
Model Structures for Identification of Linear
Parameter-Varying (LPV) Models

Paul M.J. Van den Hof, Roland Tóth and Peter S.C. Heuberger

Abstract Describing nonlinear dynamic systems by linear parameter-varying mod-
els has become an attractive tool for control of complex systems with regime-
dependent (linear) behavior. For the identification of LPV models from experimental
data a number of methods has been presented in the literature but a full picture of the
underlying identification problem is still missing. In this contribution a solid system
theoretic basis for the description of model structures for LPV models is presented,
together with a general approach to the LPV identification problem. Use is made of
a series expansion approach to LPV modeling, employing orthogonal basis function
expansions.

1 Introduction

Many physical/chemical processes exhibit parameter variations due to non-stationary
or nonlinear behavior or dependence on external variables. For such processes, the
theory of Linear Parameter-Varying (LPV) systems offers an attractive modeling
framework [15]. This class of systems is particularly suited to deal with systems
that operate in varying operating regimes. LPV systems can be seen as an extension
of the class of Linear Time-Invariant (LTI) systems, where the signal relations are
considered to be linear, but the model parameters are assumed to be functions of a
measurable time-varying signal, the so-called scheduling variable p. As a result of
this parameter variation, the LPV system class can describe both time-varying and
nonlinear phenomena. Practical use of this framework is stimulated by the fact that
LPV control design is well worked out, extending results of optimal and robust LTI
control theory to nonlinear, time-varying plants [15, 17, 28].
In the past two decades several methods have been developed for the identification
of discrete-time LPV models from measured data [4, 18, 16, 3, 26, 25]. Most of
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these approaches exploit the fact that an LPV system can be viewed as a collection
of “local” models connected by scheduling dependent weighting functions [15, 22].
The identification approaches that are presented in the literature so far all take a
particular starting point of a fixed model structure and identification method, usu-
ally chosen as a direct extension of the situation of LTI systems. A general theory
for identification of LPV models is still missing. To a large extent this is due to the
fact that a structured framework for the description of this model class is lacking,
including well-defined notions as model transformations, equivalence classes and
canonical forms. As a result the model structures, commonly used in LPV iden-
tification methods, are generally not well defined or are limiting the representation
capabilities of the resulting models considerably. In this paper the behavioral frame-
work, originally developed for LTI systems [13], is used and extended to the LPV
system class, to overcome the indicated limitations. On the basis of a solid system-
theoretic definition of LPV systems, several LPV model structures are presented and
consequences for their use in identification are discussed. Particular attention will
be given to a series-expansions approach in terms of orthonormal basis functions.
The question whether the scheduling signal has a static or dynamic effect on the
system coefficients is an important issue that is discussed in detail.

In this paper we will restrict attention to single input - single output (SISO) sys-
tems, but all results carry over to the MIMO case in a straightforward way.

2 Concepts and Notation

A conceptual view of an LPV system is depicted in Figure 1, emphasizing the fact
that the system coefficients θ(k) that are used to determine output y(k) are depen-
dent on an external signal p(k), while for a fixed θk = c the system S is linear
time-invariant. At every time instant k, this linear dynamics is updated on the basis
of the mapping p→ θ .

LPV systems can be written in different representations, among which the LPV
state-space description,

x(k +1) = A(p(k))x(k)+B(p(k))u(k) (1a)
y(k) = C(p(k))x(k)+D(p(k))u(k) (1b)

Fig. 1 LPV system represen-
tation, where for a fixed value
of k, S(θ(k)) describes an LTI
system. The coefficient θ is
a function of the scheduling
variable p.

S(θ(k))u(k) y(k)

p(k)
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and the LPV IO model representation

y(k) = −
na

∑
i=1

ai(p(k))y(k− i)+
nb

∑
j=0

b j(p(k))u(k− j). (2)

Here y and u are the output, respectively input of the system, x is the state vector
and the real-valued system coefficients (A,B,C,D) and (ai,b j)i=1,···na; j=0,···nb , be-
come dependent on a scheduling function p : Z→ P, where P⊂ Rnp . It is assumed
that p is measurable or known.

A few observations should be added to these concepts:

• An important observation is that usually the map p→ θ (see Fig. 1) is assumed
to be a static (nonlinear) mapping, i.e. θ(k) depends only on the value of p(k).
As will be shown in Section 3, this assumption is a core issue in the development
of a solid theory of LPV systems.

