are polynomials in the backward shift operator q−1

described as

A(q−1, λt)=1 + a1(λt)q
−1 + . . .+ ana

(λt)q
−na , (2a)

B(q−1, λt)=b0(λt) + b1(λt)q
−1+ . . .+ bnb

(λt)q
−nb , (2b)

where na, nb ≥ 0 and the coefficients ai and bj are
assumed to be polynomial static functions of λt =
[λt1 λt2 . . . λtμ ]. Note that this structure is general enough
to represent/approximate a large variety of nonlinear systems
in an LPV form. In this paper, we address the problem
of designing a fixed structure LPV controller K(q−1, λ)
to guarantee closed-loop stability in terms of the control
configuration given in Fig. 1 as well as a prescribed level
of performance in terms of the L2-induced gain of a chosen

� �+ � �

�−
� �K(q−1, λ) G(q−1, λ)

rt et ut yt

Fig. 1. The considered closed-loop LPV system

closed-loop polynomial. Regarding the closed-loop stability,
we refer in this work to the notion of quadratic stability of a
LPV system in input-output form introduced by the following
definition (see also [6] and [1]).

Definition 1: (Quadratic stability of LPV systems de-
scribed by an I/O representation)
Define the latent variable

x(t) =
[
y(t) y(t− 1) . . . y(t− na + 1)

]�
(3)

which is considered as a state variable for the autonomous
part of the system depicted in Fig. 1. The closed-loop LPV
system in Fig. 1 is said to be quadratically stable if and
only if there exists a symmetric matrix P = P� � 0, P ∈
R

na×na , such that the quadratic function

V (t) = x(t)�Px(t) (4)

is a Lyapunov function which guarantees Lyapunov stability
of the system, for all possible trajectories of the scheduling
variables inside the compact set Λ ⊂ R

μ. �
The performance requirement considered in this paper is
given in terms of a L2-induced gain condition:

‖Twz(q
−1, λ)‖i,2 ≤ γ, ∀λ ∈ Λ, (5)

where γ ≥ 0 is a user-defined constant, ‖ · ‖i,2 is the
L2-induced gain of a nonlinear system (see, e.g., [9]) and
Twz(q

−1, λ) denotes a generic closed-loop systems with the
following input-output description:

V(q−1, λ(t))w(t) = D(q−1, λ(t))z(t), (6)

where

D(q−1, λt)=1 + d1(λt)q
−1 + . . .+ dnd

(λt)q
−nd ,

V(q−1, λt)=v0(λt) + v1(λt)q
−1+ . . .+ vnv

(λt)q
−nv .

(7)

The function Twz(q
−1, λ) can be, e.g., the sensitivity func-

tion or the complementary sensitivity function, possibly
weighted by a rational frequency-dependent function Wp(z),
as commonly done in the framework of H∞ control (see,
e.g., [10]). In fact, by using the symbol ‖ · ‖2 for denoting
the �2 norm of a signal, condition (5) can be equivalently
written as

‖z(t)‖2 ≤ γ‖w(t)‖2, (8)

and, as is well known, the considered L2-induced gain can
be considered as a generalization of the notion of the H∞
norm to the class of LPV systems. The LPV controller
K(q−1, λ), which is designed directly in the input-output
form, is described by the following difference equation:

M(q−1, λ, t)u(t) = L(q−1, λ, t)e(t), (9)

with

M(q−1, λ, t)=1 +m1(λ, t)q
−1 + . . .+mnm

(λ, t)q−nm,

L(q−1, λ, t)= l0(λ, t)+l1(λ, t)q
−1+ . . .+ln�

(λ, t)q−n�,

where nm, n� ≥ 0 and the functions mi and lj are assumed to
be polynomial in the scheduling variable λ. The coefficients
of the polynomial functions mi and lj are the controller
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parameters to be designed. Note that the controller given in
(9) can dynamically depend on the scheduling parameter λ.
Denoting the vector of such parameters with the symbol θ,
we can define the set Dqs

θ of all the values of θ which guar-
antee quadratic stability and make the closed loop system
satisfying condition (5).

III. QUADRATIC STABILITY AND L2 GAIN OF LPV
SYSTEMS IN INPUT-OUTPUT FORM

The aim of this section is to briefly summarize some
results on quadratic stability and L2-induced gain of LPV
systems given in I/O representation, originally reported in
[6], that will be used in the rest of the paper.

Let us define the following quantities

d =
[
dnd

(λ) . . . d2(λ) d1(λ) 1
]
, (11)

v =
[
vnv

(λ) . . . v2(λ) v1(λ) v0(λ)
]
, (12)

Π1 =

⎡
⎢⎣ 0 1

. . . 0...

