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Abstract

To efficiently identify multiple-input multiple-output (MIMO) linear parameter-varying (LPV) discrete-time state-space (SS) models with
affine dependence on the scheduling variable remains still an open question, as identification methods proposed in the literature suffer heavily
from the curse of dimensionality and/or depend on over-restrictive approximation of the measured signal behaviours. However, obtaining
an SS model of the targeted system is crucial for many LPV control synthesis methods, as these synthesis tools are almost exclusively
formulated for the aforementioned representation of the system dynamics. Therefore, in this paper, we tackle the problem by combining
state-of-the-art LPV input-output (IO) identification methods with an LPV-IO to LPV-SS realization scheme and a maximum likelihood
refinement step. The resulting modular LPV-SS identification approach achieves statical efficiency with a relative low computational load.
The method contains the following three steps: 1) estimation of the Markov coefficient sequence of the underlying system using correlation
analysis or Bayesian impulse response estimation, then 2) LPV-SS realization of the estimated coefficients by using a basis reduced
Ho-Kalman method, and 3) refinement of the LPV-SS model estimate from a maximum-likelihood point of view by a gradient-based or
an expectation-maximization optimization methodology. The effectiveness of the full identification scheme is demonstrated by a Monte
Carlo study where our proposed method is compared to existing schemes for identifying a MIMO LPV system.

Key words: Identification; linear parameter-varying system; state-space representation; LPV realization; correlation analysis; impulse
response estimation; expectation-maximization; gradient-based search; parameter estimation.

1 Introduction

The linear parameter-varying (LPV) modelling paradigm
offers an attractive model class to capture nonlinear and/or
time-varying systems with a parsimonious parameterization.
The LPV model class preserves the linear signal relation be-
tween the inputs and outputs of the system, however, these
linear relations are functions of a measurable, time-varying
signal, the scheduling variable, denoted as p. This schedul-
ing signal can be any combination of inputs, measurable
process states, outputs, or measurable exogenous variables
and, in addition, these signals can be filtered by any arbitrary
functional relation. Hence, the LPV modelling paradigm can
represent both non-stationary and nonlinear behaviour of a
wide variety of physical or chemical process, e.g., see [1–4].

The majority of LPV control synthesis methods are based
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upon the assumption that an LPV state-space (SS) model of
the system is available, especially with static and affine de-
pendence of the involved matrix coefficients on the schedul-
ing variable p, e.g., [5]. Hence, to perform efficient identifi-
cation of LPV-SS models has been in the focus of intensive
research, but it remains an open question. Conceptually, LPV
identification can be performed as: i) the interpolation of lo-
cal LTI models estimated from multiple experiments around
fixed operating points, i.e., with constant p, often referred to
as the local identification setting; or ii) a direct model esti-
mation problem, i.e., the global identification setting, which
requires the experimental data with a varying p which is in-
formative to uniquely identify the considered model param-
eters. Accordingly, global identification approaches include
scheduling dynamics, see [4] for detailed comparison be-
tween the two settings. In this paper, we will focus on the
global setting and the identification of discrete-time models.

In the global identification setting, a class of identifica-
tion methods aims at prediction error minimization (PEM),
where either full state measurements are available [6, 7] or
the PEM is minimzed dircetly using gradient-based (GB)
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methodologies, e.g., see [8–11]. The full knowledge of the
state is in many practical cases unrealistic. On the other hand,
solving the direct PEM problem is nonlinear in the param-
eters [8–10]. Recently, the expectation-maximization (EM)
method is developed for LPV-SS models [11], as an addi-
tion to the GB methods. The EM algorithm is more robust
to an inaccurate initial estimate compared to the GB PEM;
however, its convergence rate is much lower near the opti-
mum [12]. Problem 1 (P1): both, EM and GB methods can be
computationally demanding and their convergence depence
heavily on a proper initial guess. Besides PEM identification
methods, LPV grey-box [13, 14] and LPV set-membership
(SM) [15–17] identification approaches are known. Grey-
box schemes need a detailed model with only few unknown
parameters, which are estimated by a Kalman like filtering
strategy. The SM methods characterize the measurement er-
rors as a bounded-error or SM, opposed to the stochastic de-
scription in PEM. (P2): Unfortunately, SM approaches have,
in general, a significant higher computational load compared
to direct PEM and rely on convex outer-approximation.

The LPV-SS identification problem can be tackled differ-
ently by: first identifing an LPV-IO model, which is well es-
tablished in literature (e.g., see [5,18,19]) and, secondly, to
execute an exact realization on the identified LPV-IO form
to get an LPV-SS model. (P3): However, such an exact re-
alization will, in general, result in functional relations with
rational, dynamic dependence on the scheduling variable or
lead to a non-minimal state realization if the static, affine
dependence should be preserved [20]. More relevant, these
schemes have a high computational demand. However, re-
cently introduced LPV realization theory based schemes, so
called subspace identification (SID) methods, have greatly
decreased the computational complexity. SID schemes can
apply direct LPV Ho-Kalman like realization [21] on spe-
cific LPV-IO models that are identified by a least-squares
method; or have an intermediate projection step, i.e., 1) iden-
tify an IO structure using convex optimization, 2) find a pro-
jection to estimate the unknown state sequence via matrix
decomposition methods, then 3) estimate the SS matrices in
a least-squares fashion, e.g., see [22–25]. (P4): However, to
attain the convex optimization, the latter class of SID meth-
ods usually depend on over-restrictive approximations on the
signal behaviours and/or the number of observed variables
grows exponentially. As a consequence, the estimation prob-
lem is ill-conditioned with high parameter variance and/or
has still a high computational demand, making it inapplica-
ble for real-world systems. (P5): As it is well known, the
aforementioned realization based schemes provide an LPV-
SS models estimate which is not minimized w.r.t. any crite-
rion and, therefore, it is not “optimal” in a maximum likeli-
hood (ML) sense. To have ML, this LPV-SS model estimate
is often used to initialize gradient-based PEM schemes.

From P1-P5 it becomes clear, how to perform efficient iden-
tification of LPV-SS models on real-world sized problems
remains still an open question. Hence, the goal of this paper
is to provide a maximum likelihood identification method
for LPV-SS models in the global, open-loop identification

setting, which can estimate moderate sized problems in a
computational efficient way. To reach this goal, it is key to
have a subspace method with low computational complex-
ity that can be used as the initial starting point of a GB or
EM method to reach the ML estimate. In light of recent de-
velopments in LPV realization theory, we will not extend
projection type of SID methods, but we will tackle the prob-
lem at the core, i.e., at the realization side, by applying the
basis reduced LPV Ho-Kalman scheme [26].

The papers starts by providing some formal definitions;
an analysis between the LPV-SS model with general noise
structure and the innovation form, to highlight modelling
limitations of the innovation form considered in many LPV
SID methods; and the formal problem statement (Sec. 2).
Continuing, we propose our modular identification method,
defined in three steps: 1) estimate the Markov coefficient se-
quence of the underlying system using correlation analysis
(CRA), or MIMO Bayesian finite impulse response (FIR)
estimation (Sec. 3), then 2) create an LPV-SS realization
from the estimated coefficients by using an Ho-Kalman like
method (Sec. 4), and 3) to have an ML estimate, refine the
LPV-SS model by GB and/or EM optimization (Sec. 5).
Hence, in this paper state-of-the-art LPV-IO identification,
LPV-IO to LPV-SS realization, and ML estimation tech-
niques are combined to give a unified method to achieve an
efficient ML estimate. The efficiency of the combined ap-
proach is demonstrated by a Monte Carlo study and it is com-
pared to existing LPV-SS identification schemes [15,25,27]
by identifying a MIMO LPV-SS model (Sec. 6).

