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Abstract— Least-Squares Support Vector Machines (LS-
SVM) represent a promising approach to identify nonlinear
systems via nonparametric estimation of the nonlinearities in
a computationally and stochastically attractive way. All the
methods dedicated to the solution of this problem rely on the
minimization of a squared-error criterion. In the identification
literature, an instrumental variable based optimization criterion
was introduced in order to cope with estimation bias in case of a
noise modeling error. This principle has never been used in the
LS-SVM context so far. Consequently, an instrumental variable
scheme is introduced into the LS-SVM regression structure,
which not only preserves the computationally attractive feature
of the original approach, but also provides unbiased estimates
under general noise model structures. The effectiveness of the
proposed scheme is demonstrated by a representative example.

I. INTRODUCTION

Support Vector Machines (SVMs) have been originally

developed as a class of supervised learning methods aiming

at data analysis and pattern recognition in classification

problems and regression analysis [1], [2]. SVMs have had

a paramount impact on the machine learning field since

their extension as a theoretical framework in that setting [3].

These methods also offer an attractive approach to system

identification, especially in the nonlinear context. In non-

linear system identification, most of the research interest has

been dedicated to nonlinear block models using various Least

Square-SVM (LS-SVM) approaches [4]–[6]. In general, LS-

SVMs are particular variations of the original support vector

machine approach using an ℓ2 loss function. Their main

advantage is the uniqueness of the solution, which is obtained

by solving a set of linear equations.

Given the convexity of the estimation problem and

the large number of parameters typically involved in LS-

SVMs, these approaches can be regarded as so-called over-

parametrization approaches in the nonlinear framework [7],

[8]. However, due to the existence of powerful regularization

methods for SVMs [1], [2], the variance of the estimated

nonlinear functions is significantly lower than in the classical

over-parametrization methods. On the other hand, SVMs also

offer the possibility of incorporating a model structure and

This work was supported by a research grant of the Australian Research
Council and by the Netherlands Organization for Scientific Research (Grant
No. 680-50-0927).

V. Laurain and W. X. Zheng are with the School of Computing and
Mathematics, University of Western Sydney, Penrith NSW 2751, Australia.
vlaurain@scm.uws.edu.au; w.zheng@uws.edu.au
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prior knowledge on the nonlinearities unlike other nonpara-

metric methods (e.g., [9]).

Variants of linear regression based methods in identifi-

cation have been developed in order to cope with realistic

assumptions on the noise [10]–[12]. To introduce the same

generality of noise structures, some recurrent LS-SVM have

been developed in [13], while in [14], a particular linear

parametric noise model has been introduced in the LS-

SVM framework. However, the chosen noise model plays

an important role in the consistency of the estimates. In

the parametric identification framework, the strength of IV

methods is to deliver consistent estimates independently on

the chosen noise model assumption in a computationally

attractive way. Consequently, the use of an instrumental

variable based criterion in the LS-SVM framework can

lead to a performance improvement of the current LS-SVM

approaches. Nonetheless, such a method would require the

dual solution of the IV optimization problem [10], [15],

which has not been developed so far. To overcome this

gap, this paper aims to derive a dual solution to the reg-

ularized IV optimization problem and to introduce the use

of the Instrumental Variable (IV) scheme into the LS-SVM

regression structure. This contribution not only preserves the

computationally attractive feature of the original approach,

but also provides unbiased estimates for general noise model

structures/conditions.

The rest of the paper is organized as follows: after defining

the problem setting considered in Section II, both the primal

and the dual solution of the usual optimization problem

used in LS-SVM methods are presented in Section III. In

Section IV, the IV optimization problem is introduced both

in the primal form and in the newly introduced dual form.

In Section V, the use of the dual IV solution to the LS-

SVM framework is developed, resulting in an IV-LS-SVM

method. The statistical performance of the proposed IV-LS-

SVM method is compared in Section VI to the traditional LS-

SVM approach via a Monte Carlo study of the identification

of a nonlinear system with an Output Error (OE) noise

structure. Finally, conclusions and some future directions of

the research are given in Section VII.

