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Abstract— This paper discusses an improvement on the
extension of linear subspace methods (originally developed in
the Linear Time-Invariant (LTI) context) to the identification
of Linear Parameter-Varying (LPV) and state-affine nonlinear
system models. This includes the fitting of a special polynomial
shifted form based LPV Autoregressive with eXogenous input
(ARX) model to the observed input-output data. The estimated
ARX model is used for filtering away the effects of future
inputs on future outputs to obtain the so called “corrected
future” analogous to the LTI case. The generality of the applied
LPV-ARX parametrization now permits the estimation of the
input-output map of a rather general class of LPV state-space
models with matrices depending affinely on the scheduling. This
is achieved by a canonical variate analysis (CVA) between the
past and the corrected future which provides an estimate of
a relevant set of state variables and their trajectories for the
system, necessary for the construction of the minimal order
state equations.

I. BACKGROUND AND MODEL STRUCTURES

Over the past decade, considerable progress has been
made in identification of parameterized dynamic systems
using linear parameter-varying (LPV) and state-affine (SA)
nonlinear models. Such methods, however, generally (i)
involve model representations (e.g., LPV input-output (IO)
or nonlinear IO forms) that are relatively “easy” to identify,
but require the use of difficult or computationally demanding
realization/model reduction approaches or restrictive parame-
terizations to obtain state-space representation of the models,
useful for the main stream of control synthesis methods [1],
(ii) they rely on iterative nonlinear parameter optimization
that may have computational or convergence difficulties
[2], or (iii) involve subspace identification methods with
over-restrictive approximation of the signal behaviors and/or
computational requirements that grow exponentially in the
number of states, inputs, outputs, and scheduling variables
used (see e.g., [3]–[5]). This can result in heavy computa-
tional requirements, lack of convergence of computations,
and/or poor resulting accuracy in the computed solution
corresponding to an uncertain overall performance of the
whole identification task.

This work was partly supported by the Netherlands Organization for
Scientific Research (NWO, grant. no.: 639.021.127).

In this paper, recent results [6] are reviewed in extending
linear time-invariant (LTI) subspace identification methods
(SIM) to the estimation of discrete-time LPV models of
nonlinear systems. SIMs are well developed and understood
in the context of LTI systems with optimal properties for
particular cases [7] and conjectured to hold in the general LTI
case [8]. However it is somewhat surprising that linear SIM
can be extended and successfully used to capture LPV and
SA nonlinear models that are often fundamentally bilinear.

A. LPV state-space models with affine dependence

Consider a discrete-time LPV system whose signal re-
lations, i.e., the corresponding IO map between the input
signals u : Z → Rnu and output signals y : Z → Rny , can
be described by a state-space (SS) representation[
A(ρ) B(ρ)
C(ρ) D(ρ)

]{
xt+1 = A(ρt)xt + B(ρt)ut + wt
yt = C(ρt)xt +D(ρt)ut + vt

(1)

where xt : Z → Rnx is the state vector and the matrices
are bounded time-varying functions (also called parameter-
varying (PV) functions) of a vector of scheduling variables
ρt : Z→ Rs with ρt = [ ρ

(1)
t = 1 ρ

(2)
t . . . ρ

(s)
t ]> and

s being finite and wt and vt are zero-mean colored noise
processes independent of ut and ρt, where the latter are
assumed to be known or measured with no error in real time.

In this paper, as usual in much of the literature (e.g., [3]–
[5]), only LPV-SS models are considered which have affine
dependence on the scheduling variables of the form A(ρt) =

ρ
(1)
t A1 + · · · + ρ

(s)
t As and similarly for B(ρt), C(ρt), and

D(ρt). Here, the parameter-varying matrices, like A(ρt), are
expressed as a linear combination of constant matrices A =

[A1 · · · As] with time-varying weighting ρ(i)
t . Other classes

of dependencies are assumed to be captured already in ρ, i.e.,
ρ can depend nonlinearly on other measurable variables that
describe the operating point of the system.