2 The LPV identification problem

Technical preliminaries

We denote a probability space as (Ω,FΩ,P) where FΩ

is the σ-algebra, defined over the sample space Ω; and
P : FΩ → [0, 1] is the probability measure defined over the
measurable space (Ω,FΩ). Within this work, we consider
random variables that take values on the Euclidean space
Rn with associated Borel measurable space B(Rn) [28].
More precisely, for the given probability space (Ω,FΩ,P)
we define a random variable f as a measurable function
f : Ω → Rn, which induces a probability measure on
(Rn,B(Rn)). As such, a realization ν ∈ Ω of P, denoted
ν ∼ P, defines a realization f of f , i.e., f := f(ν). Fur-
thermore, a stochastic process x is a collection of random
variables xt : Ω → Rn indexed by the set t ∈ Z (dis-
crete time), given as x = {xt : t ∈ Z}. A realization
ν ∈ Ω of the stochastic process defines a signal trajectory
x := {xt(ν) : t ∈ Z}. We call a stochastic process x station-
ary if xt has the same probability distribution on each time
index as xt+τ for all τ ∈ N. In addition, a stationary pro-
cess consisting of uncorrelated random variables with zero
mean and finite variance is called a white noise process.

2.1 The data-generating system

Consider a multiple-input multiple-output (MIMO), discrete-
time linear parameter-varying data-generating system, de-
fined by the following first-order difference equation, i.e.,
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LPV-SS representation with general noise model:

xt+1 = A(pt)xt + B(pt)ut + G(pt)wt, (1a)
yt = C(pt) xt +D(pt)ut +H(pt)vt, (1b)

where x : Z → X = Rnx is the state variable, y : Z →
Y = Rny is the measured output signal, u : Z→ U = Rnu

denotes the input signal, p : Z→ P ⊆ Rnp is the scheduling
variable, subscript t ∈ Z is the discrete time, w : Z→ Rnx ,
v : Z → Rny are the sample path realizations of the zero-
mean stationary processes:[

wt

vt

]
∼ N (0,Σ), Σ =

[
Q S

S> R

]
, (2)

where wt : Ω → Rnx , vt : Ω → Rny are random vari-
ables, Q ∈ Rnx×nx , S ∈ Rnx×ny , and R ∈ Rny×ny are
covariance matrices, such that Σ is positive definite. Fur-
thermore, we will assume u, p, w, v, y to have left compact
support to avoid technicalities with initial conditions. As of-
ten considered in LPV control theory, the matrix functions
A(·), ...,H(·), defining the SS representation (1) are defined
as affine combinations:

A(pt)=A0 +

nψ∑
i=1

Aiψ
[i](pt), B(pt)=B0 +

nψ∑
i=1

Biψ
[i](pt),

C(pt)=C0 +

nψ∑
i=1

Ciψ
[i](pt), D(pt)=D0 +

nψ∑
i=1

Diψ
[i](pt),

G(pt)=G0 +

nψ∑
i=1

Giψ
[i](pt), H(pt)=H0 +

nψ∑
i=1

Hiψ
[i](pt),

(3)
where ψ[i](·) : P → R are bounded scalar functions on P
and {Ai, Bi, Ci, Di, Gi, Hi}

nψ
i=0 are constant matrices with

appropriate dimensions. Additionally, for well-posedness,
it is assumed that {ψ[i]}nψi=1 are linearly independent over
an appropriate function space and are normalized w.r.t. an
appropriate norm or inner product [21]. Due to the freedom
to consider arbitrary functions ψ[i], (3) can capture a wide
class of static nonlinearities and time-varying behaviour.

2.2 Properties of LPV-SS representations

In this section, we present some formal definitions needed
for the analysis of the different noise structures, together
with the problem statement and the description of the LPV-
IO to LPV-SS realization theory. Note that, the deterministic
part of (1) is governed by

xd
t+1 = A(pt)x

d
t + B(pt)ut, (4a)

yd
t = C(pt) xd

t +D(pt)ut. (4b)

The corresponding IO solution set, i.e., the manifest be-
haviour, of (4) is

Bd =
{

(yd, u, p)∈(Y×U×P)Z
∣∣

∃xd∈(X)Z s.t. (4) holds
}
. (5)

On the other hand, the stochastic part of (1) is

xs
t+1 = A(pt)x

s
t + G(pt) wt, (6a)

ys
t = C(pt) xs

t +H(pt)vt. (6b)

The corresponding manifest behaviour of (1) is

BSS =
{

(y, u, p)∈(Y×U×P)Z
∣∣ ∃ν∈Ω and ∃yd∈(Y)Z

s.t. (yd, u, p)∈Bd and (6) hold ∀t
}
. (7)

To introduce the essential details of the deterministic re-
alization step we extend to exploit in Sec. 4, we momen-
tary neglect the stochastic process (6). To this end, we take
the expectation E{yt} = yd

t , which is equivalent as taking
vt = wt = 0 in (1). The manifest behaviour w.r.t. an LPV-
SS representation S is denoted Bd(S).

In this paper, we are interested in finding the LPV-SS rep-
resentation with minimal state dimension:
Definition 1 (Minimal LPV-SS representations) The
LPV-SS representation S (1) is called minimal, if there ex-
ists no other LPV-SS representation S ′ with nx

′ < nx and
equivalent IO behavior Bd(S) = Bd(S ′). �

For specific subclasses of LPV-SS representations in which
the functional dependency structure of A(·), . . . ,D(·) dif-
fers, the minimal state dimension might differ [20]. Hence,
for the remainder of the paper, state minimality is consid-
ered w.r.t. the parametrization (3). The minimality condition
by Def. 1 for (1a)-(1b) is a necessary condition for complete
state-observability.
Lemma 2 (Isomorphic LPV-SS representations [29, 30])
Two LPV-SS representations (4) S and S′ with static, affine
dependency structure (3) and equivalent state dimensions
nx = nx

′ are isomorphic, i.e., their input-output maps
are equal Bd(S) = Bd(S ′), if and only if there exists a
non-singular isomorphism matrix T ∈ Rnx×nx , such that

A′iT = TAi, B′i = TBi, C ′iT = Ci, D′i = Di,

for all i ∈ Inψ0 . �

Lem. 2 is a special case of equivalence relations in the
LPV case as the transformation matrix T is independent of
the scheduling signal, e.g., see [20, Def. 3.29] for the gen-
eral case. Under dependency structure (3) and assumption
of state minimality, the equivalence class of LPV-SS repre-
sentations is completely characterized by the non-singular
transformation matrix T , as given in Lem. 2.