• Note that in these representations there is no limitation or guarantee that the
McMillan degree of the linear systems remains constant for every value of k.

• It is clear that LPV systems are closely related to the class of Linear Time-Varying
(LTV) systems, with the restriction that knowledge about the time-varying be-
havior is limited by the fact that the scheduling signal p can generally only be
measured on-line.

• With respect to control synthesis for LPV systems it is important to note that
virtually all methods are based on LPV state-space models, very often with the
assumption that the dependence of the matrices on p is affine, i.e. every matrix
function X in Eq. (1) can be decomposed as

X(p(k)) = X0 +
np

∑
i=1

Xi pi(k), (3)

where {Xi} are real-valued matrices.
• If p is dependent on y, u or x the system is referred to as a quasi-LPV system.

3 LPV models revisited

3.1 Approaches to LPV identification

For the identification of LPV models, two major different approaches can be distin-
guished.

1. Local approach

• LTI models are identified in a number of (local) operating points correspond-
ing to constant scheduling signals p(k) ≡ p̄i, i = 1, · · ·Nl , where Nl is the
number of local models obtained in this fashion.
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• The resulting local linear models are interpolated (possibly by using data from
an additional global experiment) to an LPV model.

2. Global approach

• Determine a global LPV model structure and an identification criterion.
• Use data from a global experiment, i.e. with a varying scheduling signal, to

estimate an LPV model.

For the estimation step in these identification approaches both prediction-error
methods and subspace methods are available ([4, 25]. For interpolation various tech-
niques and approaches have been introduced, varying from interpolation on pole es-
timates to the technique where each local (LTI) model is converted to a state-space
model in canonical form, and subsequently the coefficients in this model are inter-
polated ([26]).

This simple sketch of possible approaches directly leads to questions about the
definition and selection of appropriate model structures. While many identification-
related issues are up for further exploration, as e.g. experiment design, estimation
accuracy, model validation, we will focus on the questions related to the use of
different model structures.

3.2 Model structure considerations

As a first indication that there are theoretical problems involved with the current
practice, let’s consider the LPV model representations in state-space and IO form
in Eq. (1-2) and evaluate wether these two representations are equivalent, as is the
case for LTI systems. A simple example shows that this is not true for LPV systems,
if the mapping p→ θ is restricted to be static: consider the following second-order
state-space model in the form of Eq. (1):

[
x1
x2

]
(k +1) =

[
0 a1(p(k))
1 a2(p(k))

][
x1
x2

]
(k)+

[
b1(p(k))
b2(p(k))

]
u(k)

y(k) = x2(k).

With simple manipulations this system can be written in an IO form:

y(k) = a2(p(k−1))y(k−1)+a1(p(k−2))y(k−2)
+ b2(p(k−1))u(k−1)+b1(p(k−2))u(k−2),

which is clearly not in the form defined by Eq. (2). In order to obtain equivalence be-
tween the state-space and IO representations, it is necessary to allow for a dynamic
maping p→ θ , i.e. θ(k) can depend on {· · · , p(k−1), p(k), p(k +1), · · ·} [20].

Based on the observation that LPV systems are closely related to LTV systems,
it follows that for the definition of state-space equivalence transformations the con-
cepts of the LTV theory should be used [6]. It can be shown (see [20]) that this
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results in transformation matrices and consequently also in state-space matrices that
depend dynamically on the scheduling parameter p. Note that by using only LTI
based state-space transformations, there is no guarantee that the resulting state vec-
tors have a common basis.

It can be concluded that transforming estimated IO models to state-space de-
scriptions, while retaining a static dependence on the scheduling function, as well
as using LTI state-space transformations on local models (before interpolation) may
result in errors. This especially holds for situations with rapidly varying scheduling
signals, as further illustrated in [20].

3.3 A behavioral approach

From the previous sections it can be concluded that the classical formulation of LPV
models should be adapted in order to deal with dynamic scheduling dependence.
In [19] the behavioral framework, originally developed1 for LTI systems ([13]), is
extended to deal with LPV systems. In this framework a parameter-varying system
S is defined as a quadruple

S = (T,P,W,B) , (4)

where T is called the time axis, P denotes the scheduling space (i.e. p(k) ∈ P),
W is the signal space with dimension nw and B⊂ (P×W)T is the behavior of the
system. The set T defines the time-axis of the system, describing continuous, T=R,
and discrete, T = Z, systems alike, while W gives the range of the system signals.
B defines the physical laws, the rules for selecting which trajectories of (P×W)T

are possible. In the sequel we restrict attention to the discrete-time case. Note that
there is no prior distinction between inputs and outputs in this setting.