The case of particular interest in system identification
is the input-output LPV-ARX (autoregressive with external
inputs) shifted form. This form is known to result in a
constant parameter matrix C for the corresponding LPV state-
space representation (1) and static dependence of A, B and
D on the respective scheduling variables (see Section I-C).
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In much of the literature, LPV models are often restricted
to the strict-LPV case where the scheduling functions ρt are
not functions of the system inputs ut, outputs yt, and/or
states xt, i.e., are truly exogenous variables. Note that, in the
strict-LPV case, (1) is a linear system with the time-variation
parameterized by ρt. The more general case including ρt as
functions of ut, yt, and xt is often called the quasi-LPV case.
In previous papers [6], [9], [10], results were obtained for
the strict-LPV case. In this paper, the effect of the quasi-LPV
case w.r.t. polynomial nonlinear systems is considered, i.e.,
what happens if such nonlinear systems are identified using a
CVA approach with an LPV model structure. It will be shown
that the same results hold as for the strict-LPV case so that
analogous but much more general methods are available for
identifying polynomial nonlinear systems using linear model
structures based subspace identification methods.

In general, the LPV state-space equations (1) can be con-
siderably simplified by introducing the Kronecker product
variables ρt ⊗ xt and ρt ⊗ ut in the form[

xt+1

yt

]
=

[
A B
C D

] [
ρt ⊗ xt
ρt ⊗ ut

]
+

[
wt
vt

]
, (2)

where ⊗ denotes the Kronecker product and (A,B,C,D)
are the row collection of the sub-matrices, e.g., A =
[A1 · · · As]. Furthermore, introduce the notation [M ;N ] =[
M> N>

]>
which corresponds to stacking the vectors

or matrices M and N . In later subsections, the full exploita-
tion of this structure will result in an LTI subspace like for-
mulation of data-driven LPV state-space model realization.

B. The LPV-ARX equivalent of the IO map

The first step in a canonical variate analysis (CVA)
based procedure to estimate the random process (2) is to
characterize its IO map and estimate it by a high order
LPV-ARX model. As a generalization of the results of [1],
in [11], it has been shown that any system with LPV-SS
representation (2) with affine dependence also admits an IO
representation in the form of

α0(ρ̄t)yt =
∑̀
i=1

αi(ρ̄t)yt−i +
∑̀
i=0

βi(ρ̄t)ut−i + et, (3)

where ` = nx, ρ̄t = [ ρ>t . . . ρ>t−nx
]>, each αi and βi

is a matrix of multivariate polynomials of degree at most `
and et is a quasi-stationary zero mean noise process corre-
sponding to the filtered sum of wt and vt by a corresponding
LPV filter. Furthermore, if the equivalence class of (2) under
constant state transformation x̆ = Tx with T nonsingular,
has a companion-observability canonical form, which in the
SISO case is

−α1(ρt) 1 0 . . . 0 γ1(ρt)
... 0

. . . . . .
...

...
...

...
. . . . . .

...
...

−α`−1(p) 0 . . . 0 1 γ`−1(ρt)
−α`(ρt) 0 . . . . . . 0 γ`(ρt)

1 0 . . . . . . 0 β0(ρt)


(4)

then each αi and βi reduces to an affine function in ρt−i
and α0 ≡ 1, i.e., (4) is equivalent with

yt =
∑̀
i=1

αi(ρt−i)yt−i +
∑̀
i=0

βi(ρt−i)ut−i + et (5)

where βi(ρt−i) = γi(ρt−i) + αi(ρt−i)β0(ρt−i). If repre-
sentation (3) is seen as two polynomials in the time-shift
operator q−i (with scheduling dependent matrices in ρt and
its finite many time-shifted versions) acting on yt and ut,
then according to the realization theory provided in [12], it
is possible to left multiply this form with such polynomials,
i.e., increasing `, till et becomes (almost) a white noise
process. In fact, if `→∞, then it is possible to choose the
corresponding sequence of coefficient function such that et is
white. This means that for appropriately large choice of `, it
is possible to approximate (2) with (3) such that et is a white
noise process with covariance matrix Σee. This corresponds
to the generalization of the high-order ARX (HO-ARX)
approximation of LTI systems under general noise conditions
[13] and resembles to nonlinear (N)ARX model structures
applied in nonlinear system identification.