II. PROBLEM DESCRIPTION

Consider the general description of an affine, Single-Input

Single-Output (SISO), nonlinear, discrete-time and AutoRe-

gressive with eXogeneous input (ARX) system So given by

y(k) =

na∑

i=1

fo
i (y(k − i)) +

nb∑

j=0

goj (u(k − j)) + eo(k), (1)
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where u and y are the input and output signals respectively,

k denotes the discrete time, fo
i , g

o
j : R → R are a set

of possibly nonlinear functions and eo(k) is a zero-mean

white noise sequence with eo(k) ∈ N (0, σ2
eo
). Note that

representation (1) is general enough to describe usual block

structures such as Hammerstein or Wiener systems. Formu-

lation of (1) in the Multi-Input Multi-Output (MIMO) case

is also available as shown in [5]. It is important to note that

the considered system class is more restrictive than the non-

linear NARX class presented in [16]. This simplification is

used to present the underlying idea behind this contribution

in a clear fashion.

The nonlinearities involved in (1) are supposed to be a

priori unknown. In the LS-SVM context, the assumption

is made that each nonlinearity fi can be modeled using an

nH dimensional feature map φi : R → R
nH (where nH is

potentially infinite). A feature map in this setting represents

nonlinear mappings from the extended input-output space to

the output space (feature space). Nevertheless, before prop-

erly addressing the LS-SVM problem and in order to clearly

develop the motivations for the proposed approach, it is is

assumed that each nonlinearity has an explicit description:

fi(y(k − i)) =

nH∑

j=0

ρi,jφi,j(y(k − i)). (2)

gj(u(k − i)) =

nH∑

l=0

ρj̃,lφj̃,l(u(k − i)). (3)

with j̃ = na + 1 + j. This assumption leads to the

parametrized model Mρ

y(k) = ϕ(k)
⊤
ρ+ e(k), (4)

where e(k) is the equation error and the regressor ϕ is

defined as

ϕ(k) =
[
φ⊤
1 (y(k − 1)) . . . φ⊤

na
(y(k − na))

φ⊤
na+1(u(k)) . . . φ⊤

na+nb+1(u(k − nb))
]⊤

(5)

with φi : R → R
nH being nH dimensional basis functions,

ρ = [ ρ⊤1 . . . ρ⊤na+nb+1 ]⊤ ∈ R
nρ is the parameter

vector, ρi ∈ R
nH and nρ = (na + nb + 1)nH.

Let M = {Mρ | ρ ∈ R
nρ} be the collection of all models

in the form of (4). M represents the set of models in which

we are searching for the “best” Mρ that describes So given

a data set DN = {y(k), u(k)}Nk=1 generated by So.

In the considered problem setting it is assumed that the

system belongs to the model set defined and therefore there

exists a ρo ∈ R
nρ such that

y(k) = ϕ(k)
⊤
ρo + eo(k). (6)

III. OPTIMIZATION CRITERION

The quality of the model fit is formulated in terms of a

cost function J (ρ, e), where e is given by (4). Minimization

of J (ρ, e) corresponds to the estimation of the parameter

vector ρ. In the LS-SVM framework, the used minimiza-

tion criterion is the LS error criterion on e. However, the

dimension nH of the regressor φ involved is usually large

(and potentially infinite). Hence, a regularization term on ρ

is applied, leading to the minimization of the cost function

J (ρ, e)=
1

2
ρ⊤ρ+

γ

2

N∑

k=1

e2(k)=
1

2
‖ρ‖2ℓ2 +

γ

2
‖e(k)‖2ℓ2 , (7)

where the scalar γ ∈ R
+
0 is the regularization parameter.

Note that (7) is a so-called sum-of-norms criterion as it con-

tains both the equation error term e(k) and a regularization

term: the ℓ2 cost of ρ scaled by γ.

The solution of this optimization problem both in the

primal and dual forms are presented in the next subsections.