We are interested in identification under open-loop condi-
tions, hence, the underlying data generating system is con-
sidered to be asymptotically stable:
Definition 3 (Asymptotic stability) An LPV system, repre-
sented in terms of (4), is called asymptotically stable, if for
all trajectories of {ut, pt, yt} satisfying (4), with ut ≡ 0 for
t ≥ 0, and pt ∈ P, it holds that limt→∞ |yt| = 0. �

2.3 LPV-SS noise models and the innovation form

A popular model for many subspace identification schemes
is the innovation form, e.g., see [31]. Under some mild con-
ditions, the LPV-SS representation (1) has the following
equivalent innovation form:
Lemma 4 ( [32]) For each given trajectory of the input u
and scheduling p, the LPV data-generating system (1) can be
equivalently represented by a p-dependent innovation form
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x̌t+1 = A(pt)x̌t + B(pt)ut +Ktξt, (8a)
yt = C(pt) x̌t +D(pt)ut + ξt, (8b)

where ξt is the sample path of ξt ∼ N (0,Ξt) and Kt can
be uniquely determined by

Kt=
[
A(pt)Pt|t−1C>(pt) + G(pt)SH>(pt)

]
Ξ−1
t , (8c)

Pt+1|t=A(pt)Pt|t−1A>(pt)−KtΞtK>t +

G(pt)QG>(pt), (8d)

Ξt=C(pt)Pt|t−1C>(pt) +H(pt)RH>(pt), (8e)

under the assumption that ∃t0 ∈ Z such that xt0 = 0 and
Ξt is non-singular for all t ∈ [t0,∞). �

In (8c)-(8e), the notation ofKt, Pt+1|t, and Ξt is a shorthand
for Kt := (K � pt) ∈ Rnx×ny , Pt+1|t := (Pt+1|t � pt) ∈
Rnx×nx , and Ξt := (Ξ � pt) ∈ Rny×ny , where R defines
the ring of all real meromorphic functions with finite dimen-
sional domain, and the operator � : (R,PZ)→ RZ denotes
(Kt � pt) = Kt(pt+τ1 , . . . , pt, . . . , pt−τ2) with τ1, τ2 ∈ Z.
The subscript notation t+1|t denotes that the matrix function
at time t+ 1 depends only on pi for i = t0, . . . , t.

In [32] it is shown that the setting of (1) is not equivalent to
the innovation form with only static, affine matrix function
K(p), similarly parametrized as (3). This static, affine struc-
ture is commonly used in many SID methods [22, 25, 33].
However, [32] also shows that a static, affine K(p) can ap-
proximate the general setting (8) if the state dimension is
increased. It follows that, to guarantee state minimality of
an innovation form based realization of (1), the Kalman gain
Kt (8c) should have rational and dynamic dependency on p.
However, in practice, we need to restrict overparameteriza-
tion to reduce complexity of the estimation method and vari-
ance of the model estimates. Hence, despite to the possible
increase of state order of the equivalent innovation form, the
underlying complexity trade-off might be acceptable from a
practical point of view.

2.4 Problem statement

In this paper, we are interested in identifying LPV-SS mod-
els (1) with dependency structures (3) to capture the pro-
cess dynamics (1) of the underlying data-generating sys-
tem. Hence, our focus is not on identifying the noise struc-
ture (H,G), but to derive a methodology which can provide
consistent estimates of (4) under the general noise struc-
ture of (1). We will also assume that the scalar functions
{ψ[i]}nψi=1 are known a priori. As a consequence, we are in-
terested in estimating the parameters of (3), i.e.

Λ0 =

[
A0 . . . Anψ B0 . . . Bnψ

C0 . . . Cnψ D0 . . . Dnψ

]
, (9)

with Λ0 ∈ Rnx+ny×(nx+nu)(1+nψ). Based on these, we de-
note by S(Λ0) the original SS representation of the data gen-
erating system S with parameters Λ0. According to Def. 2,
we aim at identifying an isomorphic S(Λ) w.r.t. S(Λ0), due
to the non-uniqueness of the SS representation of the under-
lying input-scheduling-output behaviour Bd(S). Hence, the
corresponding parameter Λ lies within the following set

Q =

{
Λ
∣∣∣ ∃T ∈ Rnx×nx sat. rank(T ) = nx and

Λ =

[
T−1 0

0 Iny

]
Λ0

[
I1+nψ ⊗ T 0

0 Inu(1+nψ)

]}
, (10)

where ⊗ is the Kronecker product.

Given a dataset DN = {ut, pt, yt}Nt=1 and the bases
{ψ[i]}nψi=1, our objective is to efficiently find, in a stochastic
and computational sense, an estimate Λ̂ of Λ and, accord-
ingly, the state dimension nx of the underlying system (1).
In addition, the proposed scheme should be consistent, i.e.,
Λ̂ → Λ ∈ Q with probability one as N → ∞. We will
discuss these properties per individual identification step
later on. In the remaining part of this paper it is assumed
that the data generating LPV-SS system (1) with depen-
dency structure (3) is structural observable and structural
reachable, i.e., the system is jointly minimal, and that the
input-scheduling signals are persistently exciting, such that
the parameters are uniquely identifyable. We will not ad-
dress the identifiability problem nor we provide persistency
of excitation conditions for the input and scheduling sig-
nals. These problems are addressed for the LPV-ARX 1

case in [34], but they are not yet fully understood w.r.t. (1).

3 Identification of LPV impulse response models

3.1 LPV Impulse response representation

In order to realize our objective defined in Sec. 2.4, an im-
portant ingredient is to rewrite (1) or (8) into its so called
infinite impulse response (IIR) representation:
Lemma 5 (Infinite impulse response [20]) Any asymptot-
ically stable LPV system according to Def. 3 has a conver-
gent series expansion in terms of the pulse-basis {q−i}∞i=0
given by

yt =

∞∑
i=0

(hi � pt)q−iut + ys
t , (11)

where hi ∈ Rny×nu are the expansion coefficient functions,
i.e., Markov coefficients, and ys

t is a sample path of (6). �
The corresponding IIR of an asymptomatic stable LPV-SS
representation (1) is

yt = D(pt)︸ ︷︷ ︸
h0�pt

ut + C(pt)B(pt−1)︸ ︷︷ ︸
h1�pt

ut−1+

C(pt)A(pt−1)B(pt−2)︸ ︷︷ ︸
h2�pt

ut−2 + . . .+

G(pt)vt + C(pt)H(pt−1)wt−1 + . . .︸ ︷︷ ︸
yst

, (12)

where hi converges to the zero function as i → ∞. The
noise ys

t in (11)-(12) is colored, as it is a combination of the
IIR filtered innovation noise w and the additive output noise
v of (1) and this IIR filter is asymptotically stable, as it is
filtered by the asymptotically stable process dynamics. For

1 Autoregressive model with exogenous input (ARX).
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notional ease, define ψ[i](pt) = ψ
[i]
t and the signal vector

ψt = [ 1 ψ
[1]
t · · · ψ

[nψ ]
t ]> ∈ Rnψ . The Markov coefficients

can be written as

hm � pt = C(pt)A(pt−1) · · · A(pt−m+1)B(pt−m) =
nψ∑
i=0

nψ∑
j=0

· · ·
nψ∑
k=0

nψ∑
l=0

CiAj · · ·AkBlψ[i]←−ψ (1)
j . . .

←−
ψ

(m)
l , (13)

where the individual products CiAj · · ·AkBl are the so-
called sub-Markov parameters for m = 1, 2, . . . and

←−
[·](τ)

denotes the signal shifted τ steps backwards in time, i.e.,
←−
ψ

(τ)
i = ψ

[i]
t−τ . The latter notation is used to denote the effect

of the time-shift operator in a product form. The Markov co-
efficients in (12) are independent of the parametrization of
the matrix functions and a particular state bases, while the
sub-Markov parameters are dependent on the parametriza-
tion of the functional dependencies in (3) even if they are
independent of the state basis.