C. State-space realization of the shifted IO form

As it was discussed, the LPV-IO model structure (5) with
a shifted form of dependency guarantees the existence of an
equivalent state-space model with no dynamic dependence
(e.g., (4)), meaning that the IO maps of both models are
exactly the same. Note that this holds true in the MIMO case
as well. This, together with the HO-ARX principle (i.e., for
high enough order, the ARX structure is capable to capture
a larger generality of noise scenarios) allows the fitting of an
IO model using linear regression methods up to some usually
high order with small residual modeling error as measured by
Akaike’s information criterion (AIC). Then, the existence of
an exactly corresponding SS model (2), although of possible
high state order, is guaranteed.

Assume that each coefficient function αi and βi is
an affine matrix function with coefficients {ai,j}sj=1 and
{bi,j}sj=1 respectively which can be collected as ai =
[ ai,1 · · · ai,s ]. According to (4) in the SISO case, the
state variables, with the simplification that β0 ≡ 0, are related
as

qx
(1)
t = x

(2)
t − a1(ρt ⊗ x(1)

t ) + b1(ρt ⊗ ut), (6a)
...

qx
(`−1)
t = x

(`)
t − a`−1(ρt ⊗ x(`−1)

t ) + b`−1(ρt ⊗ ut), (6b)

qx
(`)
t = −a`(ρt ⊗ x(`)

t ) + b`(ρt ⊗ ut), (6c)

yt = x
(1)
t , (6d)

where q is the forward time-shift operator, i.e., qut = ut+1.
Based on [14], the above equations are a special case of

y = f1(q1y, q1u) + · · ·+ f`(q
`y, q`u), (7)

where fi are analytic functions for i = 1, . . . , ` known
as additive nonlinear auto regressive with exogenous inputs
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(ANARX) models. Such systems are always realizable in the
classical state space form:

qx
(1)
t = x

(2)
t + f1(x

(1)
t , ut), (8a)

...

qx
(`−1)
t = x

(`)
t + f`−1(x

(1)
t , ut), (8b)

qx
(`)
t = f`(x

(1)
t , ut), (8c)

yt = x
(1)
t . (8d)

ANARX models have been widely used in modeling and
control applications including IO linearization of nonlinear
systems by dynamic output feedback [15]. If the nonlinear
vector field f(·), expressing (8) as qxt = f(xt, ut), is
continuously differentiable and if the origin is an equilibrium
(i.e., f(0) = 0), then f can always be factorized as

f(yt, ut) = A(ρt)yt + B(ρt)ut, (9)

where ρt = µ(yt, ut) with µ : R(nu+ny) → Ps is an
affine function. Hence, (6) becomes a special case of (8). If
f(0) 6= 0, then by appropriate state and input transformation
this property can be achieved. The price to be paid in the
latter case is that it is generally only possible to eliminate
xt in f by allowing dynamic dependence of ρt on ut and
yt (see [16]). It is also important to note, that instead of
an affine mapping characterized by µ, we can also absorb
the nonlinearities of A and B into ρt by allowing µ to be a
continuous function and hence transforming A and B to an
affine mapping resulting in an LPV-SS representation with
affine dependence. In fact, this means that by assuming affine
dependence of (1) in LPV system identification, we assume
that, up to an affine combination, all nonlinearities in the
factorization (9) are exactly captured in µ.

II. CVA SUBSPACE ID OF AFFINE LPV-SS MODELS

The most important question in the identification of (1)
is how the state trajectory corresponding to the recorded
data set can be efficiently estimated. For that purpose, the
CVA method described in the sequel is applied while the
exact selection of the model order is performed via the
AIC measure of model fit. As we will see, many aspects
of the CVA subspace identification scheme for LTI systems
directly extend to strict-LPV systems (see [6], [9]) under the
assumption of an affine dependence on the scheduling and
that the scheduling variable is a free independent variable in
the system. This is mainly due to the same linear relationship
of the correlation structure, which, based on the above stated
assumption, is only needed to be augmented with the extra
ρ signal. However, in practice, ρ depends in many cases on
u and y and hence, in this quasi-LPV case, the underlying
dynamical structure of the representation is potentially highly
nonlinear - a fundamental difference - which is apparent in
comparing the LPV-SS model with affine dependence (2) and
the state-affine NL-SS model (8). So the interesting question
is that by not neglecting that ρ does depend on y and u can
we still use the CVA to identify an LPV-SS model of the
system and if not what remedies can we have?