A. Solution in primal form

The primal solution to minimize the criterion (7) is ob-

tained by simply deriving the analytical solution of

∂J (ρ, e)

∂ρ
= 0. (8)

This leads to the minimum at:

ρ̂P =

[

γ−1Inρ
+

N∑

k=1

ϕ(k)ϕ(k)⊤

]−1

·

[
N∑

k=1

ϕ(k)y(k)

]

. (9)

It can be further noticed that by using the notation

Y = [ y(1) . . . y(N) ]⊤ ∈ R
N , (10a)

Φ = [ ϕ(1) . . . ϕ(N) ]⊤ ∈ R
N×nρ , (10b)

the primal solution can be written as:

ρ̂P =
[
Φ⊤Φ + γ−1Inρ

]

︸ ︷︷ ︸

RP(γ,N)

−1
Φ⊤Y. (11)

B. Solution in the dual form

The optimization problem (7) w.r.t. the constraints (4) can

also be solved by constructing the Lagrangian:

L(ρ, e, α)=J (ρ, e)−
N∑

k=1

αk

(
ϕ(k)⊤ρ+ e(k)−y(k)

)
(12)

with αk ∈ R being the Lagrangian multipliers. The global

optimum is obtained when

∂L

∂e
= 0 → αk = γe(k), (13a)

∂L

∂αk

= 0 → y(k) = ρ⊤ϕ(k) + e(k), (13b)

∂L

∂ρ
= 0 → ρ =

N∑

k=1

αkϕ(k). (13c)

Substituting (13a) and (13c) into (13b) leads to

y(k) = ϕ(k)⊤

(
N∑

k=1

αkϕ(k)

)

︸ ︷︷ ︸

ρ

+ γ−1αk
︸ ︷︷ ︸

e(k)

(14)

for k ∈ {1, . . . , N}. This set of equations is equivalent to:

Y =
[
ΦΦ⊤ + γ−1IN

]
α, (15)

where α = [α1 . . . αN ]⊤∈ R
N . This linear problem admits

the solution:

α =
[
ΦΦ⊤ + γ−1IN

]−1
Y. (16)
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According to (13c), ρ = Φ⊤α and therefore

ρ̂D = Φ⊤
[
ΦΦ⊤ + γ−1IN

]

︸ ︷︷ ︸

RD(γ,N)

−1
Y. (17)

C. Equivalence and bias of the solutions

It is important to notice that, under the condition that

both RD(γ,N) ∈ R
N×N in (17) and RP(γ,N) ∈ R

nρ×nρ

in (11) are non-singular, then the dual and primal solutions

are equivalent. Assuming that both RD(γ,N) and RP(γ,N)
are non-singular, then it can be proven using the well-

known properties of the primal solution that the estimate

is consistent (E{ρ} = ρo) under the conditions:

C1 γ → ∞.

C2 E{ϕ(k)eo(k)} = 0, ∀k ∈ Z.

This implies that both C1 and C2 must also hold for the dual

estimate to be consistent. For the system class considered, C2

only holds if eo is white as ϕ(k) is constructed using past sig-

nals values of y and the input signal u which is uncorrelated

to the noise. Nonetheless the ARX structure as described in

Section II is unrealistic in most practical applications as it

implies that the noise on the output has the same dynamics

and nonlinearities as the system itself. Consequently, in most

practical applications, the minimization of criterion (7) will

lead to a biased estimate. The next section introduces an IV

method in order to cope with this issue.

IV. INSTRUMENTAL VARIABLE APPROACH

Among the available identification approaches used in

the regression framework, the Instrumental Variable (IV)

approach has been successfully applied to resolve in a simple

and highly efficient fashion the inconsistency problem of

LS regression under a noise-modeling error [10], [11], [15],

[17]. The most restrictive condition guaranteeing consistency

is condition C2. In most problems, including the LS-SVM

case, the regressor is correlated (implicitly or explicitly) to

the noise and C2 does not hold. Thus, in the parametric

context, a IV identification criterion has been introduced

which relaxes C2 to a less restrictive condition and prevents

the deterioration of the estimation performance [15]. The

idea is to introduce a so-called instrument ζ(k) ∈ nρ such

that the consistency conditions become:

X1 γ → ∞.