3.2 Correlation analysis

As the first step of the proposed identification scheme, i.e.,
estimating the sub-Markov parameters (13), we will present
two methods: 1) correlation analysis (CRA) and 2) Bayesian
LPV-FIR estimation in Sec. 3.3. CRA, as described in this
section, estimates the sub-Markov coefficients individually,
opposed to LPV-FIR. CRA results in an estimation pro-
cedure which grows linearly in the number of data points
and is used to estimate each parameter individually. Hence,
the correlation based estimation method has a low com-
putational load. According to the proposed scheme, these
sub-Markov parameters will be used to realize an SS form,
as given in Sec. 4. The CRA makes use of the stochas-
tic property of u, p, w, v, hence, in this section, u and p
are assumed to be sample paths of the stochastic processes
u, p, respectively. Note that, in such case, x and y ob-
tained from (1) are sample paths of stochastic processes x,y
which satisfy xt+1 = A(pt)xt + B(pt)ut + G(pt)wt, and
yt = C(pt)xt+D(pt)ut+H(pt)vt. In the section, ψt de-
notes the process [ 1 ψ

[i]
t · · · ψ

[nψ]
t ]> and Ivs denotes the

set {s, s+ 1, · · · , v}. The first step in the CRA is to define
the k-dimensional cross-correlation.
Definition 6 The k-dimensional cross-correlation function
for the stationary signals (u,y,ψ) is defined as

Ryψs1 ···ψsnu(τs1 , . . . , τsn , τu) =

E
{
yt
←−
ψ

(τs1 )
s1 · · ·

←−
ψ

(τsn )
sn

(←−u (τu)
)>}

,

where si is a specific index sequence with s1, . . . , sn ∈ Inψ0

and τsi ∈ Z+
0 is the time shift associated with the specific

basis index si. �

Theorem 7 The sub-Markov parameters are given as

Cs1As2As3 · · ·Asn−1
Bsn =

Ryψs1 ···ψsnu(τs1 , . . . , τsn , τu)

σ2
ψs1
· · · σ2

ψsn

Σ−2
u , (14)

and

Ds1 =
Ryψs1u(0, 0)

σ2
ψs1

Σ−2
u , (15)

where τsi = i − 1 and τu = τsn are the time-shifts of
the signals ψ[s1], . . . ,ψ[sn],u for a specific index sequence
s1, . . . , sn ∈ Inψ0 . Eq. (14) and (15) hold in case the follow-
ing is satisfied:
C1 The output signal is generated by a stable LPV sys-

tem (1) with dependency structure (3).
C2 The noise processes w, v are distributed as in (2).
C3 The input process u is a white noise process with finite

variance (var(u) = Σ2
u) and is independent of w, v.

C4 Each process ψ[i]
t , ψ

[i]
t (pt) is assumed to be a

white noise process with finite variance (σ2
ψ0

= 1,
var(ψ[i]) = σ2

ψi
for i = Inψ1 ). The processes ψ[i] are

mutually independent and ψ[i] is independent of u, w,
and v.

�
PROOF. See Appendix A. �

Condition C4 is not over restrictive, e.g., if each ψi is a func-
tion of pi only, the analytic function ψi is odd and bounded
with ψi(0) = 0, and it is driven by a white noise schedul-
ing signal pi with finite variance, then C4 is satisfied. Note
that the sub-Markov parameters in (7) do not depend on the
time instant t. An approximation of the cross-correlation and
variances in Thm. 7 can be used to estimate the sub-Markov
parameters by a finite measured dataset DN . The variance
of the involved signals is estimated by the unbiased sample
variance and the k-dimensional cross-correlation is approx-
imated via

R̂yψi···ψju(τi, . . . , τj , τu) =

1

N − τu + 1

N∑
t=τu+1

y
←−
ψ

(τi)
i · · ·

←−
ψ

(τj)
j

(←−u (τu)
)>

. (16)

It is assumed that the time series u,ψ,x,y,w are such that
limN→∞ R̂yψi···ψju(·) = Ryψi···ψju(·). For example, this
assumption holds with probability 1 if u,ψ,x,y are jointly
ergodic. Joint ergodicity has been proven in case ψ is a
random binary noise and u is white noise [35].

The proposed CRA method may need a large dataset and
N � τu such that variance of (16) is low enough for an
accurate parameter estimate. If the noise process $ (11) is
a zero mean coloured noise, e.g., under the general noise
conditions of (1), the CRA estimation is inefficient [36],
i.e., the variance of the estimated parameters does not corre-
spond to the Cramér-Rao bound. Therefore, a larger dataset
is required to achieve equivalent parameter estimation vari-
ance, comparison to the case that $ is a white noise with
Gaussian distribution. However, the sub-Markov parameters
can be estimated individually and the computational com-
plexity scales with O

(
N(2 + n2

y + nynun)
)

where n is the
amount of specific index sequences {s1, . . . , sn} 2 . Hence,

2 Unbiased sample variance scales with O(2N + n2
y) and (16)
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the problem scales linearly in N , nu, n and quadratic in ny.
For the basis reduced Ho-Kalman method only a subset of
the sub-Markov parameters is needed for realization. Hence,
the combination of the LPV-SS realization scheme with the
CRA significantly reduces the computational demand, as
identification of the full impulse response is omitted.

3.3 Bayesian impulse response estimation

As an alternative to CRA, the sub-Markov parameters can
be estimated using a Ridge regression based LPV-FIR esti-
mation procedure, where the optimal regularization matrix
is determined in a Bayesian way with a Gaussian prior, i.e.,
Bayesian LPV-FIR estimation. How the Bayesian frame-
work and regularized `2 framework connect, e.g., see [37].
In addition, the Bayesian framework also allows to esti-
mate the functional dependencies ψ[i](·) in a nonparamtric
way [38, 39]. However, for the sake of simplicity, we con-
sider that these functions are known a priori.

3.3.1 The truncated IIR model
In the Bayesian framework, Eq. (11) is approximated by the
following finite order truncation:

yt ≈
nh∑
i=0

(hi � pt)ut−i + ys
t , (17)

with nh > 0. Eq. (17) corresponds to a finite impulse re-
sponse (FIR) model of (11) with order nh. Due to the con-
vergence of hi, approximating (11) by (17) is not restrictive.
Furthermore, define

M1 =
[
B0 . . . Bnψ

]
, Mj=

[
A0Mj−1 . . . AnψMj−1

]
. (18)

Based on (13) and (17), the samples in DN satisfy the fol-
lowing relationship:

Y N = θ0 ΦN +WN , (19)
with

YN=
[
ynh+1 . . . yN

]
, WN =

[
ys
nh+1 . . . ys

M

]
,

θ0=
[
D0 . . . Dnψ C0M1 . . . CnψM1 C0M2 . . . CnψMnh

]
,

ΦN=


ψnh+1⊗unh+1 . . . ψN⊗uN

ψnh+1⊗ψnh
⊗unh

. . . ψN⊗ψN−1⊗uN−1

...
. . .

...

ψnh+1⊗. . .⊗ψ1⊗u1 . . . ψM⊗. . .⊗ψN−nh
⊗uN−nh

,
where M = N − nh − 1, Y N ∈ Rny×M are the mea-
sured outputs, θ0 ∈ Rny×

∑nh+1

i=1
(1+nψ)inu is the collec-

tion of the to-be-estimated sub-Markov parameters, ΦN ∈
R
∑nh+1

i=1
(1+nψ)inu×M is the regression matrix and WN ∈

Rny×M is the cumulative noise process. The resulting output
predictor of the MIMO FIR model (19) can be vectorized as

ŶN = Φ>Nθ, (20)

scales with O(Nnynun).

where nθ = ny

∑nh+1
i=1 (1 + nψ)inu, ŶN ∈ RnyM×1 is

the predicted output, Φ>N = Φ
>
N ⊗ Iny

∈ RnyM×nθ , and
θ ∈ Rnθ×1. For notational reasons, also introduce YN =
vec(Y N ), θ0 =vec(θ0), and WN =vec(WN ).