To answer this question, let us first discuss the steps of
the CVA scheme for LPV-SS identification [8]:

Algorithm 1 CVA scheme for LPV-SS identification
1: Estimate an LPV-ARX model (5) of sufficiently high order via

least-squares and AIC based order selection (See Sections III-A
and III-B).

2: Compute the corrected future (13) by removing the effects of
future u on future y using the estimated LPV-ARX model (5).

3: Perform CVA (see Section III-D) between the past data and
the corrected future of y for optimal candidate state estimates
based on various state orders.

4: Estimate the SS model parameters by least-squares using (2).
5: Compute the AIC for each state order for optimal order

selection.
6: return the realization of the LPV-SS model corresponding to

the estimated state evolution and optimal state order.

A. The corrected future

Let us discuss first the intended procedure in the LTI case.
Consider a state-space description of an LTI process. A kth-
order linear Markov process has been shown in [17] to have
a representation in the following general state space form

xt+1 = Axt +But + wt (10a)
yt = Cxt +Dut + Fwt + vt (10b)

where xt is a kth-order Markov state and wt and vt are
white noise processes that are independent with covariance
matrices Σww and Σvv respectively. These state equations are
more general than typically used since the noise Fwt+vt in
(10b) is correlated with wt in (10a). This is a consequence
of requiring that the state in (10a) is a kth-order Markov
state. Requiring wt and vt to be uncorrelated may result in
a SS model where the state is higher dimensional than the
Markov order k resulting in a non-minimal realization.

The focus in this paper is on the restricted identification
task of modeling the open-loop dynamic behavior from ut
to yt. Assume that ut can have arbitrary autocorrelation and
possibly involve feedback from yt. The discussion below
summarizes the procedure described in detail in [8] for
removing effects of such possible autocorrelation.

The `-length future Ft(y) = [ y>t+` . . . y
>
t ]> of the pro-

cess is related to the `-length past Pt(y) = [ y>t−1 . . . y
>
t−` ]>

and Pt(u) = [ u>t−1 . . . u>t−` ]> through the state xt and
the future inputs Ft(u) = [ u>t+` . . . u

>
t ]> in the form

Ft(y) = Ψ>xt + Ω>Ft(u) + Ft(e), (11)

where xt lies in some fixed subspace of Pt(y, u), Ψ> =
[CA`−1; . . . ;CA;C] and if i = j, then the (i, j)-th block of
the upper-block-triangular Ω is D, else it is CAj−iB. The
presence of the future inputs Ft(u) creates a major problem
in determining the state subspace from the observed past
and future. If the term Ω>Ft(u) could be removed from the
above equation, then the state subspace could be estimated
accurately. The approach used in the CVA method is to fit an
ARX model and compute an estimate Ψ̂ of Ψ based on the
estimated ARX parameters. Note that an ARX process can be
expressed in state-space form with state xt = Pt(y, u) and
hence it satisfies the state relation (11). Then, the state-space
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realization of the ARX model (Â, B̂, Ĉ, D̂) and Ψ̂ and Ω̂ are
themselves functions of the ARX model parameters Θ̂A.

Now, since the effect of the future inputs Ft(u) on future
outputs Ft(y) can be accurately predicted by the ARX model
with moderate sample size, the term Ω>Ft(u) can thus be
predicted (in a one to ` step-ahead sense) and subtracted
from both sides of (11). Then a CVA can be done between
the corrected future Ft(y)−Ω>Ft(u) and the past Pt(y, u)
to determine the state xt as discussed next. A variety of
procedures to deal with autocorrelation and feedback in
subspace system identification for LTI systems have been
developed in [8], [18]–[22]. The statistical justification for
the whole CVA procedure is discussed in detail in [8].