X2 E{ζ(k)eo(k)} = 0, ∀k ∈ Z.

While the condition C2 depends on ϕ(k) and therefore on the

model assumed, X2 depends on ζ(k) which can be chosen

by the user. There is a wide range of possible solutions to

pick an instrument uncorrelated to the noise. To respect the

consistency conditions, the IV estimate corresponds to the

solution of the criterion

ρ̂IV = sol

{

1

N

N∑

k=1

ρ+ γζ(k)
[
y(k)− ϕ⊤ρ

]
= 0

}

. (18)

Similarly to (7), a regularization term on ρ weighted by γ is

also involved in this estimation scheme.

The motivation to pursue an IV-scheme based solution for

bias elimination are the following:

• In general, the recent IV approaches offer a similar

performance as the optimal (minimum variance and

unbiased estimates) prediction error methods in case of

correct assumptions on the system and noise models.

• As it will be shown later, the IV-based LS-SVM

problem can be solved in a very similar way to the

LS-SVM problem, implying approximately the same

computational load as well as the same complexity.

• Most importantly, the IV-schemes provide consistent

estimates in case of incorrect noise assumptions. This

feature is really important in practical situations as

usually no physical models of the noise are available.

Nonetheless, while the IV methods are now widely used

under the primal form of the optimization problem, they

have never been introduced in a dual setting to the best of

the authors’ knowledge. Thus, the question arises: Can the

parallelism between the primal and dual solutions, explored

in Section II, be used to introduce an IV scheme for the dual

form without any performance degradation?

A. IV in the primal form

The primal solution of (18) is straightforwardly given as

ρ̂IVP =

[

γ−1Inρ
+

N∑

k=1

ζ(k)ϕ(k)⊤

]−1

·

[
N∑

k=1

ζ(k)y(k)

]

. (19)

By using the notation (10b) and by declaring

Z = [ ζ(1) . . . ζ(N) ]⊤ ∈ R
N×nρ , (20)

the primal IV estimate can be expressed as:

ρ̂IVP =
[
Z⊤Φ+ γ−1Inρ

]

︸ ︷︷ ︸

RIV

P
(γ,N)

−1
Z⊤Y. (21)

Many instruments can be chosen in order to fulfill X2.

Nonetheless, the existence of the estimate is now constrained

by the non-singularity of RIV
P (γ,N) in (21). The discussion

about the choice of a suitable instrument guaranteeing this

property is too technical. Hence, due to the space restriction,

the authors refer to [15] for a discussion about this issue.

B. IV in the dual form

The main contribution of this paper is to introduce the

solution of the instrumental variable optimization (21) in the

dual form. Introduce αk and ζ(k) satisfying:

αk = γe(k), (22a)

y(k) = ϕ(k)⊤ρ+ e(k), (22b)

ρ =

N∑

k=1

αkζ(k). (22c)

We will prove that the choice of (22c) is necessary to

obtain the dual solution of the optimization criterion (18).

Substituting (22a) and (22c) into (22b) yields the following

set of linear equations:

y(k) = ϕ(k)⊤

(
N∑

k=1

αkζ(k)

)

︸ ︷︷ ︸

ρ

+ γ−1αk
︸ ︷︷ ︸

e(k)

, (23)
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for k ∈ {1, . . . , N}, which leads to the solution

α =
[
ΦZ⊤ + γ−1IN

]−1
Y, (24)

where α = [α1 . . . αN ]⊤ ∈ R
N . According to (22c), ρ =

Z⊤α and therefore

ρ̂a = Z⊤
[
ΦZ⊤ + γ−1IN

]

︸ ︷︷ ︸

RIV

D
(γ,N)

−1
Y, (25)

which is equivalent to ρ̂IVP (see (21)) if both RIV
D (γ,N) and

RIV
P (γ,N) are non-singular. Consequently, ρ̂a is the dual

solution of the IV optimization problem (18), ρ̂a = ρ̂IVD and

this estimate is consistent, independently of the noise model

assumed under the conditions X1 and X2. In conclusion,

the solution of the IV optimization has been introduced in

the dual representation and the next section describes its

application to the LS-SVM framework.