3.3.2 Ridge regression based estimate
Even in the LTI case, a well-know issue in estimation of FIR
models via the least-squares approach is the high variance of
the estimated parameters, due to the relatively large number
of parameters required to adequately represent the process
dynamics. `2 Regularization makes it possible to control the
so called bias-variance trade-off, i.e., dramatically decrease
the variance by introducing a relatively small bias on the es-
timates [37]. The corresponding weighted Ridge regression
or Tikhonov regularization problem is given by

min
θ
‖Φ>Nθ − YN‖2We

+ ‖θ‖2Wr
, (21)

where ‖x‖W =
√
x>Wx denotes the weighted Euclidean

norm, hence, the first term in (21) corresponds to a weighted
`2 norm of the prediction error of (17), while the second term
is the weighted `2 norm of θ. Both We,Wr ∈ Rnθ×nθ are
positive semi-definite (symmetric) regularization matrices
and the analytic solution of (21) is

θ̂RWLS =
(
ΦNWeΦ>N +Wr

)−1
ΦNWeYN . (22)

The regularization matrixWr is chosen such that ΦNWeΦ>N+
Wr is invertible. If Wr = 0, We = I , and ys is a white
noise process with Gaussian distribution then (22) is the
least squares solution, which results in the asymptotically
efficient, unbiased, ML estimate.

Analogous to CRA, if Wr = 0, We = I , and the additive
noise ys is a zero mean coloured noise process, but uncor-
related with the input and scheduling signals, e.g., w 6= 0;
then the estimator is still unbiased, although it will result in
an inefficient estimator with increased variance. If ys and u
are correlated then an LPV instrumental variable (IV) esti-
mator can be used to remove the bias, e.g., see [18].

3.3.3 A Bayesian way of optimizing regularization
In this section, it is assumed that the innovation noise process
is zero, i.e., w = 0 in (1). Hence, the output additive noise
process v in (1) is equal to the output additive noise ys

in (11) and (17) corresponding to an output error setting.
One of the main questions is how to chose the regularization
matrix Wr, such that an optimal bias-variance trade-off is
found. A recently introduced efficient data-driven approach
follows an empirical Bayes method [40]. It is assumed that
the parameter vector θ0 is a random variable with Gaussian
distribution:

θ0 ∼ N (θa, Pα), θa = 0,

where the covariance matrix Pα is a function of some hy-
per parameters α ∈ Rnα+ . In the Bayesian setting, under the
assumption that u and p are given realizations, ΦN is deter-
ministic, and, according to (19), the output vector YN and
the parameters θ0 are jointly Gaussian variables:
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[
θ0

YN

]
∼N

([
0

0

]
,

[
Pα PαΦN

Φ>NPα Φ>NPαΦN +IM⊗R

])
, (23)

withR as in (2). It can be shown that the maximum posteriori
estimate θ̂p and minimal variance estimate of θ0 given YN is
equivalent to the weighted regularized least squares estimate
θ̂RWLS (22), e.g., see [37], if the weighting and regularization
matrices are chosen as

We = IM ⊗ R−1, Wr = P−1
α . (24)

This connection makes it possible to create an estimate of
R and Pα from data that minimizes the marginal likeli-
hood (23). Notice that covariance matrix Pα, parametrized
by α, and the noise covariance matrix R satisfy

YN ∼ N
(
0,Φ>NPαΦN + IM ⊗ R

)
. (25)

Hence, the likelihood function of the observation YN given
α and R can be used to arrive to their posteriori estimate:

α̂ = argmax
α

f(YN |α) = argmin
α

−2 log f(YN |α)

= argmin
α

log
(
det
(
Φ>NPαΦN + IM ⊗ R

))
+ Y >N

(
Φ>NPαΦN + IM ⊗ R

)−1
YN , (26)

where the constant terms are excluded and f(·) is the prob-
ability density function of the multivariate normal distribu-
tion. For a detailed description of pros and cons of the em-
pirical Bayes method compared to other methods, see [41].

The choice of the parametrization of Pα is of big impor-
tance as it governs the “quality” of the estimate. The matrix
Pα = θ>0 θ0 will give the lowest parameter mean-squared-
error (MSE) 3 [42]. However, the true system parameters θ0

are unknown, therefore, Pα should be parametrized to en-
code system properties such as asymptotic stability. For this
purpose, many different kernel functions can be employed,
see [43] for a detailed discussion. For the sake of simplic-
ity, in this paper, we aim at Ridge regression, i.e., we will
use Pα = αI. Regularized regression, in general, is know to
provide estimates with a lower parameter MSE compared to
non-regularized methods, like the CRA method. On the other
hand, for the regularized regression, the complete model
needs to be estimated, from which not all parameters are used
in the basis reduced Ho-Kalman realization. Consequently,
the combination of regularized regression with LPV-SS real-
ization loses computational efficiency compared to the CRA
method with LPV-SS realization, but it is applicable under
a much wider set of conditions (e.g., we can relax C2-C4).

4 A basis reduced Ho-Kalman SS realization

The aforementioned IO identification schemes of Sec. 3.2
and 3.3 can consistently estimate the process dynamics
of (1) under mild assumptions. However, to achieve our
goal; an efficient LPV-SS realization of the estimated IO
model is needed. In [21], the well-known Ho-Kalman

3 The parameter mean-squared-error (MSE) for an estimator is
defined as MSE(θ̂N ) = E{(θ̂N − θ0)(θ̂N − θ0)>}.

realization scheme is extended to the LPV case for real-
izing LPV-SS models with static and affine dependence
on the scheduling variable. However, the size of the l-step
extended observability and k-step extended reachability
matrices grow exponentially in l, k and grow polynomially
in the scheduling dimension nψ . Recently, a basis reduced
Ho-Kalman scheme was proposed [26], where only the
non-repetitive parts of the extended Hankel matrix are se-
lected, which drastically decreases the computational load,
compared to the full realization scheme of [21, 44]. The
proposed scheme does not depend on any approximations,
hence, it is an exact, deterministic realization scheme, and
will be briefly explained in this section.

We will describe the methodology as the SS realization of a
LPV system from a given set of sub-Markov parameters. To
indicate which sub-Markov parameters of the involved ex-
tended reachability, observability, and Hankel matrices are
selected, we need to introduce [Ivs ]n as the set of all n-length
sequences of the form (i1, . . . , in) with i1, . . . , in ∈ Ivs . The
elements of Ivs will be viewed as characters and the finite
sequences of elements of Ivs will be referred to as strings.
Then [Ivs ]n is the set of all strings containing exactly n

characters. The string α ∈
[
Inψ0

]n
0

is called a “selection”
with n ≥ 0 where

[
Inψ0

]n
0

= {ε} ∪ Inψ0 ∪ . . . ∪
[
Inψ0

]n
and ε denotes the empty string. As an example,

[
I10
]2
0

=

{ε, 0, 1, 00, 01, 10, 11}. Define by #(α) the amount of char-
acters of a single string in the set. Applying a sequence α
will give the ordering of multiplication of matrices {Ai}

nψ
i=0,

which for #(α) ≥ 1, is defined by

Aα =

#(α)∏
i=1

A[α]i
= A[α]1

A[α]2
· · ·A[α]#(α)

, (27)

where [α]i denotes the i-th character of the string α. Note
that Aε = I . To characterize a single sub-Markov parame-
ter, the (i, j)-th element of the matrix CγAαBβ ∈ Rny×nu

is denoted by C [i]
γ AαB

[j]
β for α ∈ [Inψ0 ]n0 , β ∈ Inψ0 , γ ∈ Inψ0 .