In case of an LPV-SS model (2) with affine dependence,
note that the same procedure holds except in

Ft(y) = Ψ>xt + Ω>Ft(u) + Ft(e), (12)

it holds that

Ψ> =

 s∑
i=1

Ciρ
(i)
t+`

`−1∏
j=1

s∑
k=1

Akρ
(k)
t+j ; . . . ;

s∑
i=1

Ciρ
(i)
t


and if i = j, then the (i, j)-th block of the upper-block-
triangular Ω is

∑s
k=1Dkρ

(k)
t+`−i+1, else it is

s∑
k=1

Ckρ
(k)
t+`−i+1

j−2∏
l=i

(
s∑

m=1

Amρ
(m)
t+`−l

)
s∑

k=1

Bkρ
(k)
t+`−j .

B. Correlation of the past and the corrected future

The procedure we intend to apply in this section for the
CVA of the past and the corrected future is the same as in
the strict-LPV case, which has been proven to result in a
maximum likelihood estimation of the state-trajectory in [6].
Our contribution here is to extend this result to the quasi-
LPV case.

Definition 1 (Corrected future): Let the LPV-ARX pro-
cess of order ` be given by (5). Denote by ỹ future outputs
due to future inputs, i.e., the simulated response of (5) for u
on the time interval [t, `] starting with zero initial conditions:

ỹt+j =

j∑
i=1

ai(ρt+j−i ⊗ ỹt+j−i) +

j∑
i=0

bi(ρt+j−i ⊗ ut+j−i).

(13)
Denote the corrected future outputs as Ft(ȳ) computed as

Ft(ȳ) = Ft(y)−Ft(ỹ). (14)
�

The terms in the above definition are justified in the
following Theorem.

Theorem 1 (Correlation structure, quasi-LPV case):
Consider the LPV-ARX process of order ` be given by
(5) where ρt is not independent of ut and yt (quasi-LPV
process). For every t ∈ [` + 1, N − `], the corrected future
outputs Ft(ȳ) = [ ȳ>t+` . . . ȳ

>
t ]>, as in Def. 1, are linear

(time-invariant) functions of the corrected augmented future
Ft(ρ⊗ ȳ) and the augmented past Pt(ρ⊗ y) and Pt(ρ⊗u).
This relation can be expressed recursively as

[
ȳ>t+` ȳ>t+`−1 · · · ȳ>t+1 ȳ>t

]>︸ ︷︷ ︸
Ft(ȳ)

=

[
e>t+` e>t+`−1 · · · e>t+1 e>t

]>
+

0 a1 · · · a`−1 a`
. . . . . .

...
...

...
. . . a1 a2

. . . a1

0 · · · 0


︸ ︷︷ ︸

aF


ρt+` ⊗ ȳt+`

ρt+`−1 ⊗ ȳt+`−1

...
ρt+1 ⊗ ȳt+1

ρt ⊗ ȳt


︸ ︷︷ ︸

Ft(ρ⊗ȳ)

+


0 · · · 0

a`
. . .

...
. . . . . .

...
a2 · · · a` 0
a1 · · · a`−1 a`


︸ ︷︷ ︸

aP


ρt−1 ⊗ yt−1

ρt−2 ⊗ yt−2

...
ρt−`+1 ⊗ yt−`+1

ρt−` ⊗ yt−`


︸ ︷︷ ︸

Pt(ρ⊗y)

+


0 · · · 0

b`
. . .

...
. . . . . .

...
b2 · · · b` 0
b1 · · · b`−1 b`


︸ ︷︷ ︸

bP


ρt−1 ⊗ ut−1

ρt−2 ⊗ ut−2

...
ρt−`+1 ⊗ ut−`+1

ρt−` ⊗ ut−`


︸ ︷︷ ︸

Pt(ρ⊗u)

(15)

For a proof see Appendix A. �
Equation (15) can be rewritten as

(Ī − aF )Ft(ρ⊗ ȳ) =[
aP bP

] [ Pt(ρ⊗ y)
Pt(ρ⊗ u)

]
+ Ft(e), (16)

where Ī is the flattened identity matrix according to the left
hand side of (15). This follows since the first component of
the scheduling vector ρt is the constant 1 so each of the terms
ȳt+i for i = 1, . . . , ` composing Ft(ȳ) are included as a sub-
vector in the corrected augmented future vector Ft(ρ ⊗ ȳ).
Furthermore, if the order of the estimated ARX model is
high enough, i.e., ` is taken appropriately large, then et can
be considered as a white noise process.