We also introduce the so-called projected scheduling behavior

BP = {p ∈ PT | ∃w ∈WT s.t. (w, p) ∈B}, (5)

and for a given scheduling tractory p ∈BP, we define the projected behavior

Bp = {w ∈WT | (w, p) ∈B}. (6)

With these concepts we can define LPV systems as follows:

Definition 1. (LPV system) The parameter-varying system S is called LPV, if the
following conditions are satisfied:

• W is a vector-space and Bp is a linear subspace ofWT for all p∈BP (linearity).
• T is closed under addition.

1 In the past decades this framework has been extended to LTV ([27, 8]), and even nonlinear (NL)
systems ([13, 14]).
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• For any (w, p) ∈B (a signal trajectory associated with a scheduling trajectory)
and any τ ∈ T, it holds that (w(¦+ τ), p(¦+ τ)) ∈B, in other words qτB = B
(time-invariance) 2.

In a next step the behavior of LPV systems has to be specified in terms of mathe-
matical representations. The coefficients in these representations will become (non-
linear) functions of the scheduling signal p. In order to describe this functional
dependence of a single real-valued coefficient in one of the representations to be
introduced in the next section, we employ functions

r : Rn → R,

that are considered to be in the set R =
⋃

n Rn, where Rn is the set of essentially3 n-
dimensional real-meromorphic functions (being a quotient of analytical functions).
This function specifies how the resulting coefficient is dependent on n variables, that
are selected -in a unique ordering- from elements of the set {qi p j}i∈Z; j=1,··· ,np . In
order to specify the (time-varying) coefficient we introduce new notation through
the operator

¦ : (R,BP)→ RZ, defined by (r ¦ p)(k) = r(x(k)) (7)

where x is a vector of n signals, being constructed by taking the first n components
of the signal vector

[
pT q−1 pT qpT q−2 pT q2 pT · · · ]T

. (8)

A (scheduling-dependent) coefficient in an LPV system representation is now eval-
uated by an operation (r ¦ p)(k).

Example 1. (Coefficient function) Let P=Rnp with np = 2. Consider the coefficient

1+ p1(k−1)
1− p2(k)

.

In order to describe this coefficient with a real-meromorphic function r, we need a
function with dimension 3, i.e. x = [p1, p2,q−1 p1] specified by

r(x1,x2,x3) =
1+ x3

1− x2
.

With this specification of r, (r ¦ p)(k) =
1+ p1(k−1)

1− p2(k)
.

In the sequel the (time-varying) coefficient sequence (r ¦ p) will be used to op-
erate on a signal w. In this respect an important property is that multiplication with
the shift operator q is not commutative, in other words q(r ¦ p)w 6= (r ¦ p)qw.

2 Here q denotes the standard shift operator, qix(t) = x(t + i), i ∈ Z.
3 In the sense that r(x1, · · · ,xn) does depend on xn.
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Shift operations −→r ,←−r can be defined by the equation −→r ¦ p = r ¦ (qp), respec-
tively ←−r ¦ p = r ¦ (q−1 p). With this notion it follows that q(r ¦ p)w = (−→r ¦ p)qw
and q−1(r ¦ p)w = (←−r ¦ p)q−1w.

The considered operator ¦ can straightforwardly be extended to matrix functions
r ∈ Rnr×nw where the ¦ is applied to each scalar entry of the matrix, as well as to
polynomial matrices in q. Let R[q]nr×nw denote the set of polynomial matrices in q
with coefficients in R, then

(R(q)¦ p)w :=
nq

∑
i=0

(ri ¦ p)qiw (9)

where R(q) = ∑
nq
i=0 riqi, nq is the order of R, and ri is a nr × nw-dimensional ma-

trix with elements in R. In this notation the shift operation q operates on the signal
w, while the operation ¦ takes care of the time/schedule-dependent coefficient se-
quence.