Based on the above defined notation, a selection of the ex-
tended reachability matrix is denoted by

ς =
{

(ας1, β1, j1), . . . , (αςnr
, βnr

, jnr
)
}
, (28)

where ας1, . . . , α
ς
nr
∈
[
Inψ0

]n
0

, β1, . . . , βnr
∈ Inψ0 , and

j1, . . . , jnr
∈ Inu

0 . The length of the string αςi may vary.
Using this basis, a sub-matrix of the extended reachability
matrix is selected, defined by

Rς =
[
Aας1B

[j1]
β1

Aας2B
[j2]
β2

. . . Aαςnr
B

[jnr ]
βnr

]
, (29)

where Rς ∈ Rnx×nr and [jk] denotes the jk-th column of
Bβk for k = 1, . . . , nr. Analogously, a basis of the extended
observability matrix is selected by

ν =
{

(i1, γ1, α
ν
1), . . . , (ino

, γno
, ανno

)
}
, (30)

where αν1 , . . . , α
ν
no
∈
[
Inψ0

]n
0

, γ1, . . . , γno
∈ Inψ0 , and

i1, . . . , ino ∈ Iny

0 . This defines the sub-matrix of the extend
observability matrix as

Oν =

[ (
C

[i1]
γ1 Aαν1

)>
· · ·

(
C

[jno ]
γno

Aανno

)> ]>
, (31)
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where Oν ∈ Rno×nx and [ik] denotes the ik-th row of Cγk
for k = 1, . . . , no. The sets ς and ν are chosen appropri-
ately, such that rank(Rς) = nx, rank(Oν) = nx, and hence
rank(OνRς) = nx. If this condition is satisfied then we call
the selection ς and ν a basis selection. For such case, define

Hν,ς = OνRς , Hν,ς,k = OνAkRς ,
Hν,k = OνBk, Hk,ς = CkRς ,

(32)

where Hν,ς ∈ Rno×nr , Hν,ς,k ∈ Rno×nr , Hν,k ∈ Rno×nu

and Hk,ς ∈ Rny×nr .
Lemma 8 Define a column selection ς with nr = nx and
row selection ν with no ≥ nx such that rank(Hν,ς) = nx.
The set of matrices

Âk = H†ν,ςHν,ς,k, B̂k = H†ν,ςHν,k,
Ĉk = Hk,ς ,

(33)

for k ∈ Inψ0 give a joint minimal LPV-SS representa-
tion of S (1) with the dependency structure (3), i.e.,
{Â0, . . . , Ĉnψ} ∈ Q. In (33), H†ν,ς denotes the left pseudo
inverse of Hν,ς . �
PROOF. The proof is straightforward by applying the iso-
morphism T = R−1

ς and the existence of H†ν,ς , as Hν,ς has
full column rank. �

From the practical and numerical point of view, a reliable
implementation of (33) follows by using singular value de-
composition (SVD). Define a basis selection nr, no ≥ nx

with rank(Hν,ς) = nx and compute an economical SVD:
Hν,ς = Unx

Σnx
V >nx

. Then a realization of S is

Âk = Ô†νHν,ς,kR̂†ς , B̂k = Ô†νHν,k,
Ĉk = Hk,ςR̂†ς ,

(34)

with the pseudo inverses R̂†ς = VnxΣ
−1/2
nx , Ô†ν = Σ

−1/2
nx U>nx

for k∈ Inψ0 . The realization of (34) gives an LPV-SS repre-
sentation of S (1), i.e., {Â0, . . . , Ĉnψ} ∈ Q. The proof of
this methodology can be found in [26].

In case the sub-Hankel matrices (32) are filled with estimated
sub-Markov parameters, the state order nx can be chosen
based upon the magnitude of the singular values Σnx , i.e.,
an approximate realization (e.g., see [45]). Note that the
realization of (34) does not have any restrictions on the
maximum amount of columns chosen nr ≥ nx, compared to
Lem. 8 where nr = nx. Hence, the rank-revealing property
of the SVD of Hν,ς allows to find a reliable estimate of nx.

This bases reduced realization can considerably decrease the
size of the Hankel matrix and, therefore, reducing the com-
putational load, compared to realization with the full Han-
kel matrix [21, Eq. (48)]. In the basis reduced realization,
the SVD is only applied on a no × nr matrix instead of a
matrix with size ny

∑i
l=1(1 +nψ)l×nu

∑j
l=1(1 +nψ)l in

the full realization case. Note that no, nr = nx in the ideal
case, hence, this is the computational lower bound that can
be achieved in the optimal case. The amount of sub-Markov
parameters in (32) is nonr +(1+nψ)(nonr +nonu +nynr),
which increases linearly in all parameters nψ, nr, no, nu, ny,

compared to ny

∑i
l=1(1 + nψ)l · nu

∑j
l=1(1 + nψ)l, which

grows exponentially with increasing i and j and polynomi-
ally with increasing nψ . To illustrate, the realization of a
system with input/output dimension ny = nu = 2, state di-
mension nx = 4, and scheduling dimension nψ = 5, the
full Hankel matrix H2,2 has 7056 elements, while the sub-
Hankel matrices for nr = no = 10 have only 940 elements.

5 Maximum likelihood refinment

The basis reduced Ho-Kalman realization cannot guaran-
tee that the LPV-SS model realized from the identified sub-
Markov parameters is a maximum likelihood estimate, even
if the underlying approaches are capable of providing ML
estimates. Hence, to reach the maximum likelihood LPV-
SS model estimate, two solutions are explored for refine-
ment: 1) the gradient-based (GB) search method, or 2) the
expectation maximization (EM) algorithm. Both methods
are nonlinear iterative optimization techniques and cannot
be used as stand alone methods, as they are prone to local
minima. For example, [10, Table III] shows the number of
failed model identification iterations for inefficient initial es-
timates on an LTI-SS identification problem. Hence, Step 1
and Step 2 of our proposed identification scheme, i.e., LPV
impulse response estimation with LPV-SS realization, can
be seen as a numerical efficient method for initializing GB
or EM methods. The efficiency of this combination will be
shown in Sec. 6.

5.1 Gradient based PEM

The set of PEM methods aims at minimizing the mean-
squared prediction-error criterion w.r.t. the free model pa-
rameters (similar to (21) with We = I , Wr = 0). The mini-
mazation problem is nonconvex and nonunique for any LPV-
SS model based uponDN . Hence, to find the global optimum
computationally efficient is not straight forward. The opti-
mization is usually solved via a gradient-based search strat-
egy such as a Newton or similar type method. In this paper,
the enhanced Gauss-Newton based search method of [10]
is used. The enhanced Gauss-Newton includes: 1) an auto-
mated strategy of regularization and SVD truncation on the
Jacobian matrix to obtain a search direction, 2) an Armijo
line search backtracking rule, and 3) lowering the dimen-
sion of the parameter space by using the data-driven local
coordinate (DDLC) frame. As isomorphic SS models ex-
ist with equivalent IO behaviour, the optimization technique
can wander among these sets. The manifold of all SS models
with equivalent IO behaviour is known as the indistinguish-
able set. The DDLC frame is the ortho-complement of an
affine approximation of the indistinguishable set around the
current model parameters. Consequently, the DDLC ensures
that the nonlinear optimization does not wander among pa-
rameterizations with equivalent IO behaviour and each it-
eration decreases the prediction error [10]. Additionally, in
the LTI case, the DDLC results in a minimal parametriza-
tion and, hence, the PEM optimization problem is of min-
imal dimension. The DDLC has been successfully applied
to LTI, bilinear, and LPV systems, e.g., see [9, 46, 47]. The
combination of improved gradient-based search strategies
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and the DDLC frame increases the computational demand
per iteration, however, in general, it increases convergence
rate. The original algorithm of [10] provides an identification
method for LTI-SS models. The extension to an innovation-
form LPV-SS structure with a static, affine Kalman matrix,
i.e., vx = vy and G(·) = I (3), does not require additional
technical steps and, therefore, is omitted.