Note that in (16), (Ī − aF ) and
[
aP bP

]
are constant

matrices, hence the information from the past is projected by
a linear time-invariant map to the augmented corrected future
and this mapping is explicitly dependent on the scheduling
ρt. Furthermore, in this mapping, Pt(ρ⊗y) = Pt(µ(y, u)⊗y)
and Pt(ρ ⊗ u) = Pt(µ(y, u) ⊗ u) are not correlated with
Ft(e) if ` is chosen appropriately large. Hence, a linear
time-invariant CVA can be performed between Ft(ρ ⊗ ȳ)

and
[
P>t (ρ⊗ y) P>t (ρ⊗ u)

]>
. This justifies the use of

a CVA to synthesize a state vector for the LPV-ARX process
that can be used for state order selection and estimation of
the constant matrices (A,B,C,D) in (2).

Note, that each step of the above described procedure
uses an orthogonal projection, where the errors in parameters
removed from earlier models are orthogonal to the resulting
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projected model. This is a fundamental statistical concept
applied in sequence to the projection from the LPV-ARX
model into the CVA model and then into the state-space
model. As long as asymptotically in terms of the sample
size, each model is estimated using a maximum likelihood
procedure, the overall algorithm is guaranteed to converge to
a maximum likelihood procedure [23].

III. COMPUTATIONAL ASPECTS AND PROPERTIES

There are a number of sophisticated computational, sta-
tistical, and numerical methods that have been developed
for CVA methods over the years and are well-suited to the
estimation of LPV-SS models with affine dependence. These
are briefly mentioned here along with references where they
are described in detail. The ADAPTx algorithm for subspace
identification of LTI systems, and later, LPV and nonlinear
systems, is described in the last subsection as a sequence
of nested models that are successively projected from one
into the next. The key to refining the model estimate with
each projection is that residual error of the earlier models is
orthogonal to the resulting projected model.

The overall strategy is to first identify the terms of an
LPV-ARX model using linear regression that only involves
solving systems of linear equations to obtain coefficients
of these models. This is followed by a realization step to
construct an LPV state-space model of the system dynamics
from which, by re-substitution of the scheduling variable
relation, a nonlinear model results. Note that this model is
guaranteed to describe the captured signal relations, but not
necessarily qualify as a nonlinear state-space model [24].

A. Order-recursive fitting of LPV-ARX models

Estimated models with various orders and scheduling
maps often have partial nesting in that some contain others as
special cases where some coefficients are set to zero. When
the additional terms are additive, as in LPV-ARX and state-
affine models, there can be considerable efficiency in starting
with a simple parametrization based model structure (low
ARX order and simple scheduling map) and computing the
change in the AIC model fit using more complex models with
additional parameters. For LPV-ARX models, the computa-
tional load to estimate a single model is proportional to n3

where n = (sn2
y + snynu)`+1 is the number of parameters,

whereas in updating such a model from n1 parameters to
n2 parameters is proportional to (n2 − n1)2. So fitting a
single model with n2 parameters requires the same order
of computation as fitting all orders from 1 to n2. These
computations are accurate to double precision using SVD
based CVA methods (see [25], [26]).

B. Use of AIC for comparison of multiple models

Fitting of LPV-ARX models involves a multitude of mod-
els with increasing numbers of terms (lag order and mono-
mial degree). The problem of structure selection requires the
solution of a statistical multiple comparison problem among
the various fitted models. A very general approach to solving
this problem using the AIC [27] is developed in [28]. In the
ADAPTx software, this is applied to the choice of ARX order

and monomial degree, and state order in state-space model
construction.

C. Calculation of the corrected future

In dealing with feedback in dynamic systems, a way to
avoid problems of bias in parameter estimation is to “remove
the effects of future inputs on future outputs” to obtain the
“corrected future”. This strategy [8] of the ADAPTx algo-
rithm is shown theoretically to be asymptotically equivalent
in large samples to two other methods in [19].