3.4 LPV system representations

Kernel representation

Using the behavioral framework, we can introduce the so-called kernel representa-
tion of an LPV system. By employing the notation presented in the previous section,
a kernel representation of an LPV system is written as

(R(q)¦ p)w = 0. (10)

We call this difference equation (10) a discrete-time kernel representation of an
LPV system S = (T,P,W,B) with scheduling signal p and signals w if

B = {(w, p) ∈ (Rnw ×Rnp)Z | (R(q)¦ p)w = 0}. (11)

In the sequel we only consider LPV systems, whose behavior can be described by
Eq. (11). An important property of these systems is that they have a kernel repre-
sentation where R has full row rank ([19]).

IO representation

For practical applications one will often need a partioning of the signals w in input
signals u ∈ (Rnu)Z and output signals y ∈ (Rny)Z. Note that this partioning is not
trivial and can neither be chosen freely. For details see [13, 19].

Using an IO partioning we can define the IO representation as

(Ry(q)¦ p)y = (Ru(q)¦ p)u, (12)
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where Ru and Ry are again matrix polynomials with meromorphic coefficients, and
where Ry is full row rank with order(Ry)≥order(Ru).
Using the same notation and decomposition as in Eq. (9), it follows that

na

∑
i=0

(ai ¦ p)qiy =
nb

∑
j=0

(b j ¦ p)q ju, (13)

where na ≥ nb ≥ 0, and na ≥ 1.

State-space representation

Without going into details about the definition of so called latent variables, we for-
mulate the discrete-time state-space representation, based on an IO partioning (u,y),
as a first-order parameter-varying difference equation system in the latent variable
x : Z→ X as:

qx = (A¦ p)x+(B¦ p)u (14a)
y = (C ¦ p)x+(D¦ p)u, (14b)

where X ⊂ Rnx is called the state space and the (parameter-varying) state space
matrices (A,B,C,D) are matrices of appropriate dimensions with their entries being
meromorphic functions in R. Note that the latent variable x in Eq. (14) qualifies as
a state variable.

It is apparent that Eq. (13) and (14) are the ‘dynamic-dependency’ counterparts
of Eq. (2) respectively (1).

3.5 Properties

Using the behavioral framework, it is now possible to consider equivalence of be-
haviors, and related equivalent transformations between the different LPV system
representations. For details see [19].
Transformations between different representations as well as state transformations
into a different coordinate system generally involve dynamically dependent rela-
tions. For instance, the transformation of an LPV state-space model (14) to an ob-
servable canonical form requires a transformation matrix T ∈ Rnx×nx , to obtain a
new state

x′ = (T ¦ p)x

and state-space matrices A′ =
−→
T AT−1, B′ =

−→
T B, C′ = CT−1, D′ = D.

Here the matrix T is constructed from the LPV observability matrix, which in
the SISO case is built up from
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C,
−→
C A,

−−−−→(−→
C A

)
A, · · · .

Suppose that the original state-space model has static dependency on the schedul-
ing function, so at time instant k the matrix functions depend on values of p(k) only,
then the construction of the transformation matrix T as well as the calculation of the
new state-space matrices immediately imply that the new matrices depend at time k
on future values p(k + τ) (τ > 0), as well.

This problem can be circumvented by using a reachability canonical form, in
which case the transformation only involves backward shift operations ([19]).

4 An orthonormal basis functions approach

4.1 Series-expansion representations

In this section we explore the possibilities for using a series-expansion type of model
structure for LPV systems, using the concept of orthonormal basis functions (OBF)
([7]). A major motivation is the linear-in-the-parameters property of these struc-
tures, which is very beneficial in prediction-error identification. A second merit of
these structures is that they allow a relatively simple interpolation of local linear
models with varying McMillan degree. Furthermore it was shown in [2] for non-
linear Wiener models (LTI system followed by a static nonlinearity) that, if the LTI
part is an OBF filter bank, then such models are general approximators of nonlinear
systems with fading memory.

For a (local) linear model G ∈ H2 it holds that G can be written as

G(z) = D+
∞

∑
k=1

ckFk(z), (15)

where {Fk} is a basis for H2. In the theory of generalized orthonormal basis func-
tions (GOBF’s), the functions Fk(z) are generated by applying a Gram-Schmidt or-
thonormalization to the sequence of functions

1
z−ξ1

, · · · 1
z−ξnb

,
1

(z−ξ1)2 , · · ·

with stable pole locations ξ1, · · ·ξnb . The choice of these basis poles determines the
rate of convergence of the series expansion (15).