V. INSTRUMENTAL VARIABLE IN THE LS-SVM CONTEXT

So far in this paper, the studied system was considered to

lie in the model set defined by M and could be described

using a finite dimensional parameter vector. It allowed to

derive the statistical properties for both the primal and dual

solutions of different optimization criteria (LS based and

IV based). Nonetheless, in a nonlinear context, finding an

appropriate model set can be a tedious task. In most linear

regression methods, explicit feature maps are defined (for

example polynomial) along with their dimension. Nonethe-

less, this implies the quality of the model will highly depend

on the structure chosen and in most cases, will lead to a

structural bias. A possible way to avoid this structural bias is

to increase the dimension of the feature maps : nH → ∞ and

therefore nρ → ∞. In this case, nρ ≫ N , and the use of the

dual solution becomes necessary. It must be pointed out that

defining explicitly an infinite dimensional feature map and

therefore an infinite dimensional regressor is not feasible in

practice. Hence, the main advantage of the LS-SVM method

is to be able to handle infinite dimensional feature maps with

a low computational load via a dual solution.

A. LS-SVM method

In the LS-SVM context, ϕ(k) is composed of possibly

infinite dimensional feature maps nH → ∞: therefore nρ →
∞ and ρ cannot be explicitly computed. The main feature

of the LS-SVM method is that the vector α can be explicitly

computed without the proper knowledge of the feature maps

Φ. Introduce the so-called Grammian matrix as G = ΦΦ⊤

in (16), which can be defined without the explicit knowledge

of Φ. Notice that

[G]j,k =

nρ∑

i=1

[Gi]j,k (26)

with

[Gi]j,k = 〈φi(xi(j)), φi(xi(k))〉 = Ki(xi(j), xi(k)), (27)

where Ki is a positive definite kernel function and

xi(k) = y(k − i), i = 1, . . . , na, (28a)

xna+1+j(k) = u(k − j), j = 0, . . . , nb. (28b)

Consequently, a given set of kernel functions Ki defines G

and hence characterizes Φ. This is called the kernel trick [1],

[2], which allows the identification of the nonlinear functions

fi, gj without explicitly defining the feature maps involved.

A typical type of kernel is, for example, the Radial Basis

Function (RBF) kernel:

Ki
j,k = Ki(xi(j), xi(k)) = exp

(
−‖xi(j)−xi(k)‖

2

ℓ2

σ2

i

)

, (29)

but other kernels, like polynomial kernels, can also be used.

Another remark is that the parameter vector ρ̂D is never

accessible in the LS-SVM framework, and only the combined

estimation ρi
⊤φi(�) = fi(�) is computable using the kernel

functions defined. Nonetheless, even if the estimate of ρ is

not accessible, the consistency properties C1 and C2 hold.

B. Instrumental variable for the LS-SVM framework

The final aim of this paper is to introduce the IV solution

in the LS-SVM framework. The conditions on the instrument

in order to obtain a consistent estimate have been derived

in the previous section. It must be emphasized that in

a nonlinear context, the choice of an optimal instrument

depends highly on the system structure and the noise model

assumed, and is mostly an open problem. Consequently, the

instrument chosen to address the IV-LS-SVM solution is

inspired by the instrument proposed in [10] which leads to

the IV4 solution in the primal form:

ζ(k) =
[
φ⊤
1 (yLS(k − 1)) . . . φ⊤

na
yLS(k − na)

φ⊤
na+1(u(k)) . . . φ⊤

na+nb+1(u(k − nb))
]⊤

, (30)

where yLS is the simulated output of the model given by

the LS-SVM method and φi are the same as in (5). This

instrument always guarantees X2 in the considered case and

it has been successfully used in the primal context.