. . .
0 0

. . . 1

⎤
⎥⎦ , Π2 =

⎡
⎢⎣ 1

. . . 0 0

. . .
...

0
. . . 1 0

⎤
⎥⎦ ,

where Π1,Π2 ∈ R
nd×nd+1 . The following theorem provides

a sufficient condition for guaranteeing that the closed-loop
LPV system in Fig. 1 is quadratically stable and satisfies the
L2-induced gain performance condition given by (5).

Theorem 1: L2-induced gain performance [6].
Given a polynomial C(q−1) of order nd in q−1 and with
constant coefficients

C(q−1) = 1 + c1q
−1 + . . .+ cnd

q−nd , (13)

with roots inside the unite circle. The LPV system in Fig.
1 is quadratically stable in Λ and satisfies the performance
requirements in (5), if and only if there exists a symmetric
matrix P ∈ R

nd×nd and a scalar β such that the following
condition is satisfied for all λ ∈ Λ:

J (θ, λ) 
 0, (14)

where

J (θ, λ) =

[
c�d(λ) + d

�
(λ)c− F (P )− βc�c, v�(λ)
v(λ) βγ2

]

c =
[
cnd

. . . c2 c1 1
]
,

and F (P ) = Π�
1 PΠ1 −Π�

2 PΠ2. �
The stable polynomial C(q−1) given in Theorem 1 is

referred to as the central polynomial.

IV. LPV CONTROLLER DESIGN PROCEDURE

It is important to highlight that, for given constant polyno-
mial coefficients c, condition (14) is a linear matrix inequality
(LMI) in θ, in the entries of the matrix P and in the
variable β, and polynomially parameterized in the scheduling
parameter λ. Therefore, (14) leads to a semi-infinite LMI
constraint. In [6] condition (14) is used to design robust
controllers under the quite general assumption that Λ is
a semialgebraic set. After selecting a stable polynomial

C(q−1), the problem of computing the controller parameters
satisfying (14) for all λ belonging to Λ is solved in terms of
sum-of-squares matrix polynomial optimization (see [6], [11]
and references therein). Unfortunately, as discussed in [12],
deriving a general formula for the selection of the central
polynomial is a hard task, therefore, the user is often forced
to look for an appropriate central polynomial by means of
trial-and-error iterations. In order to overcome this limitation
of the procedure, we propose to design the controller by
solving the following optimization problem

θ̂ = arg min
θ,P,c,β

β (15a)

s.t.[
c�d(λ)+d

�
(λ)c−F (P )−βc�c v�(λ)
v(λ) βγ2

]

0 ∀λ ∈Λ (15b)

c ∈ Sc (15c)

where Sc is the set of all stable polynomial of order nd,
and the coefficients of the central polynomial C(q−1) ∈ Sc

enter the problem as optimization variables. As pointed out
in [13], the region Sc can be described by means of a set of
scalar polynomial inequalities in the coefficients of C(q−1).
In particular, the following result holds.

Result 1: Algebraic geometry characterization of sta-
ble polynomials [13].
Sc is a semialgebraic set defined by the following polynomial
inequalities in the coefficients c1, . . . , cna

:

C(1) > 0, (−1)naC(−1) > 0, |cnd
| < 1, (16)

r2na−1 < r20, s2nd−2 < s20, . . . , q22 < q20 , (17)

where r0, s0, . . ., q0, . . ., rnd−1, snd−2, . . ., q2, q1 are
elements of the Jury’s array reported in Table I. �

Since the constraint (15b) is a nonconvex BMI in c
and θ, polynomially parameterized in λ, problem (15) is
a semi-infinite nonconvex polynomial matrix inequalities
(PMI) problem which is difficult to be solved in general.
In order to overcome this difficulty, let us consider the fol-
lowing alternative description of the closed-loop polynomial
Twz(q

−1, λ̃):

Ṽ(q−1, λ̃(t))w(t) = D̃(q−1, λ̃(t))z(t), (18)

where Ṽ and D̃ are assumed to depend affinely on a new
augmented scheduling variable λ̃ ∈ Λ̃ ⊂ R

ν , and Λ̃ is a
suitably defined semialgebraic set which accounts for the
fact that the function Twz , which is polynomial in λ ∈ Λ, is
now written as an affine function of λ̃ ∈ Λ̃. It is worth noting

TABLE I

JURY’S ARRAY.

cnd cnd−1 cnd−2 . . . c2 c1 1
1 c1 c2 . . . cnd−2 cnd−1 cnd

rnd−1 rnd−2 rnd−3 . . . r1 r0
r0 r1 r2 . . . rnd−2 rnd−1

snd−2 snd−3 snd−4 . . . s0
...