An alternative derivation of the basis functions is based on a balanced realization
{Ab,Bb,Cb,Db} of the inner function

Gb(z) =
nb

∏
k=1

1− zξ ∗k
z−ξk

, (16)
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where the functions {Fk(z)} are the scalar elements of the vector functions

(zI−Ab)
−1 BbGi

b(z), i = 1,2, · · · .

By using a truncated expansion in (15) an attractive model structure for LTI iden-
tification results, with a well worked-out theory in terms of variance and bias expres-
sions. The series expansion (15) can be extended to LPV systems, such that for a
given basis {Fk} and a specific IO-partioning (u,y) an LPV system can be written
as

y(t) =

(
(D¦ p)+

n

∑
k=1

(wk ¦ p)Fk(q)

)
u(t), (17)

where n = ∞, and an obvious result is to use a truncated expansion, i.e. with finite
n, as a model-structure candidate for LPV identification. Note that these expansions
are formulated in the time domain (using the shift operator q), as there exist no
frequency-domain expressions for LPV systems. Similar to the LTI case, this struc-
ture is linear in the parameters. An important question that arises is wether the basis
functions Fk can be chosen such that a fast rate of convergence can be accomplished
for all possible scheduling trajectories p. Note that the representation (17) is equiva-
lent with a state-space description (14), where the matrices A and B are independent
of the scheduling function.

4.2 Basis selection

In order to select a basis, it is obviously required to obtain knowledge about the sys-
tem to be modeled. For the LTI case it is well-known that -if the underlying system
can be well approximated by an LTI model- an optimal basis can be chosen using
knowledge about the system poles. It can be shown that the same property holds
for LPV systems, where knowledge of the poles of all possible local linear models
is required. In practice this knowledge is generally not available and one has to re-
sort to limited prior-information resources, such as expert knowledge or preliminary
identification experiments.

A possible scheme for the basis selection is given by the following steps:

1. Identify a number of local linear models in several different operating regimes
p̄i, i.e. using data with a constant scheduling signal p(k)≡ p̄i.

2. Plot all poles of the identified models in the complex plane
3. Cluster the poles in groups and find optimal cluster centers (these centers will be

used as basis poles)

In this procedure use is made of minimization of a distance measure, which is rele-
vant for the worst-case approximation error of the representation (17). This scheme
is motivated by the extension of the classical Kolmogorov n-width result of [12] to
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OBFs, as obtained by [11]. This results states that for a given LTI inner function Gb,
the OBF’s generated by Gb (see Section 4.1) are optimal in the n-width sense for
the set of LTI systems having poles in the region

{z ∈ D | |Gb(z−1)| ≤ ρ}.

Here ρ is the rate of convergence in the series expansion, and n should be a multiple
of the number of basis poles nb. See Fig. 2, taken from [23], for an example of these
regions.

Fig. 2 Example of the func-
tion |Gb(z−1)| and the region
{z ∈ D | |Gb(z−1)| ≤ ρ} for
an inner function Gb with 3
poles and various values of ρ .
Note that if z0 is a pole of Gb,
then Gb(z−1

0 ) = 0.

For the basis-selection problem we are dealing with the inverse problem, i.e.
given a region of poles Ω , approximate this region as

Ω ≈Ω(Ξ ,ρ) = {z ∈ D | Gb(z−1)≤ ρ}. (18)

The n optimal OBF poles Ξ = {ξ1, · · · ,ξn} are therefore obtained by solving the
following Kolmogorov measure minimization problem,

min
Ξ⊂D

ρ = min
Ξ⊂D

max
z∈Ω

∣∣Gb(z−1)
∣∣ = min

Ξ⊂D
max
z∈Ω

∣∣∣∣∣
n

∏
k=1

1− zξ ∗k
z−ξk

∣∣∣∣∣ (19)

As stated above, in a practical situation the knowledge about the pole region Ω is
limited. In the next section we present an approach to obtain a simultaneous solution
for the problems of reconstructing Ω from experimental data and the Kolmogorov
measure minimization problem.

4.3 A fuzzy clustering approach

Objective-function-based fuzzy clustering algorithms, such as fuzzy c-max cluster-
ing (FcM), have been used in a wide collection of applications [1, 10]. Generally,
FcM partitions the data into overlapping groups, that describe an underlying struc-
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ture within the data [9]. In this section we describe the extension of FcM to the
so-called Fuzzy-Kolmogorov c-Max (FKcM) algorithm, which enables the deter-
mination of the region Ω on the basis of observed poles with membership based,
overlapping areas. We assume that we are given a set of poles Z = {z1, · · · ,zN}.