D. Canonical variate analysis using a generalized SVD

The CVA is computed using a generalized (G)SVD where
the variables are orthogonal with respect to the covariance
matrix of the observations, while other subspace methods use
a “CVA weighting”. The latter choice does not provide the
optimal statistical selection of the model state order provided
by using the generalized SVD and the AIC. For illustration,
the main idea is to calculate

M = E

{[
Pt(ρ⊗ y)
Pt(ρ⊗ u)

]> [ Pt(ρ⊗ y)
Pt(ρ⊗ u)

]}
N = E

{
F>t (ρ⊗ ȳ)Ft(ρ⊗ ȳ)

}
X = (Ī − aF )−1

[
aP bP

]
and then find U and V such that I = U>MU and I =
V >NV and X = UΣV > with Σ diagonal, containing the
squared canonical correlations, to arrive at the state estimate

x̂t = [I 0]U>
[
Pt(ρ⊗ y)
Pt(ρ⊗ u)

]
. (17)

Then, compute Φ as the auto-correlation of [x̂t+1; yt] and Ψ
the cross-correlation of [ρt ⊗ x̂t; ρt ⊗ ut] with [x̂t+1; yt] to
obtain the estimate of the state-space matrices as[

Â B̂

Ĉ D̂

]
= ΦΨ†, (18)

where Ψ† denotes the right pseudo inverse of Ψ. Detailed
derivation with GSVD is given in [29], with some additional
accuracy issues discussed in [30].

IV. EXAMPLE: FORCED LORENZ ATTRACTOR

To demonstrate the effectiveness of the proposed proce-
dure, identification of a nonlinear Lorenz attractor is consid-
ered. The Lorenz attractor can be expressed as a parameter-
varying system of the form of (1) with sub-matrices

[
A1 B1

C1 D1

]
=


1− σT σT 0 T
γT 1− T 0 0
0 0 1− βT 0
1 0 0 0

 ,
[
A2 B2

C2 D2

]
=


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 ,
scheduling map ρt =

[
1 yt

]>
, sampling time T > 0,

and parameters (σ, γ, β) (where γ is usually denoted with ρ
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Fig. 1: Results of AIC based order selection: (a) order of the LPV-
ARX model; (b) order of the resulting state-space model by CVA.

Samples
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

O
u

tp
u

t

-3

-2

-1

0

1

2

3
estiamted LPV model
original NL system

Fig. 2: 5-step ahead prediction of the estimated 4th-order LPV-SS
model compared to the output of the data generating system using
noise free validation data.

that is used in this paper for the scheduling parameter). Note
that since one of the scheduling variables is yt, this example
corresponds to a quasi-LPV model. If ut is set to zero for
all t, then the system is “self-exciting,” i.e., it has sustained
behavior that does not damp out. Also note that the term
ρt ⊗ xt involves the product ytxt that is a bilinear term.

To obtain an estimation data set, simulation of the Lorenz
attractor with parameter values of σ = 10, γ = 28, β = 8/3
and with independent white noise ut wt and vt having
standard deviations 10−1, 10−6, and 10−2, respectively, is
performed. As a next step, recursive estimation of LPV-
ARX models with scheduling map ρt =

[
1 yt

]>
is

accomplished which has resulted in a plot of AIC verses
LPV-ARX order given in Figure 1a. The minimum AIC
occurs at an ARX order of 28. An LPV-ARX model of
this order was used in calculating the corrected future. A
CVA between the augmented past and corrected augmented
future in terms of Theorem 1 produced squared canonical
correlations with values of 0.999999, 0.99999, 0.999, 0.999,
0.95, 0.94, 0.57 for the first seven elements. The CVA
provided state estimates of various orders with the AIC of
model fit is plotted as a function of state order in Figure 1b.
The first 4 states appear to provide the best model fit. They

were used to estimate an LPV-SS model (2) using (18) to
compute [Â B̂; Ĉ D̂]. Comparison of the trajectories of the
observed verses the identified models are shown in Figure 2
using validation data.

There is a strong qualitative resemblance between these
two models. The presence of noise in the simulation of the
true process perturbs the trajectory, so a precise comparison
is difficult to make since in such nonlinear systems small
differences result in divergence between the trajectories.
Remarkably, however, the identified state affine model is
qualitatively very similar and follows the major transitions
of the observed output data.