5.2 Expectation Maximization

The key element of the EM method is to presume the ex-
istence of a complete dataset ZN = (YN , XN ), which con-
tains not only the actual observations YN , but also the miss-
ing state-sequence XN . The iterative EM method identifies
LPV-SS models by considering the state sequence as the
missing data. With this choice, the maximization of the ML
is a joint estimation problem and is solved in an alternating
manner. The LTI-SS methods are developed in [12, 48] and
a robust implementation of the EM is provided in [11, 49].
For the refinment of the SS model, we will use [11] under
the assumption that the data-generating system (1) is with
H(p) = I and G(p) = I and noise structure (2). Each it-
eration of the EM consist of two steps: 1) the expectation,
and 2) the maximization step. In the expectation step, given
the current model estimate, the likelihood of the complete
dataset conditional on the data observed is approximated.
The likelihood, i.e., obtaining the unknown state trajectory
xt, can be estimated via various approaches, e.g., particle fil-
tering [50], or Kalman filtering [51,52]. In the example sec-
tion, the Kalman filter approach is used. In the second step,
the maximization step, the approximated likelihood is max-
imized with respect to the model parameters. As the state
sequence is known, the estimation problem becomes linear
in the parameters with a closed-loop form solution. The EM
method is relatively straightforward to implement and the
computational load scales linearly with the dataset length.
However, the EM algorithm usually converges rapidly in
early stages, but its rate of convergence near the maximum is
substantially lower than GB maximisation, e.g., see [12,51].

6 Simulation Example

In this section, the performance of the proposed three-step
identification procedure is assessed via a Monte-Carlo sim-
ulation study using a randomly generated stable LPV-SS
model in innovation form with scheduling independent ma-
trix function, i.e.,K(pt) = K. The Monte-Carlo study shows
the performance of the methods in the following cases:
(1) Correlation analysis with basis reduced Ho-Kalman

LPV-SS realization (without refinement step),
(2) Correlation analysis with basis reduced Ho-Kalman

LPV-SS realization and EM or GB refinement step,
(3) Bayesian FIR estimation with basis reduced Ho-Kalman

LPV-SS realization (without refinement step),
(4) Bayesian FIR estimation with basis reduced Ho-Kalman

LPV-SS realization and EM or GB refinement step.
The proposed procedure is compared to state-of-the-art
LPV-SS identification methods, such as the predictor-based
subspace identification (PB) [25], successive approximation
identification algorithm (SA) [27], and the robust identi-

fication/invalidation method (RI) [15]. Furthermore, these
approaches’ estimated SS model is refined, identical to the
CRA and FIR, by using the SS model as initialization for
the EM or GB method. Hence, it is assessed which ap-
proach can provide better initialization for the ML step and
how far the delivered models are from the ML estimate.
The case study is performed on a Macbook pro laptop, late
2013 with an 2.6GHz Intel core i5 and Matlab 2014b and,
for the existing schemes, the scripts provided by the authors
of [15, 25, 27] are used.

6.1 Data-generating system and model structure

The data-generating system is randomly selected in terms
of a SS model (8a)-(8b) with input-output dimensions nu =
ny = 2, scheduling dimension nψ = 5, minimal state di-
mension nx = 4, and affine dependence, i.e., the known ba-
sis functions are ψ[i] = p[i] with p[i] denoting the ith element
of p. The SS model represented system has a scheduling in-
dependent matrix function, i.e., K(pt) = K. The innovation
form is chosen, because all aforementioned methodologies
are able to consistently identify this particular representa-
tion. The system was constructed such that (1) and the in-
novation form based output substituted equation

x̌t+1 = (A(pt)−KC(pt))x̌t+(B(pt)−KD(pt))ut+Kyt,

are asymptotically input to state stable on the domain pt ∈
P = [−1, 1]5, with a quadratic Lyapunov function defined
by a constant symmetric matrix [53]. The LPV-SS model is
available at www.rolandtoth.us.

6.2 Identification setting

The identification dataset is constructed from white u with
uniform distribution ut ∼ U(−1, 1), and white p with ran-
dom binary distribution on (−0.9, 0.9), each of length N =
5 · 103. The noise process ξ is taken as a white noise with
distribution ξ ∼ N (0,V) where V is diagonal and it is cho-
sen such that the signal-to-noise ratio (SNR)

SNR[i]
y = 10 log

∑N
t=1(y

[i]
t )2∑N

t=1($
[i]
t )2

,

is set for various Monte-Carlo experiments as SNR[i]
y =

{40, 25, 10, 0}dB for all i = 1, . . . , ny. The [i] denotes the
i-th channel, i.e., element of the vector signal, and SNR[i]

y

is the corresponding SNR on the output y[i]. In this setting,
the signals are jointly ergodic and the parameters can be
consistently identified [35]. The performance of the scheme
is tested on a validation dataset Dval of length Nval = 200,
with different excitation conditions as the estimation dataset
in terms of

ut=

[
0.5 cos(0.035t)

0.5 sin(0.035t)

]
+ δt,u, (35)

p
[i]
t =0.25−0.05i+0.4 sin

(
0.035t+

2iπ

5

)
+δt,pi , (36)

where δt,u ∈ Rnu , δt,pi ∈ R are element wise i.i.d. se-
quences with U(−0.15, 0.15). To study the statistical prop-
erties of the developed identification scheme, a Monte-Carlo
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study with NMC = 100 runs is carried out, where in each
run a new realization of the input, scheduling, and noise
sequences are taken. However, the same NMC = 100 re-
alization are given to all methods. The dataset is available
at www.rolandtoth.us. We will asses the performance of the
CRA, FIR, and RI model estimates without refinement step
by comparing the simulated output ŷ of the estimated model
to the true output y. In all other cases, the one-step-ahead
predicted output ŷ of the estimated model is compared to
the one-step-ahead predicted output y of the oracle (i.e., the
one-step-ahead predicted output y using the original data-
generating system). This dichotomy in assessing different
signals is caused by the fact that the CRA, FIR, and RI do not
identify a noise model, hence, the one-step-ahead predicted
output is equal to the simulated output, therefore, compar-
ing it to the measured simulated output is more adequate.
On the other hand, the remaining methods include an esti-
mate of a noise model, thus the plant and noise model are
assessed by using the one-step-ahead predictor. In this case,
it is compared w.r.t. the oracle, as its generated output is the
maximum achievable output estimate given the dataset. The
performance criterion used is the best fit rate (BFR) 4

BFR = max

{
1−

1
N

∑N
t=1‖yt − ŷt‖2

1
N

∑N
t=1‖yt − ȳ‖2

, 0

}
· 100%, (37)

using Dval. In (37), ȳ defines the mean of the predicted/true
output yt in Dval and ŷt is the simulated output w.r.t. (35)
and (36) in Dval. Next, we will provide a summary of the
used design parameters, and their values are chosen to pro-
vided the highest BFR. The FIR model order is chosen
nh = 2 and Pα = αI . The hyperparameter α is tuned by us-
ing the Bayesian MIMO formulation of [54]. In the realiza-
tion step, the basis reduced Ho-Kalman scheme uses no =
nr = 10 bases, where the controllability matrix is spanned
by ς ={(ε, 0, 2), (ε, 1, 2), (ε, 2, 1), (ε, 2, 2), . . . , (ε, 5, 2)} and
the observability is spanned by ν = {(1, 0, ε), . . . , (2, 1, ε),
(2, 2, ε), (1, 3, ε), . . . , (1, 4, ε), (1, 5, ε), (2, 5, ε)}. The basis
of the Hankel matrix is selected by using the entries of the
full Hankel matrix with the largest absolute value. For the
PB method, the future f and past window p are chosen as
f = p = 3. For the SA method, the number of block rows
in the Hankel matrix is chosen to be 4 and the iterative pro-
cedure is stopped if the 2-norm of the eigenvalues of the A0

matrix do not change more then 10−6 or if it exceeds 100
iterations. For the RI method only the first 150 data samples
are taken into account, as the computational complexity of
the problem does not allow to use all data points of DN . For
the EM method, the relative and absolute tolerance on the
marginal log likelihood are chosen 2 ·10−3 and 104, respec-
tively, with a maximum of 20 iterations. For the GB method,
we use β = 10−4, γ = 0.75, ηmin = 10−5, αmin = 0.001,
ν = 0.01, ε = 10−6, and a maximum of 20 iterations.