Let c be the number of clusters, that we wish to discern and let vi ∈ D denote
the cluster center of the i-th cluster. Furthermore we define membership functions
µi :D→ [0, 1], that determine for each z ∈D the ‘degree of membership’ to cluster
i. By using a threshold value ε , we obtain a set

Ω = {z ∈ D | ∃i, µi(z)≥ ε}. (20)

With these preliminaries we can now formulate the problem we will consider.

Problem 1. For a given c, find a region Ω , as described above, such that Ω contains
all pole locations in Z, and such that the OBFs, with poles in the cluster centers
{vi}c

i=1, are optimal in the Kolmogorov n-width sense, n = c, with respect to Ω and
with the corresponding decay rate ρ as small as possible.

To measure dissimilarity of Z with respect to each cluster, we introduce distances
dik = κ(vi,zk) between vi and zk, where κ is a metric on D, defined by

κ(x,y) =
∣∣∣∣

x− y
1− x∗y

∣∣∣∣ , (21)

referred to as the Kolmogorov metric .
Analogously we define µik = µi(zk) and we regulate the membership functions

by the so-called fuzzy contraints:

c

∑
i=1

µik = 1 and 0 <
N

∑
k=1

µik < N.

Fuzzy clustering can be viewed as the minimization of the FcM-functional [1],
Jm, which in the FKcM case can be formulated as

Jm = max
1≤k≤N

c

∑
i=1

µm
ik dik. (22)

Here the design parameter m ∈ (1,∞) determines the fuzziness of the resulting par-
tition. Note that Jm is a function of the membership data µik and the cluster centers
vi. It can be observed, that (22) corresponds to a worst-case (max) sum-of-error cri-
terion, contrary to the mean-squared-error criterion of the original FcM, see [1].

The crucial property of this functional is that it can be shown ([21]) that for large
values of m minimization of Jm is equivalent to the Kolmogorov measure minimiza-
tion problem (19). For details as well as a detailed description of the optimization al-
gorithm see [19], where also the robust extension of the basis selection is discussed.
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In that case, not only pole estimates are considered, but also the corresponding un-
certainty regions of these estimates. See Fig. 3 for an example of the basis selection
mechanism.

For the determination of the actual number of clusters in these algorithms, so-
called adaptive cluster merging is applied. Starting from a relatively large initial
number of clusters (typically around N/2), the adaptive merging steers the algorithm
towards the natural number of groups that can be observed in the data.

4.4 OBF-based model structures

We assume that the basis selection step has been completed and we are given a set of
n f basis functions {Fk(z)}k=1,···n f with good approximation properties for the set of
local LTI behaviors corresponding to constant scheduling signals. In the next step
we can construct model structures for the identification of an LPV system S. To
keep the notation simple, we restrict attention to strictly proper models (D = 0 in
Eq. (17)). The input-output dynamics of the LPV model can now be written as

y(t) =
n f

∑
k=1

(wk ¦ p)(t)Fk(q)u(t). (23)

Introduce Φn f and W as shorthand notation for the vectors with functions Fk respec-
tively coefficients wi,

Φn f =
[

F1 · · · Fn f

]T (24)

W =
[

w1 · · · wn f

]T
. (25)

Fig. 3 Example of the basis
selection procedure, using
fuzzy clustering with fuzzy-
ness parameter m = 8. The 30
observed poles (i.e the set Z)
are given with red circles. The
resulting cluster centers are
depicted with a black x. The
blue lines represent the region
Ω as in Eq. (18), obtained
by using the cluster centers
as basis poles. On the left
hand side c = 5 clusters were
determined, on the right hand
side c = 8.
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(b) m = 8, c = 8
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Fig. 4 IO signal flow graph of (a) the W-LPV OBF model described by (23) and (b) the H-LPV
OBF model described by (26)

Then the model structure (23) can be visualized as in Fig. 4a, where y̆i(t) =
Fi(q)u(t). Because of the close resemblance of this structure to classical Wiener
models this model structure is referred to as a Wiener LPV OBF (W-LPV OBF)
model. A closely related model structure,depicted in Fig. 4b, is the so-called Ham-
merstein LPV OBF model (H-LPV OBF), that results from the description

y(t) =
n f

∑
k=1

Fk(q)(wk ¦ p)(t)u(t). (26)