V. SUMMARY AND CONCLUSIONS

In this paper, the validity of the previously developed
CVA subspace method for the identification of LPV models
has been investigated in the quasi-LPV scenario where the
scheduling variable is not assumed to be independent of
the system inputs and outputs. As a central result, it is
proven that still a linear and time invariant correlation
structure between the past and the corrected future holds
under the assumption that the scheduling variable accurately
captures the underlying nonlinearities of the system modulo
an affine combination. From this structure, it is shown that
the state of the system can be determined by a linear CVA
between the past and corrected future. The procedure has
been successfully demonstrated on the identification of the
Lorenz attractor in a quasi-LPV state-space form.

APPENDIX A. PROOF OF THEOREM 1

First, in (5), replace t by t + j, and then consider t as
the present time t dividing the past and the present-future
for recursive computation of future outputs yt+j with j
considered as the number of steps ahead of the present time
t with j = 0, 1, . . . , `.

Second, for each j, the computation of terms in (3) are
partitioned into present and future terms (with sums from
i = 0 or 1 to j as in (19b)) and into past terms (with sums
from i = j + 1 to ` as in (19c))

yt+j = et+j+ (19a)

+

j∑
i=1

ai(ρt+j−i ⊗ yt+j−i)+

j∑
i=0

bi(ρt+j−i ⊗ ut+j−i) (19b)

+
∑̀
i=j+1

ai(ρt+j−i ⊗ yt+j−i)+
∑̀
i=j+1

bi(ρt+j−i ⊗ ut+j−i) (19c)

Now consider a fixed j steps ahead in predicting yt+j . It is
apparent that the second term of (19b) has contributions only
from present-future inputs and all of (19c) has contributions
only from past inputs and outputs. The first term of (19b)
has contributions from both the past and present-future since
the future outputs yt+j−i defined for i = 1 to j are
previously and recursively defined by (19b) and (19c). So
the strategy is to separately split out the past and present-
future contributions for each recursion in the computation of
yt+j−i in the first term of (19b).
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Lemma 1 (Past and Present-Future Effects on Outputs):
Let time t split the past and present-future, and let yt+j be a
present-future output with 0 ≤ j ≤ `. Then, the contribution
of present-future inputs to yt+j is given by ỹt+j as in (13),
and the contribution of past inputs and outputs to yt+j is
given by ȳt+j as in (14).

Proof: Proceeding by induction, (i) first Lemma 1 is
demonstrated to be true for j = 0, and then (ii) second it
is shown for any choice of j∗ satisfying 0 < j∗ ≤ ` that
if Lemma 1 is true for all j satisfying 0 ≤ j < j∗, then
Lemma 1 is also true for j = j∗.

It is only necessary to keep track of the contribution from
the present-future since doing this necessarily determines the
correct contribution from the past as yt+j−i = ỹt+j−i +
ȳt+j−i with yt+j−i a particular observed output. To show
(i), the contribution from the present-future given by both
(13) and (19b) agree since the first term of each are zero
and the second terms are identical. To show (ii), assume that
the splits ỹt+j and ȳt+j are correct for 0 ≤ j < j∗, then
it is required to show that this is also true for j = j∗. If
the substitution yt+j−i = ỹt+j−i + ȳt+j−i is made in the
first term in (19b), then this produces a sum of two terms,
respectively associated with the present-future and the past.
Then associating ỹt+j−i with the present-future gives

ỹt+j =

j∑
i=1

ai(ρt+j−i ⊗ ỹt+j−i) +

j∑
i=0

bi(ρt+j−i ⊗ ut+j−i)

(20)
while associating the ȳt+j−i term with past via (19c) gives
the expression below for computing ȳt+j in (15).

ȳt+j = et+j +

j∑
i=1

ai(ρt+j−i ⊗ ȳt+j−i) (21a)

+
∑̀
i=j+1

αi(ρt+j−i ⊗ yt+j−i) +
∑̀
i=j+1

bi(ρt+j−i ⊗ ut+j−i)

(21b)

The expression for ỹt+j agrees with (13), which proves
Lemma 1, and (21a) and (21b) is precisely the recursive
form of the matrix equation (15) that proves Theorem 1. �
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