In the same fashion as in (26), the IV Grammian matrix

J = ΦZ⊤ is defined as

[J ]j,k =

nρ∑

i=1

[J i]j,k (31)

with

[J i]j,k = 〈φi(xi(j)), φi(ξi(k))〉 = Ki(xi(j), ξi(k)), (32)

ξi(k) = yLS(k − i), i = 1, . . . , na, (33a)

ξna+1+j(k) = u(k − j), j = 0, . . . , nb. (33b)

It is possible to derive the conditions on the instrument

for applying the kernel trick. Nonetheless, this issue is not

discussed here due to space restrictions. The definition of

the kernel functions Ki allows an explicit expression of

α. Consequently, it can be concluded from (22c) that the

resulting IV4-LS-SVM estimate is given by

fi(�) = φ⊤
i (�)ρi =

N∑

k=1

αkK
i(ξi(k), �), (34a)

gj(�) = φ⊤
j̃
(�)ρj̃ =

N∑

k=1

αkK
j̃(ξj̃(k), �), (34b)

where j̃ = na+1+ j. The IV4-LS-SVM algorithm w.r.t. the

instrument (30) is summarized as Algorithm 1.
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Algorithm 1 IV4-LS-SVM

1: use the LS-SVM method to obtain a model MLS−SVM

2: use MLS−SVM to generate yLS by simulation

3: compute ξ and J via (33a-b) and (32)

4: compute α by solving (24)

VI. SIMULATION EXAMPLE

A. Data generating system

The main advantage of the IV methods is their robustness

when facing modeling errors in the noise structure. Conse-

quently, in order to compare the LS-SVM and the IV4-LS-

SVM methods under realistic noise conditions, a nonlinear

Output Error (OE) system So is considered :

χ(k) = −0.7χ(k − 1) + f(χ(k − 2)) + g(u(k)), (35a)

y(k) = χ(k) + eo(k), (35b)

where

f(x) =

{

−0.2x2 if x > 0

0 else
(35c)

g(x) = −x+ 2x2 + cos(10x). (35d)

In the sequel, the input u(k) is taken as a zero-mean white

noise process with a uniform distribution U(−0.5, 0.5) and

with length N = 1200 to generate data sets DN of So.

eo(k) is taken as a zero-mean white noise sequence with

eo(k) ∈ N (0, σ2
eo
).

B. Model structures

Both the conventional LS-SVM approach and the proposed

IV4-LS-SVM approach use the same ARX model structure

Mρ given as:

y(k) = ρ1y(k − 1)+φ⊤
2 (y(k − 2))ρ2+φ⊤

3 (u(k))ρ3 + e(k).

Note that the equation error e(k) is not white. The robustness

of the proposed IV4-LS-SVM and the existing LS-SVM

algorithms are analyzed under a signal-to-noise ratio SNR =
10 log

Pχo

Peo
= 7dB, where Pχo

and Peo are the average

power of the signals χo and eo respectively. To provide

representative results, a Monte Carlo simulation of NMC =
100 runs with new noise realization in each run is applied.

One of the advantage of the LS-SVM algorithm is to be

able to use some a priori knowledge which, in this case,

means the explicit definition of φ1(y(k− 1)) = y(k− 1). To

characterize the nonlinearities, RBF kernels are used for K2

and K3. It is important to note that the main contribution

of this paper is the introduction of the IV optimization

criterion (18) and its solution in the LS-SVM framework

(24). Therefore, in order to evaluate the impact of this

criterion only, it is important that the model structure is the

same for both the LS-SVM method and the IV4-LS-SVM

methods. In the present context, where the feature maps

are implicitly defined, the model structure is defined by the

kernels used and therefore by the σ parameters. The model

structure is chosen such that it maximizes the Best Fit Rate

(BFR) on the estimation data set for the LS-SVM method

(using an exhaustive search) where:

TABLE I

MEAN AND STANDARD DEVIATION OF THE ESTIMATED PARAMETER ρ1

AND THE BFR COMPUTED ON VALIDATION DATA.