This latter structure can be motivated from the LTI series expansion (15), by
changing the order of the arguments. This change has no effect in the LTI case, but
certainly results in a different LPV structure.
In the sequel we will restrict attention to the Wiener model structure. Furthermore
we assume that the coefficient functions wk have only a static dependency on the
scheduling function p, so we can write (wk ¦ p)(t) = wk(p(t)) in (23). As stated
before, we can write the W-LPV OBF structure also in a state-space form,

qx = Ax+Bu (27a)
y = (W ¦ p)x, (27b)

where the constant matrices A and B are completely determined by the basis func-
tions {Fk}. This illustrates that the dependency on the scheduling signal is only
present in the output equation, with the result that the assumption of static depen-
dency is much less restrictive than in the general case (14).

With respect to the actual estimation with these model structures we again dis-
tinguish a local and a global approach.

Local estimation approach

This approach is based on a number Nl of ‘local’ experiments, i.e. data collec-
tion with a constant scheduling signal p(k) ≡ pi ∈ P, resulting in data sequences
{ui(t),yi(t)} for i = 1, · · · ,Nl . Based on these data Nl LTI models are estimated us-
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ing a standard least-squares criterion, on the basis of the one-step-ahead prediction
error in Output Error (OE) form:

ε(t) = yi(t)−
n f

∑
k=1

wikFk(q)ui(t), (28)

where {wik} are real-valued coefficients. Note that –under the condition that the
data are persistently exciting– there exists a unique analytic soution to this estima-
tion problem. These estimated coefficients can now be considered as ‘samples’ of
the function wk(p(t)), in the sense that wk(pi) = wik. As a second step we use in-
terpolation to obtain estimates of the function wk(p(t)), for instance by assuming a
polynomial dependency of wk on p, or by making use of splines etc.

Global estimation approach

For this approach we need to assume a specific functional dependency of the func-
tions wk on p(t) and we propose to use a linear parametrization for this purpose,
such as a polynomial dependency

wk(p(t)) = wk0 +wk1 p(t)+ · · ·+wkr pr(t).

Here we assumed for simplicity that p is a one-dimensional signal. Now we collect
a global data set {u(t),y(t), p(t), t = 1, · · · ,T}, which is assumed to be persistently
exciting for the system at hand4. It is straighforward that – using a least-squares
criterion– a unique analytic solution can be obtained for the parameters wki.
Note that the restriction to static dependency can be relaxed for the global approach
by allowing a dependency of wk on time-shifts of p(t) as well.

Because of the postulated OBF structure, both approaches will always result in
asymptotically stable models.

4.5 Approximation of dynamic dependecy

In order to alleviate the restrictions caused by the assumption of static dependency
in the suggested model structures, extensions for these structures were proposed
in [24]. Here we only consider the extension of the W-LPV OBF model structure.
The idea is still to use weighting functions with static dependency, but with the
introduction of an additional feedback loop around each basis component with a
gain incorporating also static dependency. In this way, the filter bank of OBFs as
a dynamical LTI system is reused to provide dynamic weighting functions that can
approximate the required class of dependency for W-LPV OBF models. The intro-

4 Persistency of excitation for LPV systems is not yet completely understood.
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Fig. 5 IO signal flow graph
of the WF-LPV OBF model
with feedback-based static
weighting functions V and W.
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duction of feedback-based weighting leads to a new model structure given in Fig.
5, which we call Wiener Feedback LPV (WF-LPV OBF) models. See [19] for an
analogous extension of the H-LPV OBF model structure. For these new model struc-
tures, it is apparent that by setting the feedback gains to zero, the previous structures
result. This immediately indicates an increase in the representation capability of the
extended structures. The W-LPV OBF can be represented in state-space form by

qx = (A−BV (p)C)x+Bu (29a)
y = W (p)Cx, (29b)

where the constant matrices A, B and C are again completely determined by the basis
functions. These equations illustrate how the addition of the feed-back loops intro-
duces dependency on the scheduling signal in the state equations. For the estimation
of the the functions W and V again a linear parametrization using polynomials or
spline functions is suggested. To overcome the nonlinear optimization problem as-
sociated with the parallel estimation of the whole parameter set (i.e. the coefficients
of W and V ), the approach utilizes a separable least squares optimization scheme
[5]. In each iteration cycle of this scheme, one set of the parameters is fixed to en-
able a linear-regression-based estimation of the other set. This results in a steepest
descend algorithm which is guaranteed to converge to a saddle point or a local min-
imum, depending on the initial values of the parameters. For algorithmic details see
[24, 19]. It should be noted that the better representation capability comes at a price.
First of all, there is no longer an analytic solution available. Secondly, there is no
guarantee that the resulting models are asymptotically stable.