4 Usually the BFR is defined per channel. Eq. (37) is the average
performance criteria over all channels.

6.3 Analysis of the results

Table 1 shows the mean and the standard deviation
of the BFR on Dval and execution time of the esti-
mation algorithms per Monte Carlo run for different
SNRy = {40, 25, 10, 0}dB. Note that the SA method did
not often converge for the underlying system of np = 5
scheduling signals, hence, also a simulation study is done
where the system to be identified had np = 2 scheduling
signals. In addition, remark that, the RI method only iden-
tifies C(·),D(·) and assumes A(·),B(·) to be known.
The table shows that the FIR with bases reduced realization
outperforms the CRA, PB, SA, and RI methods. The CRA
performs worse, because regularized methods, such as FIR,
provide estimates with lower parameter MSE compared to
the CRA by tuning the bias/variance trade-off. However, the
bias/variance trade-off comes with a higher computational
cost of around 4 times.
The PB is outperformed by the FIR, as it needs to es-
timate much more parameters, which is a well known
problem [25, Table 1]. The increased amount of parameters
to be identified is clearly reflected by the increased com-
putational time. However, PB can identify models where
the one-step-ahead predictor dynamics are stable, but not
necessary the system dynamics and it can be used in a
closed-loop identification setting.
The SA method has, in many cases, problems with con-
vergence. Presumably, this is cased by the LTI subspace
method to find the initial guess of the iterative scheme. The
subspace method identifies a parameter independent state
matrix A. However, the variations of this matrix w.r.t. the
scheduling signal p are too severe to be neglected. This con-
clusion seems to be supported by the substantially higher
BFR and the significant more converging trials if the data-
generating system has np = 2 in stead of np = 5.
It is expected that the RI method outperforms the FIR, as
the A(·),B(·) matrix functions are known a priori. How-
ever, the computational complexity of the RI method does
only allow for a small portion of the dataset DN to be used
for estimation (our case 150 out of 5000), hence, a large
decrease in its performance is seen for lower SNRs.
All performance criteria indicate that the additional refine-
ment step, with the EM or GB method, will lead to a better
estimate of the model, as expected. Only in case of the
SNR[i]

y = 0dB noise scenario, the EM refinement step will
not improve the estimate. In this case, the EM method is
not able to converge due to the large noise contribution.
The GB method outperforms the EM method in all cases.
Partially, this might be caused by the additional steps to
improve the numerics in the GB method, i.e., the automated
strategy of regularization and SVD truncation of the Jaco-
bian matrix and line search backtracking rule, compared to
the EM method and it can be caused by the slower rate of
convergence of the EM. To improve the EM, similar rules
to improve numerics could be implemented. In addition,
we would like to highlight that the CRA and FIR are not
statistically efficient under these noise scenarios, as they do
not identify a noise model. Therefore, the BFR of CRA
and FIR without refinement step can be further increased
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by also identifying a noise model.

Summarizing, the presented three-step approach results in
a maximum-likelihood estimate and accomplish this with
a lower computational time and higher performance w.r.t.
existing state-of-the-art LPV-SS identification approaches.

7 Conclusion

In this paper, we have presented a computational efficient,
modular three-step LPV-SS identification approach, which
contains the following three steps: 1) estimation of the
Markov coefficient sequence using correlation analysis or
a Bayesian FIR estimation, then 2) efficient LPV-SS real-
ization by using a basis reduced Ho-Kalman method, and
3) refinement of the LPV-SS model estimate by a GB or EM
optimization methodology. This three-step approach can
consistently identify the underlying data-generating system.
The effectiveness of the scheme has been demonstrated on a
real-world sized MIMO LPV-SS model identification prob-
lem under harsh noise conditions and it has been compared
to other methods. Any combination of the scheme was able
to identify the system within seconds, significantly faster
then its competitors with better performance.
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[18] V. Laurain, M. Gilson, R. Tóth, and H. Garnier, “Refined instrumental
variable methods for identification of LPV Box-Jenkins models,”
Automatica, vol. 46, no. 6, pp. 959–967, 2010.

[19] P. Lopes dos Santos, T.-P. Azevedo-Perdicoúlis, C. Novara, and
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A Proof of Theorem 7

The proof is found by computing the expected value of
the cross-correlation between the stationary signals y,ψ,u,
where the signals are assumed to be ergodic. Let us first show
the relation of the direct feed through matrices Ds1 . Lets
substitute the IIR (11) for y in Ryψs1u(0, 0), which gives

Ryψs1u(0, 0) =

=E
{

(D(pt)ut+C(pt)B(pt−1)ut−1+· · ·+ys
t)ψ

[s1]
t u>t

}
=E

{(
D0 +

nψ∑
i=1

Diψ
[i]
t

)
utψ

[s1]
t u>t

}
+

E
{
C(pt)B(pt−1) (ut−1)ψ

[s1]
t u>t

}
+· · ·+E{ys

tψ
[s1]
t u>t }

=Ds1σ
2
ψs1

Σ2
u. (A.1)

Eq. (A.1) holds due to the whiteness property of the
processes (u,ψ) and their independence. Also see that
E{ys

tψ
[s1]
t u>t } = 0, as w, v, and ψ are assumed to

be independent of u and ys satisfies the relation given
in (12), therefore, ys is independent from u. Hence,
E{ys

tψ
[s1]
t u>t } = E{ys

tψ
[s1]
t }E{u>t } = 0. For all other

sub-Markov parameters, let us consider an ordering of the

signal shifts as τsi = i − 1, τu = τsn , which results in the
following formulation

Ryψs1 ···ψsnu(τs1 , . . . , τsn , τu) =

= E
{

(D(pt)ut + C(pt)B(pt−1)ut−1 + · · ·+ ys
t)

←−
ψ

(τs1 )
s1 · · ·

←−
ψ

(τsn )
sn

(←−u (τu)
)> }

= E
{
Cs1As2 · · ·Asn−1

Bsn

(←−
ψ

(τs1 )
s1

)2

· · ·(←−
ψ

(τsn )
sn

)2←−u (τu)
(←−u (τu)

)> }
+

E
{

(D(pt)ut+· · ·+$t)
←−
ψ

(τs1 )
s1 · · ·

←−
ψ

(τsn )
sn

(←−u (τu)
)>}

= Cs1As2 · · ·Asn−1Bsnσ
2
ψs1
· · · σ2

ψsn
Σ2
u. (A.2)

Reordering (A.1) and (A.2) concludes the proof.

Remark 9 It is possible to get the same sub-Markov pa-
rameters with different multiplications of ψsi and corre-
sponding shifts, e.g., Ryψs1ψs2u(0, 1, 1) gives the same sub-
Markov parameter Cs1Bs2 as Ryψs1 ...ψs4u(0, 1, 4, 4, 1). In
scope of the estimation of these sub-Markov parameters, we
impose the above given ordering to keep the multiplications
with ψ[si] minimal.
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