...
...

...
q2 q1 q0
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that the considered alternative description of the function Twz

does not introduce any approximation, provided that the new
parameter λ̃ and the set Λ̃ are properly constructed. This fact,
which holds general validity, is illustrated by means of the
following simple example.
Example 1. The LPV system given by the I/O representation:

z(t) + λ(t)z(t− 1) = 5λ2(t)u(t− 1) + 7λ3(t)u(t− 2),

λ(t) ∈ Λ = [0, 5] ∀t ∈ R,

can be equivalently written as

z(t) + λ̃1(t)z(t− 1) = 5λ̃2(t)u(t− 1) + 7λ̃3(t)u(t− 2),

λ̃(t) ∈ Λ̃=
{̃
λ ∈ R

3 : λ̃1 ∈ [0, 5], λ̃2 = λ̃2
1, λ̃3 = λ̃3

1

}
∀t ∈ R

�
Now, let us consider the following optimization problem

θ̆ = arg min
θ,P,c̃,β

γ (19a)

s.t.[
c̃
�
d̃(λ̃)+d̃

�
(λ̃)c̃−F (P )−βc̃

�
c̃ ṽ

�
(λ̃)

ṽ(λ̃) βγ2

]

0 ∀λ̃∈P (19b)

c̃ ∈ Sc̃ (19c)

where

d̃ =
[
d̃nd̃

(λ̃) . . . d̃2(λ̃) d̃1(λ̃) 1
]

(20)

ṽ =
[
ṽnṽ

(λ̃) . . . ṽ2(λ̃) ṽ1(λ̃) ṽ0(λ̃)
]

(21)

c̃ =
[
c̃nd̃

. . . c̃2 c̃1 1
]

(22)

and the set P ⊃ Λ̃ is a polytope of vertices λv
1, λ

v
2, . . . , λ

v
ρ.

P is a poltyopic outer approximation of Λ̃ derived by means
of the procedure proposed in [8]. The problem considered in
(19) leads to the following reformulation of Theorem 1.

Theorem 2: Given a polynomial C̃(q−1) of order nd

C̃(q−1) = 1 + c̃1q
−1 + . . .+ c̃nd̃

q−nd̃ , (23)

with roots inside the unite circle, the LPV system in Fig. 1
and with closed-loop polynomial (35) is quadratically stable
in P and satisfies the performance requirements in (5), if and
only if there exists a symmetric matrix P ∈ R

nd̃×nd̃ and a
scalar β such that the following condition

J (θ, λv
i , P ) =

=

[
c̃
�
d(λv

i ) + d̃
�
(λv

i )c̃− F (P )− βc̃
�
c̃, ṽ

�
(λv

i )
ṽ(λv

i ) βγ2

]

 0

(24)

is satisfied ∀i = 1, 2, . . . , ρ.
Proof We have to prove that condition (24) is a necessary
and sufficient condition for guaranteeing that the LPV system
in Fig. 1 is quadratically stable in P and satisfies the
performance requirements in (5) for all the trajectories of
λ̃(t) ∈ P . Necessity is obvious. In order to prove sufficiency,
let us define the following function

χ(w, λ) = w�J (θ, λv
i , P )w, (25)

where w is any nonzero vector such that w ∈ R
nd+nv and

P is a symmetric matrix such that

J (θ, λv
i , P ) 
 0 ∀λ̃(t) ∈ P. (26)

As is well known, condition (26) is equivalent to

χ(w, λ) ≥ 0, ∀λ̃(t) ∈ P, ∀w ∈ R
nd+nv , w �= 0. (27)

Due to the affine dependence on λ̃, the minimum of function
χ(w, λ̃) over the polytope P is attained at one of the vertexes
λv
1, λ

v
2, . . . , λ

v
ρ, being χ(w, λ̃) a linear functional of λ̃. Proof

of sufficiency follows from the fact that

χ(w, λv
i ) ≥ 0 ∀i = 1, . . . , ρ, (28)

due to condition (24). �

Thanks to Theorem (2), problem (19) simplifies to the
finite dimensional nonconvex PMI problem

θ̆ = arg min
θ,P,c̃,β

γ (29a)

s.t.[
c̃
�
d̃(λv

i ) + d̃
�
(λv

i )c̃−F (P )− βc̃
�
c̃ ṽ

�
(λv

i )

d̃(λv
i ) βγ2

]

 0

(29b)

∀ i = 1, . . . , ρ

c̃ ∈ Sc̃ (29c)