Mean ρ̂1 std ρ̂1 Mean BFR std BFR

True value −0.7 – – –

LS-SVM −0.528 0.0142 82.61 1.29

IV4-LS-SVM −0.699 0.0202 91.99 1.86

BFR = 100% ·max

(

1−
‖χ(k)− χ̂(k)‖ℓ2
‖χ(k)− χ̄‖ℓ2

, 0

)

, (36)

with χ̄ being the mean of χ. This search has resulted in

σ2 = 3, σ3 = 0.5. The γ parameters have been however

optimized separately (by exhaustive search too) as they

are directly linked to the different optimization problems

considered. This leads to γLS = 3500 and γIV = 500.

C. Simulation results

Table I displays the mean and standard deviation of the

estimated parameter ρ1. It can be seen that, in line with the

theory, the LS-SVM algorithm is biased while the proposed

IV4-LS-SVM method is unbiased. Like in the linear regres-

sion framework, the IV based method displays a slightly

larger variance than the LS method. Note that φ1 in this case

is explicitly defined so ρ1 can be directly accessed, while this

is not the case for the other parameters ρ2 and ρ3.

Figure 1 shows the estimation results of g(u) by the

IV4-LS-SVM and the LS-SVM algorithms and exposes the

mean estimated function together with the standard deviation

interval. As expected, both algorithms perform similarly in

estimating g as u(k) is uncorrelated with e(k) and therefore

ϕ2(k) = ζ2(k). Figure 2 shows the estimation results of f(y)
by the IV4-LS-SVM and the LS-SVM algorithms in terms

of the mean and standard deviation of the estimates. The

bias of the LS-SVM method clearly appears in this figure.

In contrast, the mean estimate of f by the IV4-LS-SVM

algorithm is centered on the original one. Note that a more

advanced instrument might lead to even better results.

Table I also displays the mean and standard deviation of

the BFR for both algorithms on a validation set. This clearly

shows that on the validation set, the proposed IV4-LS-SVM

method achieves, even for this simple model, significantly

better performance than the usual LS-SVM algorithm. As

the computation time of χ̂ is negligible, this implies that the

execution time of the IV4-LS-SVM is only approximately

two times of the LS-SVM method, where the latter is known

to be computationally efficient.

Finally, it needs to be pointed out that w.r.t. (35a-b),

condition X2 holds only if χ(k − 2) < 0. Even though, the

achieved estimation performance by the proposed approach

has considerably increased on the whole feature space (even

for χ(k−2) ≥ 0). This highlights that condition X2 cannot be

asserted for any nonlinear structures, but it holds in general

for structures which are linear in the output (Hammerstein,

linear parameter-varying, etc.).

VII. CONCLUSION

In this paper, an instrumental variable estimation scheme

has been proposed for the SVM framework, which signif-
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Fig. 1. True nonlinearity g(u) (dotted black) together with the mean estimate (solid grey) +/− standard deviation (dashed black) over the Monte-Carlo
simulation.
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Fig. 2. True nonlinearity f(y) (solid black) together with the mean estimate (solid grey) +/− standard deviation (dashed black) over the Monte-Carlo
simulation.

icantly extends the applicability of the LS-SVM algorithm

to general noise cases while maintaining its computational

efficiency. To the authors’ knowledge, this method is among

the first of the LS-SVM approaches designed to be consistent

under modeling error of the noise. Via a simulation example,

it has been demonstrated that the proposed IV4-LS-SVM

method performs better than the LS-SVM algorithm w.r.t.

data generated by a non-ARX system. It has also been

observed that the computational load of the IV4-LS-SVM

scheme is at the same magnitude as the LS-SVM method.

Future research concerns the introduction of optimal instru-

ments for different system classes and the refinement of the

proposed IV4-LS-SVM scheme for extended noise models,

which is hoped to decrease variance of the estimates.
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[15] T. Söderström and P. Stoica, Instrumental Variable Methods for System

Identification. New York: Springer-Verlag, 1983.
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