5 Example

To illustrate the applicability of the introduced model structures, we consider the
following asymptotically stable LPV system S, given in LPV-IO form:
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Table 1 Validation results of 100 identification experiments by the global and local methods using
the W-LPV OBF and H-LPV OBF model structures. The results are given in terms of the average
MSE and VAF of the simulated output signals of the model estimates.

Model Case MSE (dB) VAF (%)

W-LPV loc.
glob.

−18.01
−31.03

94.12%
98.23%

H-LPV loc.
glob.

−10.16
−26.41

85.69%
96.18%

5

∑
i=0

(ai ¦ p)qiy = (b4 ¦ p)q4u, (30)

with P= [0.6,0.8] and coefficients

a0 ¦ p =−0.003, a3 ¦ p = 61
110 −0.2sin(q5 p),

a1 ¦ p = 12
125 −0.1sin(q5 p), a4 ¦ p =− 511+192q5 p2−258(cos(q5 p)−sin(q5 p))

860 ,

a2 ¦ p =− 23
85 +0.2sin(q5 p), a5 ¦ p = 0.58−0.1q5 p,

b4 ¦ p = cos(q5 p).

Using 8 basis functions, obtained through the FKcM algorithm (see [24, 23] for
details) and a 2nd-order polynomial-based parametrization of the coefficients, iden-
tification of S with the local as well as the global approach has been carried out,
with the W-LPV OBF and the H-LPV OBF model structures. Each experiment has
been repeated 100 times with different realizations of input, scheduling and noise
signals. The signal-to-noise ration was 20 dB in the resulting data records with a
relative signal-to-noise amplitude of 25 %. See Table 1 for the results in terms of
average MSE and VAF (Variance Accounted For).
As expected, the W-LPV and H-LPV structures based on coefficients with static de-
pendence could not fully cope with the variations in the parameters {al}5

l=0 . How-
ever, the global W-LPV identification provided quite acceptable results for such a
heavily nonlinear system. The explanation why the H-LPV structure gave a worse
result lies in the different approximation capabilities of these models.

To illustrate the effect of incorporating feedback we used the same example sys-
tem and identified it with the WF-LPV OBF model structure as well as with the
W-LPV OBF structure. For both structures the coefficients in W are parametrized as
a 2nd order polynomial and for V a 3rd order polynomial was used. Identification of
S with the global approach was accomplished 100 times in 4 different noise settings
with both the Wiener and the Wiener-feedback model structures. See Table 2 for the
results. As expected, both approaches identified the system with adequate MSE and
VAF even in case of extremely heavy output noise, which underlines the effective-
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Table 2 Validation results of 100 identification experiments with the Wiener (W) and the Wiener
Feedback (WF) model structures. The results are given in terms of the average MSE and VAF of
the simulated output signals of the model estimates.

MSE (dB) VAF (%)

SNR W WF W WF

no noise -34.96 -39.75 90.04 99.42

35 dB -34.77 -39.17 98.99 99.39

20 dB -32.75 -35.01 98.71 99.00

10 dB -31.81 -32.38 98.19 98.59

ness of the proposed identification philosophy. For all cases, the WF-LPV model
provided better estimates than the pure static-dependence based W-LPV model es-
timate. This clearly shows the improvement in the approximation capability due to
the approximation of dynamic dependence with feedback-based weighting.

6 Conclusions

On the basis of a solid system theoretic definition of LPV systems in terms of system
behaviors, several LPV model representations are presented and brought into a uni-
fying framework. Real-valued meromorphic functions are used to specify dynamic
dependency of the system coefficients on the scheduling signal. A series expansion
approach is presented for modelling LPV systems, including an optimization proce-
dure for selectiing optimal basis functions. The series-expansion models can be used
in both local and global identification methods, and are illustrated in an example.
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