By exploiting a generalization of Descartes’ rule ([14]),
it is possible to apply the so-called scalarization approach
proposed in [15], which allows us to replace the PMI
constraints J (θ, λv

i , P ) 
 0, ∀i = 1, 2, . . . , ρ with a set
of scalar multivariate polynomial constraints. Let us define
the following matrix

Hi(x) = J (θ, λv
i , P ), (30)

whose entries are scalar polynomials.The characteristic poly-
nomial pi(w, x) of Hi(x) can be written, without loss of
generality, as

pi(w, x) = det(wIna+1 −Hi(x)) =

= wna+1 +

na+1∑
k=1

(−1)khk(x)w
na+1−k,

(31)

for all w ∈ R, where hk(x) are scalar polynomials and
Ina+1 denotes the identity matrix of size na+1. Application
of the scalarization approach to matrix Hi(x) leads to the
following result.

Result 2: Scalarization of PMI [15]

Hi(x) 
 0 iff hk(x) ≥ 0 ∀k = 1, . . . , na+1. �

By Result 2, problem (29) is converted into a standard
polynomial optimization problem which can be solved by
exploiting the relaxation-based approaches proposed in [16]
and [17]. An alternative approach to solve problem (29) is
based on the LMI relaxations for PMI problems proposed
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in [18] in the spirit of the results of sum-of-squares de-
compositions of positive polynomial matrices discussed in
[19] and [20]. In particular, in [18], PMI constraints of the
kind Hi(x) 
 0 are directly handled in matrix form without
conversion to a set of scalar polynomials and a sequence
of convex-relaxed problems is built up, whose solutions are
guaranteed to converge to the global optimum of the original
nonconvex PMI problem. Such an approach allows one to
detect if the global optimum of the original PMI problem
(29) is reached, and if so, to extract global minimizers. From
a computational point of view, this methodology is in general
more convenient than the scalar approach (see [18] for a
detailed discussion). Such an approach can be efficiently
implemented in Matlab by using the Gloptipoly toolbox [21].

Remark 1: It is worth noting that computational complex-
ity of problem (29) can be significantly reduced if, instead of
minimizing γ, we choose to look for a controller satisfying
the constraints of problem (29) for a given constant value of
γ, defined by the user on the basis of the desired L2-induced
gain. In such a case, the general PMI optimization problem
becomes a simpler BMI feasibility problem. Minimization of
γ can be performed by means of a bisection-like procedure.

V. A SIMULATION EXAMPLE

In this section we aim at demonstrating the effectiveness
of the presented approach through a simple example. The
system to be controlled is a discrete-time second-order LPV
system G(q−1, λ) described by:

G(q−1, λ) : yt =− a1(λt)yt−1 − a2(λt)yt−2+

+ b0(λt)ut + b1(λt)ut−1 + b2(λt)ut−2,

where

a1(λt) = −0.2 + 0.7λt, a2(λt) = 0.7 + 0.4λt,

b0(λt)=0.6+0.2λt, b1(λt)=3.4+1.2λt, b2(λt)=1.6+2.8λt.

The scheduling parameter λ is assumed to take values in
the range [0, 1]. Note that the system to be controlled is
not stable. For instance, when λt = 1 for all t = 1, 2, . . .,
the corresponding frozen LTI system is unstable. A discrete-
time LPV PI controller K(q−1, λ) described by the difference
equation:

K(q−1, λ) :(1− q−1)u(t)=
[
(1− q−1)(Kp0 +Kp1λt)+

+ (Ki0 +Ki1λt) q
(−1)

]
e(t),

(33)

is then designed in order to guarantee quadratic stability of
the closed-loop system, and also that the L2-gain from the
reference signal r to the output signal y is smaller than or
equal to γ = 1.6 for all possible trajectories of the scheduling
variable λ in the interval Λ = [0, 1]. In (33), Kp(λt) is
the proportional part of the controller and Ki(λt) is the
weight on the integral action, whose descriptions are given,
respectively, by

Kp(λt) = Kp0 +Kp1λt, Ki(λt) = Ki0 +Ki1λt. (34)

Such a structure of the controller leads to a closed-loop map-
ping Tyr(q−1, λ, t), between the reference signal r and the

output signal y, that dynamically depends on the scheduling
parameter λ. However, in this example, in order to apply
the approach discussed in the paper, the following closed-
loop mapping Tyz(q−1, λ) with static dependence on λ is
considered in designing the controller:

Tyr(q−1, λ) : D(q−1, λ(t))y(t) = V(q−1, λ(t))r(t), (35)

with

D(q−1, λ(t)) = 1 + b0(λt)Kp(λt)+

[b1(λt)Kp(λt)+b0(λt)Ki(λt)−b0(λt)Kp(λt)+a1(λt)−1] q−1+

[b2(λt)Kp(λt)+b1(λt)Ki(λt)−b1(λt)Kp(λt)+a2(λt)−a1(λt)] q
−2+

[b2(λt)Ki(λt)−b2(λt)Kp(λt)−a2(λt)] q
−3,

(36)

and

V(q−1, λ(t)) = b0(λt)Kp(λt)+

[b1(λt)Kp(λt) + b0(λt)Ki(λt)− b0(λt)Kp(λt)]q
−1+

[b2(λt)Kp(λt) + b1(λt)Ki(λt)− b1(λt)Kp(λt)]q
−2+

[b2(λt)Ki(λt)− b2(λt)Kp(λt)]q
−3.

(37)

Such a closed-loop mapping can be proved to be a good ap-
proximation of the true closed-loop mapping Tyr(q−1, λ, t)
for slow variations of the scheduling parameter λ. It is worth
remarking that D(q−1, λ(t)) and V(q−1, λ(t)) in (36) and
(37), respectively, quadratically depend on λ. As discussed
in Section IV, the new augmented scheduling variable λ̃ =
[λ̃1, λ̃2] = [λ, λ2]T ∈ R

2 can be defined so that the relation
between the reference signal r and the output y is an LPV
model with affine dependence on λ̃. Indeed, the augmented
scheduling parameter vector λ̃ lies in the set Λ̃ ⊆ R

2 that is
the arc of the parabola λ̃2 = λ̃2

1 confined to the interval λ̃1 ∈
[0, 1], i.e. Λ̃ =

{
(λ̃1, λ̃2) ∈ R

2 : 0 ≤ λ̃1 ≤ 1; λ̃2 = λ̃2
1

}
. A

polytopic outer approximation P of Λ̃ is then sought by
means of the procedure proposed in [8]. The set Λ̃ and
its polytopic outer approximation P are plotted in Fig. 2.
For every vertex of the polytope P , the LMI constraints in
problem (29) are enforced and the following parameters are
obtained: Kp(λt) = Kp0 + Kp1λt = 1.9687 − 0.9109λt,
Ki(λt) = Ki0 + Ki1λt = 0.2640 + 0.5652λt. The de-
signed controller is tested via simulation for the trajectory
of the scheduling parameter λ reported in Fig. 3(d). The
evolution of the output signal y and of the tracking error
e of the LPV closed-loop system are plotted in Figs. 3(a)
and 3(b), respectively, which show a satisfactory tracking
performance for different operating conditions. In particular,

0 0.2 0.4 0.6 0.8 1
0

0.5

1

λ
1

λ 2

Fig. 2. Nonconvex semialgebraic set Λ̃ (arc of parabola, thick line) and
polytopic outer approximation P (region inside thin line). Vertexes of P
are marked with stars (*).
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Fig. 3. (a) Closed-loop output signal y (solid line); (b) tracking error e; (c) input signal u; (d) scheduling parameter λ.

the percentage overshoot is smaller than 12% and the time
required by the output to stay within a relative error range
of [−0.01, 0.01] with respect to its steady-state value is
less than 15 time samples. Besides, the integral action of
the controller guarantees zero steady-state tracking error.
The control input u is plotted in Fig. 3(c). It is worth
remarking that, as commonly done in practice, a rough outer
approximation of the semialgebraic set Λ̃ given by the box
B = {(λ̃1, λ̃2) ∈ R

2 : 0 ≤ λ̃1 ≤ 1, 0 ≤ λ̃2 ≤ 1}
could be alternatively considered in computing the controller
K(q−1, λ). Unfortunately, because of the conservativeness
introduced by the box B, it is not possible, in this case, to
compute a quadratic stabilizer controller K(q−1, λ) such that
the L2-gain from the reference signal r to the closed-loop
output signal y is smaller than or equal to γ = 1.6. In other
words, evaluation of the LMI constraints (19b) at the vertexes
of the box B leads to an infeasible problem for γ = 1.6.

VI. CONCLUSIONS

A new controller synthesis approach for linear param-
eter varying systems given in input-output representation
is presented in the paper. The proposed procedure can be
applied under the quite general assumption that the closed-
loop system depends polynomially on the scheduling vari-
ables. By introducing a new augmented scheduling parameter
and by applying a suitable procedure for polytopic outer
approximations of semialgebraic sets, the synthesis problem
is reformulated as a finite dimension polynomial-matrix-
inequality problem which is solved by means of convex
relaxation techniques.
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